
Energy-Efficient Data Organization and Query Processing
in Sensor Networks

Ramakrishna Gummadi∗ Xin Li∗ Ramesh Govindan∗ Cyrus Shahabi∗ Wei Hong†

ABSTRACT
Recent sensor networks research has produced a class of data stor-
age and query processing techniques calledData-Centric Storage
that leverages locality-preserving distributed indexes to efficiently
answer multi-dimensional range and range-aggregate queries. These
distributed indexes offer a rich design space of a) logical decompo-
sitions of sensor relation schema into indexes, as well as b) physical
mappings of these indexes onto sensors. In this paper, we discuss
this space for energy-efficientdata organizations (logical and phys-
ical mappings of tuples and attributes to sensor nodes) and examine
the performance ofpurely local query optimization techniques for
processing queries that span such decomposed relations.

1. INTRODUCTION
Wireless sensor networks are an emerging class of highly dis-

tributed systems with widespread applicability. In such networks,
nodes generate, process and store sensor readings within the net-
work. This architecture is necessitated by the relatively high en-
ergy cost of wireless communication—this cost makes it infeasible
to consider centrally collecting and processing voluminous sen-
sor data. An important component of these networks, then, is an
energy-efficient system that enables users to query the stored data.

Existing approaches to organizing data and processing queries
fall under one of the two broad categories namely,Data-Centric
Routing (DCR) andData-Centric Storage (DCS). In DCR, the data
generated by the sensors is stored at the nodes that generate them,
and queries are flooded throughout the network. Data from the
sensors in the sensornet is then aggregated along the query tree
that is built during the query flooding phase on a per-query basis.
This approach, pioneered by early systems such as TinyDB [10]
and Cougar [1], is efficient forcontinuous (long-running) queries,
where the high energy cost incurred during the query flooding and
per-query data aggregation phases is amortized over time.

Compared to DCR, DCS is a relatively new class of data storage
and query methodologies proposed in [13]. In DCS, data generated
by a sensor is stored at remote nodes as soon as it is generated such
that related sensor data gets stored together regardless of where
in the sensornet the data originates. Consequently, queries can be
directed to the precise locations of the network where relevant data
is stored, and data can be aggregated locally and more efficiently
than in DCR-based approaches. Thus, theoverall (insertion+query)
cost for DCS is lower for manyad-hoc (short-lived) workloads.

∗Computer Science Department, University of Southern Cali-
fornia, Los Angeles, CA 90089, USA.Email: {gummadi,
xinli, ramesh, cshahabi}@usc.edu
†Intel Research at Berkeley, 2150 Shattuck Ave., Suite 1300,
Berkeley, CA 94704, USA.Email: wei.hong@intel.com

DCS can use any locality-preserving geographically distributed
index structure such as DIM [8], GHT[12], DIFS [5], and DIMEN-
SIONS [3]. Our focus in this paper is to improve the overall energy
performance of vanilla DCS by a) exploiting the flexibility offered
by these underlying data structures during the data insertion phase
and b) optimizing query plans during query execution phase. Thus,
while each DCS system currently defaults to using a fixeddata or-
ganization (by this we mean mappings of tuples and attributes to
network nodes), we seek to understand the design space of possible
data organizations, and identify more energy efficient (in terms of
total insertion+query costs) candidates.

In this paper, we use a distributed index called DIM [8], which
serves as our basic storage, indexing, and querying layer, and is in-
teresting because of its locality-preserving property. However, we
emphasize that the choice of this distributed index is orthogonal
to the data organization and query processing ideas described in
this paper, and it is possible to use other indexes like GHT[12],
DIFS [5], and DIMENSIONS [3]. DIM is overviewed in Sec-
tion 2.1, and can be thought of as a search tree that is spatially
overlaid on a sensor network. In this sense, it resembles classical
database indexes. However, DIMs are also intended to store the
primary copy of the data.

Consider a sensor network with anm-relation schema〈uuid,a1,a2,
. . . ,am〉. Tuples in this schema can be stored in one DIM. Al-
ternatively, we can fully decompose them intom DIMs each of
which stores a single relation of the form〈uuid,ai〉, and we can
then join onuuid on demand to evaluate queries. A spectrum of
partial decompositions of the base relation into sub-relations of
the form〈uuid,ai, . . . ,a j〉 is, of course, also conceivable. Clearly,
we can expect these different data organizations to yield differ-
ent performance under different workloads. Our measure of per-
formance is the total energy cost incurred for a given workload,
including data inserts and query retrievals; sensor networks are
energy-constrained, and communication expends significant energy.
We approximate the energy cost of a single message as a product
of the size of the message (in bits) and the number of hops the mes-
sage traverses.

