
 1

A Dynamic-Mode DVS Algorithm under Dynamic Workloads*

Yan Wang and Albert M. K. Cheng
 Real-Time Systems Laboratory

 Department of Computer Science
 University of Houston, TX 77204, USA

 (rainyday,cheng)@cs.uh.edu

Abstract

Dynamic Voltage Scaling (DVS) is a promising
method to achieve energy saving by slowing down the
processor into multiple frequency levels especially in
battery-operated embedded systems. We introduce a
novel Dynamic-Mode EDF scheduling algorithm
when workloads change significantly. Single-Mode,
Dual-Mode and Three-Mode frequency setting
formats can be applied, based on the Real Execution
Time (RET) and the slack time at run-time. Only one
combination of the time zone length and the
frequency scaling factor can lead to the best energy
saving. Experimental results show that, given an RET
pattern, our Dynamic-Mode DVS algorithm achieves
an average 15% energy savings over the traditional
two-mode DVS scheme on hard real-time systems.

1. Introduction

 Resource requirements change significantly and
unpredictably in a dynamic-workload real-time
system, where scheduling must be based on the tasks’
run-time behavior. Their fluctuating execution times
at run-time induce a significant difference between
the real and the estimated value of the Worst Case
Execution Time (WCET). Pessimistic and optimistic
estimates can cause performance degradation and
high power consumption in processors.
 With the aim of obtaining a correct estimate of the
RET, giving more diversification to the scaling
frequency adjustment, we present a Dynamic-Mode
DVS algorithm for battery-powered real-time
systems. A task is split into "three" subtasks. The last
time zone is fixed under the maximum frequency.
Other two subtasks are assigned to different
frequency scaling factors which are proportional to
each other by a frequency variant n, which decides
the final execution mode of system. At run-time, the
frequency scaling factor is adjusted based on Sk,
--
* This work is supported in part by a 2004 grant from the Institute
of Space Systems Operations (ISSO).

the accumulated slack time and RET. The executing
frequency in the dynamic-mode DVS algorithm will
be changed more frequently than dual-mode, which
provides more opportunity for potential energy
saving in the system. Furthermore, we attempt to
obtain close-to-optimal energy saving by changing
the length of different frequency zones. Only a
combination of certain frequency scaling factor and
its length time zone assigned to each frequency level
can maximize the system’s total energy saving.

2. Previous Works

2.1. Dual-mode Voltage Scaling

Power consumption increases proportionally to

the processor frequency and to the square of the
voltage in the CMOS circuit [7][8], characterized by
Pcmos = CL*V2

DD*f (1), where Pcmos is the
dynamic power dissipation, CL is the effective
switched output capacitance, and f is the clock
frequency. DVS [4][5][6] is a promising method for
real-time systems to allow multiple voltage levels.
Lee et al proposed a flexible dual-mode voltage run-
time assignment [3] with the assumption that the
WCET of each task is known in advance.

Most of the improvements on accurate prediction
of WCET are partially related to feedback control for
the real-time scheduler. In Y. Zhu and F. Mueller’s
recent paper [1], they presented a novel approach
combining a DVS scheduler and a feedback
controller within EDF scheduling algorithm. The
dependency of prediction on previous execution time
decides the limitation of feedback technique when
dealing with truly random tasks. Our approach uses
the idea of feedback control, but the main difference
is the frequency setting format for the first two time
zones. In our algorithm, even how many modes
assigned to the next job is decided at run-time.

2.2. Why Three-Mode is Needed

 2

In recent work, Ishihara and Yasuura [10] proved
that for a processor with few multiple discrete
voltages, at most two voltages minimizes the energy
consumption for a task or schedule with deadline.
(Suppose Videal is the voltage which minimizes the
energy consumption for this task. The task runs at a
voltage below Videal up to a point which can be
statically determined, and then it runs at a voltage
higher than Videal.) However, this two-voltage
theorem is true only for the static case in which the
actual execution time of the task is known in advance.
For tasks with unknown actual execution times, this
theorem is not true since Videal cannot be determined
before the task completes its actual execution.
Therefore, our work proposes more than two voltages
for running the task to better adapt to its fluctuating
execution times and hence reduces energy
consumption as much as possible.

