
SpyGlass: A Wireless Sensor Network Visualizer

Carsten Buschmann
Institute for Telematics,

University of Lübeck
D-23538 Lübeck, Germany,

+49 451 500 5384

buschmann@itm.uni-
luebeck.de

Dennis Pfisterer
Institute for Telematics,

University of Lübeck
D-23538 Lübeck, Germany,

+49 451 500 5384

pfisterer@itm.uni-luebeck.de

Stefan Fischer
Institute for Telematics,

University of Lübeck
D-23538 Lübeck, Germany,

+49 451 500 5380

fischer@itm.uni-luebeck.de

Sándor P. Fekete
Department of Mathematical Optimization

Technical University at Brunswick
D-38106 Braunschweig, Germany

+49 531 391-7551

s.fekete@tu-bs.de

Alexander Kröller
Department of Mathematical Optimization

Technical University at Brunswick
D-38106 Braunschweig, Germany

+49 531 391-7410

a.kroeller@tu-bs.de

ABSTRACT
In this paper we present a modular and extensible visualization
framework for wireless sensor networks. These networks have
typically no means of visualizing their internal state, sensor
readings or computational results. Visualization is therefore a
key issue to develop and operate these networks. Data emitted
by individual sensor nodes is collected by gateway software
running on a machine in the sensor network. It is then passed
on via TCP/IP to the visualization software on a potentially
remote machine. Visualization plug-ins can register to
different data types, and visualize the information using a
flexible multi-layer mechanism that renders the information on
a canvas. Developers can easily adapt existing or develop new
custom tailored plug-ins for their specific visualization needs
and applications.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network monitoring.

General Terms
Measurement, Performance, Experimentation.

Keywords
Sensor networks, smart dust, visualization, debugging,
embedded computing.

1. INTRODUCTION
Recently, the study of wireless sensor networks [4] has
become a rapidly developing research area that offers
fascinating perspectives for combining technical progress with
new applications of distributed computing. These networks
consist of tiny battery powered devices that can be seen as a
combination of a micro computer and a sensor board. They
feature a number of sensors (maybe custom tailored for certain

applications) as well as wireless communication and limited
computational capabilities. Limitations arise from power, form
factor and price constraints. Examples are the Mica Motes
developed at the UC Berkeley [6] or the Embedded Sensor
Board ESB 430/2 from the FU Berlin [1]. As can be seen in
Figure 1, these devices are usually only a few centimetres big
and don’t have any user interfaces like displays or keyboards.

Figure 1: The Mica2 (left) and ESB 430/2 (right) wireless

sensor motes

Deployed in large numbers by for example dropping the
wireless sensor motes from a plane flying over the area of
interest, sample applications comprise the monitoring of
physical structure integrity, biological habitats, battle fields or
environmental parameters. They can help for example in
disaster recovery, by helping rescue personnel finding victims,
guiding them through the terrain or giving them a more
comprehensive view on the situation as a whole. In these
application domains, future scenarios anticipate networks
consisting of several thousand nodes [7], [8]. Nevertheless, the
development of algorithms, protocols and applications is
extremely difficult and progresses only slowly. The inherent

lack of user interfaces leads to a tedious and error-prone
developing and debugging cycle for which embedded systems
are ill-reputed. In addition, unpredictable hardware and
communication behaviors aggravate application development.
This might be one of the reasons why real-world systems
today consist of rather a few dozens nodes [1], [10], [11].
While there is tool-chain support for embedded systems,
development software for sensor networks is still in the early
beginnings.