We find that, in many cases, fully decomposing the base relation
performs better than partial decomposition, even when the query
workload is known in advance. We then study three related mech-
anisms that can improve the efficiency of query processing when a
base relation is fully decomposed into multiple DIMs:

• Spatially Partitioning Sub-Relations. Each fully decomposed
sub-relation is stored in a DIM, and all DIMs are assigned
spatially disjoint sections of the sensor field.

• Efficient Query Planning via Decentralized Join-Ordering.
Queries are satisfied by applying an equi-join on the decom-
posed sub-relations. We show that can good join-order can

be obtained by summarized global information in the form of
a low overhead coarse-grained multi-dimensional histogram
that approximates the distribution of data stored within the
network.

• Efficient Query Execution via Optimistic Join-Caching. We
describe a simple and robust mechanism to cache the results
of partial joins across sub-relations locally at each sensor
node (Section3.3). This caching strategy enhances query
performance by eliminating redundant tuple movement dur-
ing query execution.

We show using extensive simulations that for a variety of data
distributions (both synthetic and real-world) and synthetic query
workloads, these schemestogether provide more than a four-fold
reduction in energy expenditure over storing the base relation in
one DIM even for a small number (4) of sensor attributes; we argue
analytically in Section3.1 that we can expect this factor of im-
provement to improve with increasing number of sensor attributes.

2. BACKGROUND AND MOTIVATION
In this Section, we describe the mechanics of insertion and query-

ing in DIM, and motivate the performance advantages of decom-
posing base relations using qualitative arguments.

2.1 DIM Overview
Sensor networks are typically tasked to individually or collabo-

ratively sense an environment and produce higher-levelevents or
features after local signal processing and filtering. Examples of
such events might be local micro-climate temperature gradients or
bird sightings. It is these events that we are primarily interested
in querying in an energy-efficient manner. An event can, thus, be
thought of as a tuple consisting of a small (typically 4-6) number of
attributes. Each attribute corresponds to a sensor type and can be
treated as a column in a single relation table consisting of all pos-
sible sensor types. For example, a typical habitat-monitoring sen-
sornet may generate tuples consisting of 4 attributes:< l, t,x,y >
corresponding to light and temperature readings, and the(x,y) co-
ordinates of the sensor that sensed this reading. The events are
then cast into a tuple and timestamped. Each tuple is assigned a
universally-unique identifier (uuid). The uuid can be constructed
as a simple concatenation of node number and a locally unique se-
quence number (which could be the timestamp itself).

The relational schema for a general sensor network can thus be
viewed as a single table of the form(uuid,a1,a2, ...,ak) wherek is
the number of sensor attributes. Throughout the rest of this paper,
we call this single logical tablesensors. Whenever a sensor gen-
erates a tuple, itinserts it (or some decomposed version of it) into
one or more DIM indexes, as described later.

A DIM index is best described by visualizing a collection of sen-
sor nodes distributed on a two-dimensional surface. In DIM, this
geographic region occupied by the sensor nodes is spatially parti-
tioned such that each node “owns” the part of the region around
it (we call these spatial sub-divisions “zones”). This spatial parti-
tioning can be logically thought of as recursive equal-sized subdivi-
sions of the 2-D space alternately along thex andy axes. Each spa-
tial region resulting from a series of subdivisions can be assigned a
unique bit code; for example in Figure1, the zone assigned a code
1001 indicates that the zone is on the right side of the first subdi-
vision (along the x-axis) as indicated by the 1 in the first bit, along
the bottom half of the second subdivision (along the y-axis) as indi-
cated by the 0 in the second bit, and so on. This spatial partitioning
can be accomplished by a distributed algorithm that is described
in [8].

