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Abstract 

The addition of system instrumentation 
features have been sporadically incorporated 
into processor architectures over the last 
several decades.  Particular emphasis areas of 
high performance, embedded and real-time 
computing are reviewed in terms of software 
and hardware measurements and approaches 
representing active research directions.  A 
novel approach is described that may be readily 
used with recent advances in Field 
Programmable Gate Array technology using 
embedded processors.  The approach and 
preliminary results are described using a Xilinx 
device with a MicroBlaze™ 32 bit architecture. 
Some system level problems are outlined and 
examined. 

1. Real Time Non-Intrusive (RTNI) 
monitoring 

The concept of RTNI instrumentation of embedded 
systems, whether the goal is system debug or system 
performance measurement depends on key requirements.  
The instrumentation mechanisms must be transparent to 
the behavior of the software.  The goal of ‘transparency’ 
is to maintain critical aspects of program behavior.  First, 
the flow of addresses in program execution should be 
identical between instrumented and ‘native’ code.  
Secondly, time relationships of all software detectable 
events should be equivalent (i.e. order of interrupts as 
well as location in program execution when interrupts 
occur; sequence of procedures run, time spent in each 
process, etc.).  Kirshon et. al. state [1] that the term 
‘consistent’ is used in this way, and dictates that 
monitoring must ‘not • • • change program behavior.’   

There is strong focus in embedded system 
engineering in testing, integrating and validating the code 
that will be used operationally.  Instrumentation code 
unquestionably changes program behavior, and for this 
reason, when special code is used for testing, it is also 
usually required to be part of the operational system [2,3]. 

A number of special hardware approaches have 
been either proposed and implemented [4, 5, 6, 7].  
Methods described include both those that add new 
functionality (visible to the programmer) to processor 
architectures.  For example, the method described in [4] 
adds special output hardware that may be programmed to 
emit desired measurement signals. This attractive 
approach reduces the instrumentation overhead by using 
this special hardware to carry out most instrumentation 
activities.  A disadvantage of this approach is the rather 
(procedurally) difficult need to recompile instrumented 
code to change test conditions and scenarios and the lack 
of provision to also correlate system hardware or 
controller features outside the software on the target 
processor.   

Much progress has been made using variations on 
LeBlanc’s REPLAY concept [8] has been extensively 
developed [9, 10].  The approach described herein owes 
much to REPLAY.   

2. Software Instrumentation Goals 

Beyond determining cause of errors, however, there 
are several other needs for Real-Time system designers.  
Modeling software as a component of a detailed 
hardware/software co-design requires a fairly detailed 
model of software behavior [6].  A persistent experience 
in embedded system design is that interaction of software 
and hardware components are sources of many surprises 
to system designers and implementers.  This experience 
motivates even more careful modeling of the 
software/hardware components as well as their 



 

 

interactions.  Careful validation of these models is 
essential. 

RTNI features must be designed to provide the 
required data for successful software model construction 
and validation [5].  Parameters that should be measured 
(when possible) or estimated to develop models include 
as examples: [Task initiation times, lifetimes & 
invocation rates; Delay (between events) and distribution 
of delays; Signaling Distributions; Comparison of 
Alternate Actions; Frequency & distributions of 
interrupts; I/O block distributions and sizes; Distribution 
of values of selected variables; and Coordination delays 
between multiple processors]. 

Fortunately, support for system testing – both 
validation and anomaly identification1[11] calls for 
measuring many of these same parameters.  The major 
differences between these broad goals for instrumentation 
are Tracing and Complex Triggers.  Tracing here refers to 
the need for debugging equipment to be able to 
adequately store execution history information as well as 
variable accesses histories to provide clues to the cause of 
improper behavior.  ‘Complex triggering’ is the notion of 
allowing a tester to use various pieces of information that 
he has about the system behavior and clues derived from 
ongoing test activities and traces to narrow down the 
search space to trap problem causes.  To complete 
anomaly detection, we use a process we identify as re-
execution’ which, similar to REPLAY, allows for 
ambiguities in execution to be resolved. 

Only the needs for history data and code coverage in 
tests places requirements on the processor 
instrumentation support needed beyond that needed for 
performance measurements and modeling – and in fact, 
these are the driving requirements.  The other 
characteristics listed can be implemented in external 
hardware.   

Finally, the approach described can become a 
resource for use in the SIMPLEX approach [12] to 
graceful evolution of systems, a technique being 
integrated into Real-Time systems due to the extensive 
test requirements for those systems.  The SIMPLEX 
approach requires some significant changes to baseline 
software, an aspect that can be improved.  The RTNI 
approach described affords the possibility to provide 
software comparisons required in SIMPLEX with 
significantly reduced software changes. 

                                                           
1 Anomaly detection will be loosely equated to 
‘debugging’ in the following. 

3. RTNI MEASUREMENT DETAILS 

This section addresses the demands placed on a 
RTNI capability to provide the required data for each of 
the goal areas outlined above.  Several aspects of current 
RISC technology need to be kept in mind in terms of their 
impact on these measurement needs.  The major concerns 
include: Pipelining, Speculative Execution, Multiple 
Execution Units and Register Renaming.  These will be 
extensively treated in a final paper. 

