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Abstract 

Dynamic Voltage Scaling (DVS) is a promising 
method to achieve energy saving by slowing down the 
processor into multiple frequency levels especially in 
battery-operated embedded systems. We introduce a 
novel Dynamic-Mode EDF scheduling algorithm 
when workloads change significantly. Single-Mode, 
Dual-Mode and Three-Mode frequency setting 
formats can be applied, based on the Real Execution 
Time (RET) and the slack time at run-time. Only one 
combination of the time zone length and the 
frequency scaling factor can lead to the best energy 
saving. Experimental results show that, given an RET 
pattern, our Dynamic-Mode DVS algorithm achieves 
an average 15% energy savings over the traditional 
two-mode DVS scheme on hard real-time systems. 

 
1. Introduction 
 
    Resource requirements change significantly and 
unpredictably in a dynamic-workload real-time 
system, where scheduling must be based on the tasks’ 
run-time behavior. Their fluctuating execution times 
at run-time induce a significant difference between 
the real and the estimated value of the Worst Case 
Execution Time (WCET). Pessimistic and optimistic 
estimates can cause performance degradation and 
high power consumption in processors.  
    With the aim of obtaining a correct estimate of the 
RET, giving more diversification to the scaling 
frequency adjustment, we present a Dynamic-Mode 
DVS algorithm for battery-powered real-time 
systems. A task is split into "three" subtasks. The last 
time zone is fixed under the maximum frequency. 
Other two subtasks are assigned to different 
frequency scaling factors which are proportional to 
each other by a frequency variant n, which decides 
the final execution mode of system. At run-time, the 
frequency scaling factor is adjusted based on Sk,  
---------------------------------------------------------------- 
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the accumulated slack time and RET. The executing 
frequency in the dynamic-mode DVS algorithm will 
be changed more frequently than dual-mode, which 
provides more opportunity for potential energy 
saving in the system. Furthermore, we attempt to 
obtain close-to-optimal energy saving by changing 
the length of different frequency zones. Only a 
combination of certain frequency scaling factor and 
its length time zone assigned to each frequency level 
can maximize the system’s total energy saving. 

 
2. Previous Works 
 
2.1. Dual-mode Voltage Scaling 

 
Power consumption increases proportionally to 

the processor frequency and to the square of the 
voltage in the CMOS circuit [7][8], characterized by 
Pcmos = CL*V2

DD*f  (1), where Pcmos is the 
dynamic power dissipation, CL is the effective 
switched output capacitance, and f is the clock 
frequency.  DVS [4][5][6] is a promising method for 
real-time systems to allow multiple voltage levels. 
Lee et al proposed a flexible dual-mode voltage run-
time assignment [3] with the assumption that the 
WCET of each task is known in advance.  

Most of the improvements on accurate prediction 
of WCET are partially related to feedback control for 
the real-time scheduler. In Y. Zhu and F. Mueller’s 
recent paper [1], they presented a novel approach 
combining a DVS scheduler and a feedback 
controller within EDF scheduling algorithm. The 
dependency of prediction on previous execution time 
decides the limitation of feedback technique when 
dealing with truly random tasks. Our approach uses 
the idea of feedback control, but the main difference 
is the frequency setting format for the first two time 
zones. In our algorithm, even how many modes 
assigned to the next job is decided at run-time.  
 
2.2. Why Three-Mode is Needed 
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In recent work, Ishihara and Yasuura [10] proved 
that for a processor with few multiple discrete 
voltages, at most two voltages minimizes the energy 
consumption for a task or schedule with deadline. 
(Suppose Videal is the voltage which minimizes the 
energy consumption for this task. The task runs at a 
voltage below Videal up to a point which can be 
statically determined, and then it runs at a voltage 
higher than Videal.) However, this two-voltage 
theorem is true only for the static case in which the 
actual execution time of the task is known in advance.  
For tasks with unknown actual execution times, this 
theorem is not true since Videal cannot be determined 
before the task completes its actual execution. 
Therefore, our work proposes more than two voltages 
for running the task to better adapt to its fluctuating 
execution times and hence reduces energy 
consumption as much as possible. 