3

010

001000

011

4 9

821

110 111

10

1011

1010

7
5

1000

1001

6

Figure 1: Example DIM Organization

Then, hyper-rectangles in the attribute space are mapped to zones.
Given a tuple, nodes can compute which zone the tuple belongs to
entirely locally—the only global information they need is an ap-
proximate boundary of the sensor field. They do this by essentially
subdividing the attribute space in the same way that the sensor field
is geographically partitioned (this algorithm generalizes to more
than 2 dimensions on the attribute space). Thus each tuple can be
assigned a code and will be stored at the node whose code matches
that of the tuple. Tuples are then routed to the appropriate zone
using a geographic routing algorithm [7]. Multi-dimensional range
queries on a DIM can be described by hyper-rectangles in the at-
tribute space. Given these hyper-rectangles, nodes can map them
to DIM zones using the same mapping algorithm as was used for
tuple insertions.

2.2 Motivating Alternative Data Organizations
We are now ready to consider the subject of the paper; the trade-

offs involved in storing a relation in a single DIM versus decom-
posing it across multiple DIMs. A crucial aspect of this tradeoff is
ourcost metric: the energy cost of transporting a message from one
node to another is proportional to the product of the message size
and the number of hops traversed (in sensor nodes, each transmis-
sion costs significant energy).

In DIM, the cost of a query response is influenced by the node
distribution (which defines the zone structure) and by how many
zones need to be consulted as part of the query (i.e., which nodes
contain data for parts of the query hyper-rectangle). For exam-
ple, in Figure1, if the DIM is organized as a 2-D index structure
over 2 attributes(l, t), to answer a queryQ1 of the form:select
avg(t), from sensors, where 0.25<=t<0.5 the nodes
with zone prefixes{0001,0011,1001,1011} (in this example, these
would be nodes 1, 2, 6, and 8) would have to be consulted because
the first attribute,l, can take on either 0 or 1.

Consider now an alternative organization in which we construct
two separate DIMs, one each forl and t (we call these 1-DIMs).
The 1-DIMs are fully-decomposed tables of the form(uuid,ai)
whereai is the value of thei’th sensor type in the tuple. The 1-
DIM itself is constructed on the sensor attributeai, and theuuid’s
are used for joiningai with other sensor attributes during query ex-
ecution. In this organization, we need to only consult the two nodes
3 and 4 corresponding to zone prefixes{010,011} to answer query
Q1. Also, more importantly, these two zones are closer together in
terms of geometric distance by a factor of 2 compared to the four
zones that would need to be searched with 2-DIM.

On the other hand, for a queryQ2 of the form:select avg(l),
from sensors, where 0.25<=l<0.75 and 0.5<=t<0.75

we would have to consult nodes owning zones with prefixes be-
tween 0110 and 1100 in case of a 2-DIM (assuming it is constructed
on (l, t)). These nodes would be 4, 5, 6, 7, 8, and 9. With 1-DIMs,
the prefixes would be 0100 to 1011 forl, and 1000 to 1011 fort
(thus, the nodes would be 3, 4, 5, 6, 7, 8), comparable in number
and distribution to the 2-DIM case. Thus, we see that the size of
the query hyper-rectangle can critically affect query efficiency.

Thus, to answer queries of typeQ1 using a 2-DIM, we needed
to scan all zones for which the second attribute of the DIM,t, can
be treated as a wildcard (this is true as soon as at least one attribute
in a multi-dimensional query is absent from the range part). On
the other hand, if we were to use two separate 1-DIMs, one each
for l and t, we would not have this inefficiency. In general, we
typically end up having to visit fewer and more closely separated
nodes with fully-decomposed DIMs. However, in order to answer
queries of the formQ2, using 1-DIMs, we need to (a) select both
attributes(uuid, l) that make up the table data for the 1-DIM ont,
(b) transport them to the nodes containing the zone 0.25< l < 0.75,
(c) locally match thel tuples witht tuples on uuid’s and filter out
thosel’s that don’t have a matchingt within the query range, and
(d) finally aggregate the remaining values ofl and return the result
to the query issuer. Thus, we see that this form of query execu-
tion on partially- or fully-decomposed relations is generalizable to
a larger number of sensor attributes and naturally leads to the fa-
miliar database notion ofjoins in sensor networks.