2. RELATED WORK
With the SpyGlass sensor network visualizer we aim at easing
the life for sensor network debugging, evaluation and deeper
understanding of the software by visualizing the sensor
network, its topology, the state and the sensed data. A few
tools exist which cover some aspects of sensor network data
display and visualization.
The Surge Network Viewer [13] and the Mote-VIEW
Monitoring Software [12] are Crossbow’s products to visualize
wireless sensor networks. The Surge Network Viewer features
topology and network statistics visualization as well as logging
of sensor readings and the viewing of the logged data. The
statistics function includes the end-to-end data packet yield, a
prediction for the future and the RF link quality, but is limited
to these features. The system is not extensible; hence custom-
made visualizations are not feasible. The Mote-VIEW
Monitoring Software covers essentially the same topics but
presents a much cleaner user interface and more features. It is
also capable of logging wireless sensor data to a database and
to analyze and plot sensor readings. It allows querying the
sensor network for collected data in a database-like manner,
hiding the distribution of the data collection software on the
sensor nodes. Apart from lacking independency from the Mica
sensor network hardware [6] and easy extensibility, this tool
differs from our software in that it targets the operation and
data-retrieval phase while we aim at easing the setup and
debugging of applications.
The TinyViz visualization framework is the most generic
among the related visualizers. It is part of the TOSSIM
package of TinyOS [5]. It visualizes Sensor readings, LED
states, radio links and allows direct interaction with running
TOSSIM simulations. The architecture of TinyViz allows
adding application specific visualization functionality. This
functionality includes specialized drawing operations,
subscription and reaction to events and providing feedback to
the TOSSIM simulator. It is very tightly coupled to the
TinyOS software, the TOSSIM simulator and the Mica sensor
network hardware [6].

3. SPYGLASS ARCHITECTURE
The visualization framework consists of three major functional
entities: The sensor network, the gateway nodes located in the
sensor network and the visualization software. Figure 2 shows
how these three work together with a TCP/IP based transit
network.

3.1 Data flow
In the sensor network, each individual sensor node collects
data using its sensors, derives new information from
calculations or communicates with neighbors. If new
information is generated, it is forwarded to one or more so
called gateway nodes. Our current implementation of the
sensor network software uses simple flooding mechanisms to
achieve maximum reliability by redundant transmission.
However, any technique may be used to route the data to the
gateway nodes. This may range from the rather simple current
approach up to a fully sophisticated geographic routing
protocol in order to minimize the generated in-network traffic.
Gateway nodes connect the sensor network to some other
TCP/IP based network. Depending on the setup they may be
implemented in very different manifestations. In our demo
installation gateway nodes are regular sensor nodes that are
connected to an off-the-shelf PC via a serial connection. In
real world deployments it may not be feasible to use standard
PC equipment, but specialized hardware or mobile phones to
provide a connection to another network.
On boot, each sensor node checks its serial port for a
connection to a PC, and hence can determine whether it
functions as a gateway node or not. If so, it queries the PC for
the current time and date, and forwards this information into
the wireless sensor networks. Like this, all nodes in the
networks become loosely time-synchronized, so all readings
can be augmented with time stamps within a common,
consistent time system. This enables consistent visualization of
sensor readings etc. regardless from which particular sensor
node the data originates. The gateway node forwards all the
data received from other nodes to the gateway PC via the serial
connection.
The software component running on a gateway PC features a
ring buffer for storing a number of data packets from the
sensor network. Its size can be set using a startup parameter. A
gateway PC listens on a certain port (also set using a
parameter) for incoming connections from visualization PCs.
On connection, it sends over the contents of it ring buffer.
When new data arrives via the serial link, it is both stored into

Figure 2: Information from the sensor network is
forwarded to the gateway and then transferred to the

visualizer

the buffer and forwarded to all connected visualizers. The
circular buffer enables the system to bridge the time gap of
transit network failures or to provide data to visualization
stations which connect at a later point in time.
For the network connection between the gateway PC and the
machine running the visualization component, all kinds of
TCP/IP based networks including LAN, WLAN or GPRS can
be used. Obviously the gateway and the visualization
component can also run on the same machine to enable in-situ
monitoring of a sensor network. All that needs to be done is
that the visualization software component opens a connection
to the local host.
All data packets flowing through the sensor network, from the
gateway node to the attached PC, and through the transit
networks to the visualization PC have the same payload
format. Independent of the information they carry (e.g. sensor
readings, calculated data, internal sensor state, etc.), they
consist of a data type indicator, length information and the
data. Using this simple format, developers can come up with
new data types which will be immediately supported by the
sensor network and the gateway software. Up to this point data
has only been forwarded, all data processing and display tasks
are performed by the visualization software. Using this
architecture and data format makes it possible to replace each
of the three components individually, since the communication
between them follows a well-defined packet format. Currently
we provide three sensor network configurations: a real life
sensor network using the embedded sensor board ESB 430/2
[1] and data originating from the ns-2 [2] network simulator
and a replay implementation for debugging purposes.