We can exhibit several scenarios in which we 
need 3 or more voltages in order to approximate 
minimum energy consumption for tasks with 
dynamic and fluctuating actual execution times. One 
such scenario is given next. If we know a task's actual 
execution time, then according to [10], at most two 
voltages V1 and V2 are needed to minimize energy 
consumption, where V1 < V2. The task runs at V1 
until time instant P, and then runs at V2 till its 
completion, where V1 < Videal < V2. If we do not 
know in advance this task's actual execution time, 
then only a clairyovant scheduler would know the 
time instant P.  However, since such a scheduler does 
not exist, P has to be guessed or estimated. The 
chosen P, denoted P', may be < P, = P, or > P. If P' < 
P, then the task would finish before its deadline. If 
we notice this after running the task using V2, we can 
switch to a lower voltage after an interval to be 
determined, hence 3 or more voltages may be needed. 
If P' > P, then the task would miss its deadline, so we 
would switch to a higher voltage after a while, hence 
again 3 or voltages may be needed. 

 
 3. System Model 

 
This paper shows the current attempt to reduce 

energy consumption by using a dynamic speed 
adjustment method on scheduling dynamic-workload 
real-time system. Assuming that the system workload 
changes with a specific pattern, without making any 
prediction for the future workload, we make use of 
the RET of the previous job as a parameter to further 
adjust the frequency scaling factor.   

 
3.1. Assumptions 
 
(1) Hard real-time systems; overhead is negligible. 

(2) Task set: independent; fully preemptive; periodic;     
      all tasks arrive at time 0; arrival time is fixed. 
(3) Voltage can be changed continuously at run-time. 
(4) Continuous processor speed within a certain range. 
 
3.2. Dynamic-Mode Task Splitting  
 
    First of all, we use �=fi/fm     (2) to define the 
frequency scaling factor [10]: where fi represents the 
scaled frequency and fm represents the maximum 
frequency of the dynamic real-time system. 
Assuming that the WCET is Ci when the task is 
executed at fm, Sk is the slack time accumulated by 
only the formerly finished tasks. Task splitting, 
shown in Figure 1, is done based on the estimated 
WCET plus the total reclaimed slack time. Tl,Tm,Th 
represent the subtasks of task T after splitting; 
Cl,Cm,Ch represent the WCET of three subtasks at 
maximum frequency. Based these notations, a task is 
split into a three-mode model, each is executed at a 
different frequency level. 
Under maximum frequency (without scaling):  

Ci = Cl + Cm + Ch                          (3)           

Under dynamic voltage scaling (with scaling):  
Cl /�1 + Cm/�2 + Ch/1 = Ci + Sk  (4) 

 
       Figure 1. Dynamic-Mode Task Splitting 
 
3.3. Frequency Scaling Factor Setting 
 
   The setting of frequency format is based on three 
thoughts: guarantee time constrains; introduce 
diversification on frequency scaling; and ensure 
scaling factor<=1. The last is a crucial requirement 
that we must take a look when solving � value in 
equation (4). Based on the definition of �<=1, each 
scaling factor �1 and �2 must also be a value not 
bigger than 1.       
    Having known all the constraints and frequency 
setting thoughts, the value of each assignment format 
is discussed in Figure 3:    
     �2Cl + �1Cm = �1�2Cl + �1�2Cm + �1�2Sk (5)  
Condition (1):  �1 = �2 = �     
     (Cl + Cm + Sk)�

2 - (Cl + Cm)� = 0                               
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     � = (Cl + Cm)/(Cl + Cm + Sk)  (6) 
This condition changes three-mode frequency scaling 
to two-mode, or even one-mode when Sk=0. This 
format of frequency setting can be used under the 
situation that Sk is a relatively small number. 
Condition (2):  �1 < �2        assume �2 = n�1 (n>1) 
     �1 = (nCl + Cm) / (nCl + nCm + nSk) (7) 
     �2 = (nCl + Cm) / (Cl + Cm + Sk)  (8) 
The scaling factor definition constraints: n�1<=1 
decides Sk must have a value not less than (n-1)Cl. A 
lower warm-up frequency is followed by a higher 
frequency that will reserve sufficient time for the task 
to finish within a certain time constraint. 
Condition (3):  �1 > �2   assume �1 = n�2 (n>1) 
    �1 = (nCm + Cl) / (Cl + Cm + Sk)  (9) 
    �2 = (nCm + Cl) / (nCl + nCm + nSk) (10) 
in which Sk must have a value not less than (n-1)Cm. 