2.3 The Focus of the Paper
This paper focuses on efficiently supporting multi-dimensional

range and range-aggregate queries using DIMs. Before we describe
the questions that the previous section motivates, we describe some
important assumptions. We assume that queries can be issued from
any node in the network and data can be inserted from any node
in the network at any time. We wish to accommodate a wide va-
riety of aggregation operators because we allow for aggregation to
be performed both locally at a node after collecting relevant tuples,
and as a form of in-network processing. Thus, we aim to support a
flexible, wide-ranging set of range, aggregation and order-statistics
operators (like medians [9], etc., that are not fully amenable to
any form of hierarchical aggregation) without sacrificing efficiency
when computing simpler aggregates like sums and averages. In all
cases, our system supports SQL-like relational queries involving
standard clauses like “select”, “where”, “group by”,etc.

The previous subsection pointed out that decompositions of the
base relation into multiple DIMs can have different query perfor-
mance characteristics. The important tradeoff here is that when
sub-relations are stored in DIMs, scans are more efficiently sup-
ported than when the base relation is stored in one DIM. On the flip
side, however, to answer queries in general, the sub-relations need
to be joined on uuid’s. Joins entail additional costs in the form of
data movement between the various DIMs. Clearly, then, the per-
formance of decomposition will depend on the query workloads.

This discussion motivates several additional questions: given a
decomposed base relation, how might a node decide on an efficient
join-ordering? Given that query hyper-rectangles might overlap, is
it beneficial to cache the results of joins to reduce data movement
costs? If so, what mechanism might we use to do this? We address
these questions in the next section.

3. DATA ORGANIZATION FOR EFFICIENT
QUERYING

3.1 Full Decomposition and Spatial Partition-
ing

X

L

(1,0)

(1,0)

(0,0)

(1,1)

Y

T

Figure 2: Example spatially-partitioned fully-decomposed
DIMs

We offered qualitative arguments in Section2.2 that a full de-
composition of a relation ofk attributes into multiple 1-DIMs can
achieve significant energy efficiency over storing the base relation
in a single DIM. A related obvious optimization we can leverage
is spatial partitioning: the DIMs that store a sub-relation can be
assigned to spatially disjoint partitions of the original sensor field.
For example, in Figure2, the l (for light) attribute values of a tu-
ple are all stored in a 1-DIM in the lower left (quadrant 0) corner
of the sensor-field, all thet (for temperature) values are stored in
the lower right (quadrant 1), and thex andy values in quadrants 2
and 3 respectively. This organization constrains the distance data
must move within each DIM by clustering related attribute values
more densely, thereby further reducing the overall cost compared
to a 4-DIM.

To motivate the utility of this optimization, consider the exe-
cution of the following simple query on this data organization:
select avg(l), from sensors. The average message cost
for answering such a query in this data organization can be ex-
pected to ben× 1/4 wheren is the total number of tuples in the
system because these tuples would have to move an average of
1/4 (assuming the whole square to be a unit square) to get aggre-
gated somewhere near the centroid of the lower left quadrant. An-
alytically, the average distance an attribute would move would be
∫ 1/2

0

∫ 1/2
0 |x−1/4|+|y−1/4|dxdy

1
4

(because the area of this quadrant=1/4;

assuming anL1 norm). Withk > 4 attributes, we can analytically
show that we can get correspondingly higher multiple of message
reduction, although this multiple grows asO(

√
k).

For a non-partitioned data organization with separate overlap-
ping DIMs for individual attributes, intuitively, the average execu-
tion cost would ben×1/2 because the tuples now have to move an
average of 1/2 to get aggregated near the center of the unit square.
Thus, the non-partitioned case moves tuples twice farther than the
partitioned one, and, hence, incurs double the energy cost in this
scenario. It alsoquadruples its hotspot concentration compared to
partitioned.

3.2 Optimizing Join Orders
Having established that fully decomposing a base relation is at

least a reasonable data organization, it remains to show how to ef-
ficiently determine join orders. Clearly, different join orders can
have vastly different costs, but we make the following key obser-
vation: knowing which DIMs exist in the system, and given an
approximate joint data distribution, each node canindependently
compute an efficient join order for the query. This is possible for
three reasons. First, DIMs are spatially distributed indexes, and
the mapping between a data item and the location it is stored can

be computed locally. Second, we use a histogram to give us anap-
proximate indication of the number of tuples generated by selecting
the appropriate range from each of the sub-relations. Third, know-
ing the selectivity and the locations of the query hyper-rectangles,
each node can compute the approximate cost of a query plan by
estimating the messaging cost by either the Euclidean or theL1
distance.