We can exhibit several scenarios in which we
need 3 or more voltages in order to approximate
minimum energy consumption for tasks with
dynamic and fluctuating actual execution times. One
such scenario is given next. If we know a task's actual
execution time, then according to [10], at most two
voltages V1 and V2 are needed to minimize energy
consumption, where V1 < V2. The task runs at V1
until time instant P, and then runs at V2 till its
completion, where V1 < Videal < V2. If we do not
know in advance this task's actual execution time,
then only a clairyovant scheduler would know the
time instant P. However, since such a scheduler does
not exist, P has to be guessed or estimated. The
chosen P, denoted P', may be < P, = P, or > P. If P' <
P, then the task would finish before its deadline. If
we notice this after running the task using V2, we can
switch to a lower voltage after an interval to be
determined, hence 3 or more voltages may be needed.
If P' > P, then the task would miss its deadline, so we
would switch to a higher voltage after a while, hence
again 3 or voltages may be needed.

 3. System Model

This paper shows the current attempt to reduce

energy consumption by using a dynamic speed
adjustment method on scheduling dynamic-workload
real-time system. Assuming that the system workload
changes with a specific pattern, without making any
prediction for the future workload, we make use of
the RET of the previous job as a parameter to further
adjust the frequency scaling factor.

3.1. Assumptions

(1) Hard real-time systems; overhead is negligible.

(2) Task set: independent; fully preemptive; periodic;
 all tasks arrive at time 0; arrival time is fixed.
(3) Voltage can be changed continuously at run-time.
(4) Continuous processor speed within a certain range.

3.2. Dynamic-Mode Task Splitting

 First of all, we use �=fi/fm (2) to define the
frequency scaling factor [10]: where fi represents the
scaled frequency and fm represents the maximum
frequency of the dynamic real-time system.
Assuming that the WCET is Ci when the task is
executed at fm, Sk is the slack time accumulated by
only the formerly finished tasks. Task splitting,
shown in Figure 1, is done based on the estimated
WCET plus the total reclaimed slack time. Tl,Tm,Th
represent the subtasks of task T after splitting;
Cl,Cm,Ch represent the WCET of three subtasks at
maximum frequency. Based these notations, a task is
split into a three-mode model, each is executed at a
different frequency level.
Under maximum frequency (without scaling):

Ci = Cl + Cm + Ch (3)

Under dynamic voltage scaling (with scaling):
Cl /�1 + Cm/�2 + Ch/1 = Ci + Sk (4)

 Figure 1. Dynamic-Mode Task Splitting

3.3. Frequency Scaling Factor Setting

 The setting of frequency format is based on three
thoughts: guarantee time constrains; introduce
diversification on frequency scaling; and ensure
scaling factor<=1. The last is a crucial requirement
that we must take a look when solving � value in
equation (4). Based on the definition of �<=1, each
scaling factor �1 and �2 must also be a value not
bigger than 1.
 Having known all the constraints and frequency
setting thoughts, the value of each assignment format
is discussed in Figure 3:
 �2Cl + �1Cm = �1�2Cl + �1�2Cm + �1�2Sk (5)
Condition (1): �1 = �2 = �
 (Cl + Cm + Sk)�

2 - (Cl + Cm)� = 0

 3

 � = (Cl + Cm)/(Cl + Cm + Sk) (6)
This condition changes three-mode frequency scaling
to two-mode, or even one-mode when Sk=0. This
format of frequency setting can be used under the
situation that Sk is a relatively small number.
Condition (2): �1 < �2 assume �2 = n�1 (n>1)
 �1 = (nCl + Cm) / (nCl + nCm + nSk) (7)
 �2 = (nCl + Cm) / (Cl + Cm + Sk) (8)
The scaling factor definition constraints: n�1<=1
decides Sk must have a value not less than (n-1)Cl. A
lower warm-up frequency is followed by a higher
frequency that will reserve sufficient time for the task
to finish within a certain time constraint.
Condition (3): �1 > �2 assume �1 = n�2 (n>1)
 �1 = (nCm + Cl) / (Cl + Cm + Sk) (9)
 �2 = (nCm + Cl) / (nCl + nCm + nSk) (10)
in which Sk must have a value not less than (n-1)Cm.