3.2 The visualization component
The graphical user interface of the visualization component
(see Figure 3) consists of three major components: a graphical
display canvas (on the upper left), a sidebar for tree-structured
textual information on the network as a whole (on the upper

right), and a display for line-based output e.g. for debugging
purposes (at the bottom).
The graphical display canvas consists of three layers:

 The background layer is used for painting the
background of the visualization. In Figure 3 it is used
for displaying both the white background and the
reddish/bluish temperature gradient field.

 The relation layer is used for displaying all kinds of
relations between nodes e.g. by connecting nodes
that can communicate with a “can communicate”
relation as in Figure 3.

 The node layer is used for displaying the actual
nodes. In Figure 3, the box representing each node,
as well as the textual information and the blue battery
indicator are painted on this layer.

The actual visualization is done by user-written plug-ins, one
for each visualization demand. When a number of
visualization plug-ins independent of each other shall
cooperate, one important issue is to make sure that painting
operations don’t collide. To solve this problem while keeping
configuration simple, we have decided to create different plug-
in types, each type corresponding to one of the three display
layers and being only allowed to paint on “their” layer (see
also Figure 4).

 Background Painter plug-ins draw the background of
the visualization canvas. They can also be used to
illustrate spatial phenomena which can be inferred
from the received sensor data and positions.
Examples are temperature maps [3], the display of
coordinate systems or terrain visualizations.

 Node Relation Painter plug-ins display arbitrary
relations between sensor nodes onto the canvas, e.g.
by using lines to connect related nodes or drawing
polygons around them. Such relations might be
communication links, group membership or routing
paths.

 Node Painter plug-ins draw the actual nodes and
additional information onto the canvas. The depiction
may be dependent on the node type (e.g. gateway
node, cluster head, etc.), and may comprise a symbol
representing the node, as well as additional textual or
graphical information arranged around it.

Apart from these plug-ins painting on the canvas, there are two
other types of plug-ins.

 Node Positioner plug-ins are used by Node Painter
and Node Relation Painter plug-ins to determine
where to paint the nodes and relation end points on
the canvas. Placement decisions can be either based
on location estimates/measurements received from
the sensor network or on strategies based on graph
theoretical calculations optimizing screen
representation. Like this, the actual depiction of

Figure 3: The graphical user interface of the visualization
component

nodes is decoupled from the positioning of the node
representation, so both positioner plug-ins and
node/relation painters can be replaces easily.

 Global information plug-ins display information
about partitions or the whole network in a textual
way. This information is displayed in a sidebar and
can be structured in a tree. Examples are the overall
number of nodes, average neighborhood degree, etc.

3.3 Flexibility as a key property
SpyGlass features a very flexible drawing and plug-in
architecture. Most of its inner components can be exchanged
or extended easily. This extensibility has its roots in the way
how plug-ins and drawing instructions are implemented.
The plug-ins are not directly drawing on the canvas, but
instead they use a set of drawing primitives available in
SpyGlass. Calling these primitives results in the assignment of
graphical objects (such as lines, rectangles, text etc.) with the
layers. These graphical objects are then used by the canvas to
represent itself in the graphical user interface, using
appropriate drawing routines. Using this architecture has
several advantages: Drawing on different layers avoids
conflicts between plug-ins that have different priorities and the
painting code in the plug-ins is independent from the actual
canvas implementation.
The three canvas drawing plug-in types (Node Painter,
Relation and Background plug-ins) have their own layer on the
canvas on which their plug-ins exclusively draw. The user can
change the order and visibility of the plug-ins within each
plug-in container to achieve an optimal presentation of the
data.
Because the canvas brings drawing routines that implement the
drawing primitives, it is easy to add new canvas types, and
SpyGlass is able to draw on a variety of different canvas types.
One actual canvas implementation, the Java2D–Canvas, can be
seen on Figure 3. Other canvas types may be implemented for
special purposes. Implementing a new type of canvas is as

easy as providing a mapping from the abstract drawing
instructions to the concrete target canvas.
Like this, it is possible to easily create new canvasses like a
Postscript-canvas to document the sensor network in Postscript
graphics, a canvas that could create a series of JPEG images or
an MPEG video for demonstration purposes. Note that it is
possible to operate multiple canvases in parallel, so that e.g.
videos could be created while watching the visualization on
the regular Java2D–Canvas on the screen.