In our design, each node in the network contains a query op-
timizer. When the query optimizer is presented with a range or
range-aggregate query, it outputs a query plan consisting of a se-
quence of select and join operations that needs to be executed be-
fore the final aggregation. In our current instantiation of the design,
the optimizer considers all possible join orders (O(k!) (this is fea-
sible if the number of attributesk is small; also, we don’t consider
join trees that are not simple chains because chains are simple and
robust to execute distributively and tend to be good enough) and
determines the least cost one.

To analytically understand the importance of good join ordering,
consider Figure2 once again. If our query is of the form:select
avg(l),avg(t), from sensors, where 0<=l<0.5. The
cost incurred for executing this query by movingt to l is approx-
imately n/2× 1/2 for join because roughlyn/2 tuples would be
selected by the range query 0<= l < 0.5, and moving thesen/2
tuples incurs a cost ofn/2×1/2 as can be intuitively seen and an-
alytically shown. The query also has to pay an aggregation cost of
2×n/2×1/4 because the 2 attributes (l,t) numberingn/2 need to
be moved 1/4 distance after reaching the quadrant 1. Thus, the to-
tal energy cost in this case isn/2. On the other hand, if we were to
execute this query by first joiningl with t, we would have incurred
a join cost ofn×1/2 and an aggregation cost of 2×n/2×1/4 for
a total cost of 3n/4.

It is instructive to consider this query cost with that of a 4-DIM:
there is only aggregation cost, and it isn/2× 2× 1/2 = n/2 be-
cause each node in the 4-DIM has to locally retrieve thel and t
attributes of each tuple and route them to the centroid of the unit
square. While this is as expensive as with spatially-partitioned 1-
DIMs that use optimal join ordering, we can readily see that the join
component of the query cost in the 1-DIM case can be eliminated
if we can cache the join results. This would double the efficiency
of the data organization scheme employing normalized DIMs, and
one such caching scheme is described in Section3.3.

Once this consistent and high join cost component of a query is
eliminated, we can intuitively see why it is possible to get a small
multiple (indeed, more than 2 even with 4 attributes) benefit in to-
tal energy savings by using normalized DIMs compared to 4-DIMs:
the data values returned by a query come from nodes all over the
sensor field (due to full-interleaving of attributes in 4-DIM) and
end up getting aggregated near the center of the unit square af-
ter traveling long distances, while a normalized 1-DIM that can
minimize join overhead through caching only has to pay a small
variable localized aggregation cost (because of zero interleaving,
the values desired by the attribute range of a query tend to come
from close by nodes whose dispersion is defined only by the selec-
tivity of a query). Additionally, spatial partitioning adds a small,
on an average constant, but useful percentage to the proceedings.
A secondary benefit of spatial partitioning is that it distributes the
aggregation hotspots over the entire network in contrast to 4-DIM
which tends to reinforce the single hotspot region around the net-
work centroid with each query.

3.3 Reducing Join Costs through Caching
As we have seen in Section3.2, the energy cost of a query has

two components: the join cost, and the aggregation cost. The ag-

gregation bit energy cost differs for the various data organizations,
and is primarily a function of the size of the sensor field. It needs to
be paid for every query by all schemes. However, the join cost need
not be paid for by every query, and can be very effectively reduced
through use of simple caching techniques.

The caching technique we study here is a very simple localized
scheme. Consider a join order in which nodeA has to send tuples
from its sub-relation to nodeB for joining. A remembers which
tuples it has earlier transferred toB that fall within the current
queried range. It then refrains from sending these tuples during
this join step.B receives both the query and a partial list of tuples
and knows that it has to add missing ranges of the joining tuples
from its local cache.

Thus, the caching protocol is straightforward and robust because
the sender nodes do not need to know which receiver has which
data ranges, but only whether they have sent the relevant tuples pre-
viously or not. Furthermore, there is no distributed cache mainte-
nance overhead to guarantee correctness in the presence of caching
node failures. When node failures cause some cached data in the re-
ceiver to become unavailable, we use a simple on-demand resend-
based failure recovery scheme to replenish the unavailable data.
DIM provides a way for nodes in adjacent zones to takeover the
failed nodes. These newly responsible nodes can invalidate the
caches for data ranges in the adopted zones. Then, during the join
step, they inform the sending nodes that they need to resend the
entire set of tuples in the query range.