Figure 2. Frequency setting format

 After analyzing the three conditions, we declare
that � depends on the length of first two time zones:
Cl and Cm as well as the accumulated slack time.
What kind of workload does each condition suitable
for? Firstly, when Sk=0, there is a high rate of
missing deadline if frequency scaling is immediately
follows. So, for the next job, instead of lowering
frequency, we have the aim of accumulating Sk as
much as possible. Condition1 should be chosen under
such situation that Sk is a relatively small number.
Secondly, condition 2 offers 3 different frequency
levels. As long as constraint Sk>=(n-1)Cl is satisfied,
frequency is gradually increased based on factor n,
and deadline is guaranteed to be met. Similarly,
condition 3 with the constraints of Sk>=(n-1)Cm,
frequency is dropped and then increased based on n.

3.4. Frequency Setting Idea

 Dynamic-Mode DVS algorithm (Figure 3):
RET falls into 3 kinds:
(1). If RET is within the first time zone, the RET and
Ci usually have a large estimation difference.
Condition 2 is used as the frequency setting format
for the next job. At the start, a lower frequency is
used with a higher chance of possibly shorter
execution time occurring. If this is not the case, a
higher frequency is used to speed-up the execution.
(2). If RET is within the second time zone, the
difference between RET and estimation is small.
Condition 3 is used as the frequency setting format
for next job. At the beginning, a larger frequency is
used with the higher chance of possibly longer
execution time occurring. If this is not the case, the
frequency is lowered to achieve energy saving.
(3). If RET is within the last time zone, the value of
RET and estimation is very much the same. This job
will leave little slack time for others. Condition 1 is
used as frequency setting format for next job.

Figure 3. Algorithm Specification

Sk is updated and checked upon every completion of
jobs. The frequency setting format is changed to fm as
soon as it drops to zero. In the full speed running
period, we don't care the length for each time zone.
The only purpose under this condition is to
accumulate as much slack time as possible. The
frequency variant factor n's definition is closely
related to the proportion of time zone length and the
real execution time of the previous job. The time
zone length definition should not disobey the
constraint under each condition: Cl/Cm should not be
bigger than Sk/(n-1). The larger the value of n is, the
smaller the time zone length, and the larger the slack

 4

time should be compared to Cl or Cm. In order to
satisfy the constraints, as well as make the required
value not so difficult to satisfy, we choose Sk/(2n-1)
as the length of each required time zone. An inter-
task level slack reclaiming policy is used in the
algorithm with time complexity of O(N), where N is
the number of task instances to be scheduled. Sk is
updated after the completion of each job, and the
value is defined as the previous slack time plus the
difference between the WCET and the RET. If the
current job uses up all its reserved time as well as the
previously accumulated slack time, Sk will drop to
zero. Under this situation, a full speed execution will
be used on the next job instance. If the job uses only
part of its reserved time, Sk should be the previous
slack time plus the unused time. The value of (Ci-
RET) can be positive, negative, or zero depending on
the RET at run-time.