 
Figure 2. Frequency setting format 

    After analyzing the three conditions, we declare 
that � depends on the length of first two time zones: 
Cl and Cm as well as the accumulated slack time. 
What kind of workload does each condition suitable 
for? Firstly, when Sk=0, there is a high rate of 
missing deadline if frequency scaling is immediately 
follows. So, for the next job, instead of lowering 
frequency, we have the aim of accumulating Sk as 
much as possible. Condition1 should be chosen under 
such situation that Sk is a relatively small number. 
Secondly, condition 2 offers 3 different frequency 
levels. As long as constraint Sk>=(n-1)Cl is satisfied, 
frequency is gradually increased based on factor n, 
and deadline is guaranteed to be met. Similarly, 
condition 3 with the constraints of Sk>=(n-1)Cm, 
frequency is dropped and then increased based on n. 
 
3.4. Frequency Setting Idea 
 

    Dynamic-Mode DVS algorithm (Figure 3): 
RET falls into 3 kinds: 
(1). If RET is within the first time zone, the RET and 
Ci usually have a large estimation difference. 
Condition 2 is used as the frequency setting format 
for the next job. At the start, a lower frequency is 
used with a higher chance of possibly shorter 
execution time occurring. If this is not the case, a 
higher frequency is used to speed-up the execution.  
(2). If RET is within the second time zone, the 
difference between RET and estimation is small. 
Condition 3 is used as the frequency setting format 
for next job. At the beginning, a larger frequency is 
used with the higher chance of possibly longer 
execution time occurring. If this is not the case, the 
frequency is lowered to achieve energy saving. 
(3). If RET is within the last time zone, the value of 
RET and estimation is very much the same. This job 
will leave little slack time for others. Condition 1 is 
used as frequency setting format for next job.  

 
Figure 3. Algorithm Specification 

Sk is updated and checked upon every completion of 
jobs. The frequency setting format is changed to fm as 
soon as it drops to zero. In the full speed running 
period, we don't care the length for each time zone. 
The only purpose under this condition is to 
accumulate as much slack time as possible. The 
frequency variant factor n's definition is closely 
related to the proportion of time zone length and the 
real execution time of the previous job. The time 
zone length definition should not disobey the 
constraint under each condition: Cl/Cm should not be 
bigger than Sk/(n-1). The larger the value of n is, the 
smaller the time zone length, and the larger the slack 
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time should be compared to Cl or Cm. In order to 
satisfy the constraints, as well as make the required 
value not so difficult to satisfy, we choose Sk/(2n-1) 
as the length of each required time zone. An inter-
task level slack reclaiming policy is used in the 
algorithm with time complexity of O(N), where N is 
the number of task instances to be scheduled. Sk is 
updated after the completion of each job, and the 
value is defined as the previous slack time plus the 
difference between the WCET and the RET. If the 
current job uses up all its reserved time as well as the 
previously accumulated slack time, Sk will drop to 
zero. Under this situation, a full speed execution will 
be used on the next job instance. If the job uses only 
part of its reserved time, Sk should be the previous 
slack time plus the unused time. The value of (Ci-
RET) can be positive, negative, or zero depending on 
the RET at run-time. 
 
4. Experimental Results 

 
The normalized processor energy consumption is 

used as a characterized variable to evaluate the 
performance of the dynamic Multi-Mode DVS 
algorithm under different system utilizations. A fixed 
energy consumption is used for a given frequency. 
Frequency can take value from 0 to fm; voltages are 
{0V,1V,…,10V}. Relation between percentage of 
maximum frequency and voltage is defined as: 
Voltage = percentage of fm/10. RET follows a 
mathematical function pattern: RET=Cmax*Sin(t) 
and RET=-Cmax*Sin(t), which has both gradually 
increasing and decreasing parts. Cmax is generated 
by a random selection function, and has a variation 
range of 50% to 100% WCET. Figure 6 shows the 
power consumption for fixed dual-mode, fixed three-
mode and our dynamic multi-mode DVS scheme. 
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Figure 4. Comparison of Different Mode DVS 
The analysis of the experimental results shows 

that as long as the time constraint is met, fixed mode 
DVS cannot get the optimal energy saving, whereas 
our dynamic-mode DVS provides a novel idea to 
further energy saving. Comparing the result, three-
mode DVS saves 5.35% energy consumption 
compared to dual-mode. Multi-Mode DVS achieves 

17% more energy saving over Dual-Mode as well as 
12.5% more energy saving over Three-Mode DVS. 
 
5. Ongoing Works 
 
    The current idea we hold is still on the preliminary 
level for the promising dynamic-mode DVS. Further 
optimization discussion still has potential benefit on 
more energy saving. Our future goal is to find and 
apply the improved slack estimation method and 
optimized parameter tuning to each time zone length.    
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