4. PERFORMANCE EVALUATION
In this Section, we evaluate the performance of our approach

using simulations over both real-world and synthetic datasets on
a wide variety of query workloads. Our goal is to quantify the
total performance benefits of our data organization and query pro-
cessing over more straightforward approaches, and we use a full-
dimensional DIM as the base case against which we compare en-
ergy efficiency.

4.1 Methodology
We have implemented our mechanisms on a custom simulator

that allows us to evaluate the effects of decomposition, spatial parti-
tioning, caching and join-ordering. Our primary performance met-
ric is the totalbit energy cost incurred by the network as part of
query execution. We evaluate this cost by keeping track of the size
and number of messages transmitted by each query, and the number
of hops undertaken by each message. Message sizes include header
and payload sizes, and these are set to be the same as in the imple-
mentation described in Section5 (7 and 36 bytes respectively).

We vary the number of sensor nodes in the network from 50-200
to explore scaling effects. The node locations are generated by us-
ing radio and node-connectivity models assuming a radio range of
250m and node connectivity of 9. This generates the node locations
within a square grid whose size is determined by the node number,
radio range, and node connectivity. Without loss of generality, we
then normalize the locations to fall within a unit square.

We also vary the query workload from 100-400 queries in which
each query computes aggregates over up to four attributes, with
each attribute being included or excluded with equal probability;
we do likewise for the range attributes. We use a variety of data
workloads including uniform distributions, correlated Gaussian dis-
tributions (to better model natural sensor readings and to skew and
stress the network), and data from a real-world set (measurements
from the Great Duck Island dataset) [11] to better understand the
behavior of our approach on varying workloads.

We normalize all the data in the real-world dataset to fall within

[0,1). The synthetic dataset generator also produces values in this
range. For the Gaussian distribution, we generate a four-attribute
tuple in which the first two attributes are positively correlated with
the mean vector(0.5,0.5) and co-variance matrix

(

0.04 0.039
0.039 0.04

)

and the next two attributes are negatively correlated with the same
mean vector and co-variance matrix

(

0.09 −0.089
−0.089 0.09

)

.
The Great Duck Island set called gdinet consists of 23548 tuples

while the synthetic datasets had 4000 tuples on average each. Thus,
the query-data ratio varied from≈ 10% to≈ 0.5%. We normalize
our energy cost by dividing the total cost by the number of nodes in
the system as well as the number of tuples in the dataset. This gives
us the average cost per tuple per query. Note that this cost includes
the tuple’s original insertion cost as well.

We also tested our approach on a wide variety of synthetic query
workloads. For each workload, we re-ran our simulations with mul-
tiple instances of the workload until the standard deviation of the
set of averaged results fell below 20% of that of any one run. The
error-bars for all points within a series (likeOptimized in Figure3)
are then calculated as the worst case error-bars and plotted.

We compare the performance of our proposed organization tech-
nique with four other cases, giving us a total of five scenarios for
each workload and dataset:

• 4-DIM (abbreviated as4-DIM in the graphs). This is the
straightforward case with all four attributes being stored in a
single DIM.

• 1− DIMo (abbreviated asOptimized). This is the perfor-
mance with optimized join-ordering and with caching en-
abled on 4 fully-decomposed 1-DIMs that are spatially par-
titioned and each assigned to one quadrant of a unit square.
However, note that the optimal join ordering doesnot use
knowledge of the current state of the global cache, and only
uses information that an oblivious query issuer would have
access to.

• 1−DIMu (abbreviated asUncached). This is same as 1−
DIMo above, but with caching turned off.

• 1−DIM r (abbreviated asRandom). This is the performance
with random join ordering but otherwise same as 1−DIMo.

• 1−DIMm (abbreviated asWorst). This is the performance of
a worst-case join ordering, but otherwise same as 1−DIMo.

4.2 Main Results
Given space limitations, we only present the main results from

our extensive simulations (Figure3 depicts some of these results).
• Caching eliminates a large fraction of joins, and gets us to

the point of efficiency of 4-DIMs after which we can use
optimizations like optimal join orders, full decompositions,
and spatial partitioning to deliver us significant benefits.