4. Experimental Results

The normalized processor energy consumption is

used as a characterized variable to evaluate the
performance of the dynamic Multi-Mode DVS
algorithm under different system utilizations. A fixed
energy consumption is used for a given frequency.
Frequency can take value from 0 to fm; voltages are
{0V,1V,…,10V}. Relation between percentage of
maximum frequency and voltage is defined as:
Voltage = percentage of fm/10. RET follows a
mathematical function pattern: RET=Cmax*Sin(t)
and RET=-Cmax*Sin(t), which has both gradually
increasing and decreasing parts. Cmax is generated
by a random selection function, and has a variation
range of 50% to 100% WCET. Figure 6 shows the
power consumption for fixed dual-mode, fixed three-
mode and our dynamic multi-mode DVS scheme.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
WCET Utilization

E
ne

rg
y

(N
or

m
al

iz
ed

)

Dual-Mode(Condition1)

Three-Mode(Condition2)

Three-Mode(Condition3)

Dynamic Multi-Mode DVS

Figure 4. Comparison of Different Mode DVS
The analysis of the experimental results shows

that as long as the time constraint is met, fixed mode
DVS cannot get the optimal energy saving, whereas
our dynamic-mode DVS provides a novel idea to
further energy saving. Comparing the result, three-
mode DVS saves 5.35% energy consumption
compared to dual-mode. Multi-Mode DVS achieves

17% more energy saving over Dual-Mode as well as
12.5% more energy saving over Three-Mode DVS.

5. Ongoing Works

 The current idea we hold is still on the preliminary
level for the promising dynamic-mode DVS. Further
optimization discussion still has potential benefit on
more energy saving. Our future goal is to find and
apply the improved slack estimation method and
optimized parameter tuning to each time zone length.

References
[1] Yifan Zhu, Frank Mueller, “Feedback EDF

Scheduling Exploiting Dynamic Voltage Scaling”,
IEEE RTAS, 2004.

[2] M. Weiser, B. Welch, A. Demers, S. Shenker,
 “scheduling for reduced CPU energy,” Processings

ofst USENIX Symposium on Operating Systems
Design and Implementation (OSDI’94), pp.13-23.

[3] Yann-Hang Lee, Yoonmee Doh, C. M. Krishna,
“EDF Scheduling Using Two-Mode Voltage-Clock-
Scaling for Hard Real-Time Systems”, ACM
CASES’01, Atlanta, Georgia, USA, November 2001.

[4] N. AbouGhazaleh, D. Mosse, B. Childers and R.
Melhem. Toward The Placement of Power
Management Points in Real Time Applications.
Workshop on Compilers and Operating Systems for
Low Power (COLP’01), September 2001.

[5] D. Shin, J. Kim and S. Lee. Intra-task voltage
scheduling for low-energy hard real-time applications.
IEEE Design and Test of Computers, 18:(2), March-
April 2001.

[6] Rami Melhem, Nevine AbouGhazaleh, Hakan Aydin,
Daniel Mosse, Chapter 7 Power management points
in power-aware real-time systems, University of
Pittsburgh.

[7] T. Ishihara and H. Yasuura. Voltage scheduling
problem for dynamically variable voltage processors.
In proceedings of the 1998 international symposium
on Low power electronics and design, pages 197-202.
ACM Press, 1998.

[8] T. D. Burd, R. W. Brodersen, Energy efficient
CMOS microprocessor design. In proceedings of the
28th Annual Hawaii International Conference on
System Sciences. Volume1: Architecture, T. N.
Mudge and B.D Shriver, Eds., IEEE Computer
Society Press, pp.288-297, January 1995.

 [9] C. Liu and J. Layland. Scheduling algorithms for
multiprogramming in a hard real-time environment. J.
of the Association for Computing Machinery, 20(1):
46-61, January 1973.

[10] Tohru Ishihara and Hiroto Yasuura, Voltage
Scheduling Problem for Dynamically Variable
Voltage Processors, ACM ISLPED 98, August 1998.

[11] C.-C. Chu and A. M. K. Cheng, ``Static and Dynamic
Methods to Improve Total Reward of Tasks in
Battery-Powered Devices,'' Proc. WIP Session, IEEE-
CS Real-Time and Embedded Technology and
Applications Symposium, 2004.