3.4 Recording and Playback
SpyGlass can not only be used for visualizing wireless sensor
networks that are currently in operation. It is also able to
record activities going on at a certain point of time, and
playing it back later, for seeing it again or watching it at a
different speed, similar to slow motion or fast forward.
Whenever a sensor network is visualized, the user can select to
additionally record all the information arriving at the
visualization component. By choosing a filename and pressing
the red dot button (see Figure 3), the recording is started. Note
that not the current visualization is recorded, but all data
packets arriving at the network information dispatcher (see
Figure 4). This allows not only playing back the current
visualization at a later point in time, but having completely
new views on the current network situation by employing
different plug-ins for interpreting and visualizing the recorded
information. This even allows for developing special
visualization plug-ins to show interesting details that were not
recognizable during the actual visualization run. Apart from
different playback speeds, Spyglass certainly implements
features commonly known from video players like fast
forward and jumping to certain point in playback.

3.5 Plug-ins
Currently, the SpyGlass visualization component has already a
number of plug-ins available. They range through all five
categories.

Figure 4: The architecture of the visualization component

The temperature map plug-in belongs to the category of the
background painters. It allows the visualization component to
indicate the temperature distribution by coloring the
background between the sensor nodes. Each sensor
periodically measures the current temperature. On change, it
broadcasts a packet containing its address, the current time and
the corresponding temperature. The plug-in residing in the
visualization component refers to the currently used node
positioning plug-in to assign the temperature value to a
position and maps the temperature to a color. Colors between
the node positions are interpolated from the values belonging
to the surrounding nodes. The resulting temperature maps can
be seen in the screenshot in Figure 3.
Currently a very simple node painter is implemented. It
displays a box for each node, with the node’s address written
in it (also see Figure 3).
The temperature plug-in indicates the temperature a nodes
measures as a numerical value. It uses the same messages as
the temperature map plug-in. It is at work in Figure 3.
The battery plug-in uses a blue bar to indicate how much
energy the nodes have left. To do so, the nodes periodically
measure their battery voltage, and forward packets augmented
with their address and a timestamp to the gateway. Voltage
indication can be observed in Figure 3.
The topology plug-in is a node relation painter. The sensor
nodes periodically send out beacon packets that neighbors use
to maintain a neighbor list. The list is broadcasted periodically
and forwarded to the gateway node. In the visualization
component, the plug-in processes the packet, and draws lines
from the sender to all its neighbors. Again, the node positioner
plug-in is consulted for the nodes’ positions. Connectivity is
indicated in Figure 3.
There also is a plug-in that can be used to position the nodes
on the graphical display canvas. It assumes that the sensor
nodes are aware of their real positions. Hence they periodically
send out their coordinates together with their address and a
timestamp. The plug-in subscribes to these packets and maps
the coordinates to positions on the graphical display canvas. It
automatically extends the coordinate boundaries the canvas
represents whenever out-of-scope positions come to its
knowledge.
The spring embedder is another node positioner plug-in.
Opposite to the aforementioned one it assumes that the sensor
nodes do not have any information about where they are.
Hence it has to figure out appropriate positions for node
display by other means: It subscribes to the neighborhood
messages, and keeps track of the topology. Using a spring
embedder, it then positions nodes that can hear each other
close on the canvas, whereas it places nodes without
connectivity far away from each other. The resulting node
distribution can be seen in the screenshot.
The average neighborhood size plug-in is a global information
plug-in. It subscribes to the neighborhood messages used by
the topology plug-in, but keeps track only of the number of
neighbors. Like this, it can display the average network-wide
connectivity in the global information sidebar.

There is another general information plug-in that keeps track
of the number of nodes in the network. Subscribing to the
neighborhood list packets (or any other periodical packet
type), it keeps track of the nodes in the network. When a node
didn’t send a packet for a certain time, it is considered not to
be part of the network anymore.

3.6 Adding custom functionality
Adding new elements to the visualization is straightforward,
two cases can be distinguished:

 If the new visualization element is driven by
messages already emitted by the sensor network, all
that needs to be done is implementing an additional
plug-in. To implement for example a general
information plug-in that could count the number of
network partitions, the messages containing the
neighborhood lists could be used. All that is needed
is a plug-in that keeps track of the all the connectivity
information, constructs graphs from it and displays
their number in the sidebar.