• The relative spreads of the various series (Optimized, Ran-
dom, 4-DIM, Worst, Uncached) is roughly the same across
all simulation runs, workloads, and number of queries. The
absolute values depend on the simulation parameters.

• Random joining is nearly as bad as worst, and we also found
(but not plotted) that average (of all possible join combina-
tions) is also nearly as bad; this means optimal join ordering
is crucial (as will become clear later on, most “good enough”
join orders are OK too).

• Gaussians give much better performance over both uniform
and gdinet data because of high attribute densities within the
bell; but this also creates hotspots, and performance degener-
ates if we employ additional load-balancing. However, they

Relational query

Histogram
Analyzer

Join
order

selector

Reliability
Module

Query Evaluator

Histogram
Generator

(background,
periodic)

Multi-Dim
Histogram

Sequenced join/aggregate
operators as
DIM queries

DIM

GPSR

Results More-specific queries
for missing ranges,

aggregates

Query Engine

Query Issuer Remote node overlapping
first attribute range

DIM

GPSR
To remote

node-set overlapping
next attribute range

Multihop Mica2 radio network

Attribute
Value

Selector

Cache
Manager

Remaining
query

message

1st

attribute
range

Uid’s

Tuple
Insertion
Manager

DIM
Insert
Event

Local
CCP

Remaining
query +

required uid’s

Query Optimizer

Query Processor

Figure 4: Software Components of the Query Engine

occur abundantly in nature, and gdinet approximates Gaus-
sians more than uniform.

• While we don’t report the hotspot values here, we observed
that 4−DIM has the highest hotspot value, andOptimized
has lowest (less intense than 4−DIM by a factor of 4, as to
be expected).

5. IMPLEMENTATION
In this section, we describe our design and implementation of a

prototype of the main data organization and query processing ideas
described in the paper and report its performance. We have imple-
mented this prototype on the popular Mica2 mote platform[2]. The
software is written in NesC [4] and runs on top of an existing DIM
implementation done using the TinyOS [6] software platform so as
to provide a realistic proof-of-concept demonstration of a practical
and workable system. It is designed to reuse as much of the exist-
ing software infrastructure on the Mica2’s as possible, and achieve
the desired functionality through cleanly introduced abstractions
and API’s. In particular, we use a full-fledged implementation of
DIM that doubles as the geographic hash-based primary storage
and range-index layer, and a complete implementation of GPSR [7]
as the underlying routing and packet-delivery mechanism over a
multihop Mica2 radio network. This software stack organization
and design is shown in Figure4.

In Figure 4, the query evaluator runs on the query issuer and
consists of a query optimizer and an end-to-end reliability module
(the reliability module is responsible for retrying missing parts of
the received answers). There is also an instance of the histogram
generator that runs in the background on each node that lazily col-
lects and maintains a coarse-grained multi-dimensional histogram
of the tuple values present in the DIM. The query evaluator and the
histogram generator taken together form the query processor.

The query optimizer, in turn, has two sub-components: a his-
togram analyzer that takes as input the current query and thek-
dimensional histogram cube to compute the number of tuples that
would be generated along each attribute dimension, and the join-
order selector that then selects the optimal join order of the at-
tributes so as to minimize the total energy cost.

The output of the query optimizer is a sequenced join and aggre-
gate operation chain that specifies the order in which the attributes
must be moved for joining and aggregation. The resulting instruc-
tion chain is packaged as a DIM query that is then handed down
to the DIM layer (using the standard DIM query API) as a range
query on the first attribute in the join order, with the rest of the
instruction sequence forming the query payload. Thus, the query
processor consumes the standard DIM API in this phase, and ex-
poses the SQL-like query API described in Section2.3to the user.

The query engine running inside each node is responsible for

0

5

10

15

20

25

0 50 100 150 200 250

Nodes

E
ne

rg
y

Optimized
Random

4-DIM

Uncached

Worst

0

1

2

3

4

5

6

7

0 50 100 150 200 250

Nodes

E
ne

rg
y

Optimized

Random

Worst

4-DIM

Uncached

0

5

10

15

20

25

0 50 100 150 200 250

Nodes

E
ne

rg
y

Optimized

Random

Uncached

4-DIM

Worst

Figure 3: Comparison of 4-DIM, Optimized, Random, Worst, Uncached for Uniform with 100 queries (left), Gaussian with 200
queries (center), and GDInet with 400 queries (right)

000

0(13)

010 011 110 111

10110010011

0010 1000

3(13)

1(6)

2(6)

4(12)

9(12)

8(13)

7(12)

5(7)

6(6)

Figure 5: Topology used for Implementation

controlling the cached data (timeouts, new data inserts), and is
also responsible for propagating the remainder of the query and
answers.