The system in development extends the 
MicroBlaze™ 32 bit RISC architecture developed by 
Xilinx [13].  Figure 1 below shows the architecture of this 
‘soft’ processor.  This system runs in many different 
FPGA models with speeds currently exceeding 500 
Dhrystone MIPS. 

 

 

 

 

 

 

 

 

4. RTNI INSTRUMENTATION 
METHODS 

Figure 1 Architecture block diagram of the 
Xilinx MicroBlaze™ 

Visibility of all busses, including the bus between 
the L1 interface and the processor provides excellent 
access to all needed signals for high fidelity RTNI 
support and for re-execution in special cases.. 

Figure 2 below shows this block diagram in context 
with the rest of the CPU and peripherals, and with the 
add-on features needed to provide for RTNI, SIMPLEX, 
and the other features described above. 

On-board instrumentation resources are required for 
these instrumentation instructions to call on.  These are 
outlined the following Figure. 

The on-chip counters provide a method of totaling 
statistics required for measurements as described in 
sections 2 and 3. 
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Figure 2 Expanded MicroBlaze™ diagram with 
RTNI add-on. 

Counter and flag logical assignments are made with 
the instrumentation compiler.  Counters and flags are 
logical and are mapped to physical resources similarly to 
techniques used within the basic CPU design. 

The resource flags may set at one location within 
instrumentation memory and be tested by later 
Instrumentation Memory instructions to determine 
whether to emit an event. 

A fairly common debug step is to capture specific 
internal CPU state information at the occurrence of an 
event.  This is provided for by providing access to these 
signals for saving into the FIFO.  

Complete tracing is almost always an unrealistic 
approach in instrumentation as processors by their nature 
press the storage size and speed limits with each 
processor generation.  A successful instrumentation 
strategy must limit data using complex conditions – or 
‘instrumentation filters.’  In early systems, banks of high 
speed comparators of various types were used; pairing up 
to bracket procedures and data structures.  

The purpose of using these conditions is to reduce 
the bandwidth required in the instrumentation bus and to 
reduce the size of the resulting dataset that must be 
processed to extract the desired metrics.  Recall that a 
typical embedded system may not recycle all tasks for 
seconds or minutes, and the target processor is executing 
at hundreds of mega-operations per second with tens of 

processors.  Finally, we employ a high speed serial link, 
readily available on this specific (and other vendor’s 
components) FPGA parts. 

Some of these data-reduction approaches can be 
accomplished with the resources shown in Figure 2, but 
another concept can help even more. 

5. INSTRUMENTATION MEMORY 
CONCEPTS  

The final instrumentation concept incorporated has 
been dubbed the ‘Instrumentation Memory’ – a concept 
developed by the author but impractical to incorporate in 
most COTS processor concepts [5].  The concept was not 
implemented at that time due to the then expense of the 
high speed memory required by the architecture.  The 
concept is outlined in Figure 3 below. 

In this concept, a second memory fetch stream is 
matched word-for-word with the operational software 
execution in each processor.  This memory has a small 
data field, each ‘op-code’ of which defines 
instrumentation functions.  By monitoring the CPU 
address register, the Function Memory can execute the 
‘instrumentation program’ in lock-step.  In this manner, 
each location of memory becomes in effect an 
independent comparator with a measuring function that 
may be associated with each location.  This may be 
likened to a ‘watchpoint’ with the option to take any 
instrumentation step at the pause - though in this case 
there is no pause in processor execution.  The opcode 
structure for the instrumentation memory must of course 
allow for functions that may overlap addresses. 

 

 

 

 

 

 

 

 

 

 

Figure 3 Overview Of Instrumentation Memory 

 



 

 

6. SUMMARY 

Extracting high data-rate software instrumentation 
data from a system is equivalent to the basic system I/O 
problem.  Fortunately, emerging processor resources now 
have real estate available to provide for number of high 
performance multi-gigabit serial ports - attractive as pin 
costs may be much higher than silicon costs.  The writer 
thinks that this method of data extraction has significant 
potential for standardization, as did the now popular 
JTAG approach.  The more recent Nexus standard effort 
[14] is not incompatible with this approach. 

Another approach to reducing the bandwidth 
requirement is to encode the data using standard 
compression schemes.  The nature of the data indicates 
that a factor of 2X speed improvement in the data 
exporting port may be expected from this alone, though 
studies are incomplete. 

System modeling and testing - especially for 
embedded hardware/software intensive systems - requires 
accurate and trustable models of hardware, software and 
hardware / software interactions and measured behavior. 

The RTNI approach outlined, enhanced with the 
Instrumentation Memory design provides a number of  
means of acquiring the needed data from such systems 
using new processors.  True non-intrusive data capture 
for REPLAY along with enhanced SIMPLEX operation 
are direct benefits of the approach.   

Specific hardware impact (FPGA resource 
requirements) are in detailed assessment at present. 
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