 If new messages are needed, things get only slightly
more difficult. To implement for example the
visualization of motion detection sensor readings, a
developer simply needs to define a new data type,
construct it as a binary array in the sensor and use the
common forwarding service to a gateway node. To
visualize the data, a simple Node Painter plug-in
must be implemented which registers itself as a
handler for the new data type, parses it and attaches
this information to the corresponding node.

4. STATUS AND FUTURE WORK
SpyGlass is currently used throughout several projects in our
group for research as well as teaching purposes. It is
implemented using the Java 2 Standard Edition and the Java2D
framework. We are currently in the process of finishing
support for all features and eliminating remaining bugs. The
sensor network implementation is completed for the Embedded
Sensor Board ESB 430/2 from the FU Berlin [1] in C using the
provided firmware from the FU Berlin. As soon as this process
in completed, we plan to publish it under an open source
license (GPL) soon.
We tested the scalability properties for the visualization
component using data generated by the Ns-2 network
simulator [2]. We found that it scales to thousands of nodes
without problems. In addition, there is experience in
visualizing real-life sensor networks of about 10 devices. To
be able to visualize bigger networks, we plan to enhance to
data forwarding mechanisms used in the sensor network.
In addition to that, future work will include a TinyOS
compatible implementation to support the Berkeley Motes
hardware platform [6]. Additionally we want to integrate 3D
visualization support using the Java3D framework and
additional plug-ins. Current ideas include a map component to
display geospatial information, more sophisticated node

drawing plug-ins and support for the network simulator Shawn
[14].

5. ACKNOWLEDGMENTS
This work is part of the SWARMS and SwarmNet projects
funded by the German Research Foundation (DFG) in the
programs SPP 1140 (Basic Software for Self-Organizing
Infrastructures in Networked Mobile Systems) and SPP 1126
(Algorithms for large and complex networks). For further
information, see http://www.swarms.de and
http://www.swarmnet.de.

6. REFERENCES
[1] Website of the Embedded Sensor Board ESB 430/2:

http://www.scatterweb.com.
[2] The Network Simulator - ns-2:

http://www.isi.edu/nsnam/ns.
[3] C. Buschmann. D. Pfisterer and S. Fischer: Experimenting

with Computer Swarms: a Mobile Platform based on
Blimps, Poster, The Second International Conference on
Mobile Systems, Applications, and Services, June 2004.

[4] I.F. Akyildiz, S. Su, Y. Sankarasubramanian and E.
Cayirci: Wireless Sensor Networks; A Survey, Computer
Networks, Vol. 38, No. 4, March 2002, pp. 393 – 422.

[5] TinyOS: http://www.tinyos.net.
[6] Crossbow Technology Inc., “Mica2Mote,”

http://www.xbow.com.

[7] D. Estrin, R. Govindan, and J. Heidemann, “Embedding
the internet: introduction,” Commun. ACM, vol. 43, no. 5,
pp. 38–41, 2000.

[8] V. Kumar, “Sensor: the atomic computing particle,”
SIGMOD Rec., vol. 32, no. 4, pp. 16–21, 2003.

[9] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and
J. Anderson, “Wireless sensor networks for habitat
monitoring,” in ACM International Workshop on Wireless
Sensor Networks and Applications (WSNA’02), Atlanta,
GA, Sept. 2002. [Online]. Available:
citeseer.ist.psu.edu/mainwaring02wireless.html

[10] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson,
and D. Culler, “An analysis of a large scale habitat
monitoring application,” in Proceedings of the 2nd
international conference on Embedded networked sensor
systems. ACM Press, 2004, pp. 214–226.

[11] P. Zhang, C. M. Sadler, S. A. Lyon, and M. Martonosi,
“Hardware design experiences in zebranet,” in
Proceedings of the 2nd international conference on
Embedded networked sensor systems. ACM Press, 2004,
pp. 227–238.

[12] Mote-VIEW Monitoring Software, Crossbow Technology
Inc.:
http://www.xbow.com/Products/productsdetails.aspx?sid=
88.

[13] Surge Network Viewer, Crossbow Technology Inc.:
http://www.xbow.com/Products/productsdetails.aspx?sid=
86.

[14] Shawn, an open-source discrete event simulator for sensor
networks: http://www.swarmnet.de/shawn