Figure5 shows an example 10 node topology of two 1-DIMs,
one each on attributesl andt. The node id’s are indicated in the
circles. The number of tuples inserted into each of the 2 DIMs at
each node is indicated in the parentheses adjacent to the node id.
The DIM zone code of a node is indicated in the upper left corner.
The right half of Figure5 shows the physical arrangement of the
nodes. They are configured to be within a few feet of each other,
and the diameter of the network is four hops, as indicated by the
logical link structure. We take advantage of the broadcast property
during query execution (in the join caching phase).

We ran several simple SQL queries on these two attributes, and
observed a factor of 2.7 performance improvement with 1−DIMo
over standard 2-DIM.

6. FUTURE WORK AND CONCLUSION
In this paper, we tried to understand the design space of data or-

ganization and query processing strategies built on top of DCS. We
examined several general techniques that can be used to provide
efficient and robust infrastructure support in sensornets. In partic-
ular, we identified a few key concepts like joins, decomposition,
caching, and partitioning. We are currently working on how to ef-
ficiently implement various join algorithms under our energy cost
models. We are also interested in exploring better caching designs
that can leverage the broadcast feature of wireless sensor networks.

7. REFERENCES
[1] P. Bonnet, J. E. Gerhke, and P. Seshadri. Towards Sensor

Database Systems. InProceedings of the Second

International Conference on Mobile Data Management,
Hong Kong, January 2001.

[2] Crossbow Technology, Inc. MTS Data Sheet.
http://www.xbow.com/Products/productsdetails.aspx?sid=72.

[3] D. Ganesan, D. Estrin, and J. Heidemann. DIMENSIONS:
Why do we need a new Data Handling architecture for
Sensor Networks? InProc. HotNets-I, Princeton, NJ,
October 2002.

[4] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesc language: A holistic approach to
networked embedded systems. InProc. PLDI, San Diego,
CA, June 2003.

[5] B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, and
S. Shenker. DIFS: A Distributed Index for Features in Sensor
Networks. InProc. IEEE WSNPA, Anchorage, AK, May
2003.

[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked
sensors. InProceedings of ASPLOS 2000, Cambridge, MA,
Novmeber 2000.

[7] B. Karp and H. T. Kung. GPSR: Greedy Perimeter Stateless
Routing for Wireless Networks. InMobicom 2000, Boston,
MA, August 2000.

[8] X. Li, Y. J. Kim, R. Govindan, and W. Hong.
Multi-dimensional Range Queries in Sensor Networks. In
Proc. Sensys, Los Angeles, CA, November 2003.

[9] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TAG: a Tiny AGregation Service for Ad-Hoc Sensor
Networks. InOSDI, Boston, MA, December 2002.

[10] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
The design of an acquisitional query processor for sensor
networks. InProc. ACM SIGMOD, pages 491–502. ACM
Press, 2003.

[11] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and
J. Anderson. Wireless sensor networks for habitat
monitoring. InWSNA ’02: Proceedings of the 1st ACM
international workshop on Wireless sensor networks and
applications, pages 88–97. ACM Press, 2002.

[12] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin,
R. Govindan, and S. Shenker. GHT: A Geographic Hash
Table for Data-Centric Storage. InProc. WSNA, Atlanta, GA,
September 2002.

[13] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and
D. Estrin. Data-centric storage in sensornets.SIGCOMM
Comput. Commun. Rev., 33(1):137–142, 2003.

	1 Introduction
	2 Background and Motivation
	2.1 DIM Overview
	2.2 Motivating Alternative Data Organizations
	2.3 The Focus of the Paper

	3 Data Organization for Efficient Querying
	3.1 Full Decomposition and Spatial Partitioning
	3.2 Optimizing Join Orders
	3.3 Reducing Join Costs through Caching

	4 Performance Evaluation
	4.1 Methodology
	4.2 Main Results

	5 Implementation
	6 Future Work and Conclusion
	7 REFERENCES -9pt

