

FPGA Based CPU Instrumentation for Hard Real-Time
Embedded System Testing

Richard Fryer, Department of Computer Science
California Polytechnic State University, San Luis Obispo, CA 93407

rfryer@calpoly.edu

Abstract

The addition of system instrumentation
features have been sporadically incorporated
into processor architectures over the last
several decades. Particular emphasis areas of
high performance, embedded and real-time
computing are reviewed in terms of software
and hardware measurements and approaches
representing active research directions. A
novel approach is described that may be readily
used with recent advances in Field
Programmable Gate Array technology using
embedded processors. The approach and
preliminary results are described using a Xilinx
device with a MicroBlaze™ 32 bit architecture.
Some system level problems are outlined and
examined.

1. Real Time Non-Intrusive (RTNI)
monitoring

The concept of RTNI instrumentation of embedded
systems, whether the goal is system debug or system
performance measurement depends on key requirements.
The instrumentation mechanisms must be transparent to
the behavior of the software. The goal of ‘transparency’
is to maintain critical aspects of program behavior. First,
the flow of addresses in program execution should be
identical between instrumented and ‘native’ code.
Secondly, time relationships of all software detectable
events should be equivalent (i.e. order of interrupts as
well as location in program execution when interrupts
occur; sequence of procedures run, time spent in each
process, etc.). Kirshon et. al. state [1] that the term
‘consistent’ is used in this way, and dictates that
monitoring must ‘not • • • change program behavior.’

There is strong focus in embedded system
engineering in testing, integrating and validating the code
that will be used operationally. Instrumentation code
unquestionably changes program behavior, and for this
reason, when special code is used for testing, it is also
usually required to be part of the operational system [2,3].

A number of special hardware approaches have
been either proposed and implemented [4, 5, 6, 7].
Methods described include both those that add new
functionality (visible to the programmer) to processor
architectures. For example, the method described in [4]
adds special output hardware that may be programmed to
emit desired measurement signals. This attractive
approach reduces the instrumentation overhead by using
this special hardware to carry out most instrumentation
activities. A disadvantage of this approach is the rather
(procedurally) difficult need to recompile instrumented
code to change test conditions and scenarios and the lack
of provision to also correlate system hardware or
controller features outside the software on the target
processor.

Much progress has been made using variations on
LeBlanc’s REPLAY concept [8] has been extensively
developed [9, 10]. The approach described herein owes
much to REPLAY.

2. Software Instrumentation Goals

Beyond determining cause of errors, however, there
are several other needs for Real-Time system designers.
Modeling software as a component of a detailed
hardware/software co-design requires a fairly detailed
model of software behavior [6]. A persistent experience
in embedded system design is that interaction of software
and hardware components are sources of many surprises
to system designers and implementers. This experience
motivates even more careful modeling of the
software/hardware components as well as their

interactions. Careful validation of these models is
essential.

RTNI features must be designed to provide the
required data for successful software model construction
and validation [5]. Parameters that should be measured
(when possible) or estimated to develop models include
as examples: [Task initiation times, lifetimes &
invocation rates; Delay (between events) and distribution
of delays; Signaling Distributions; Comparison of
Alternate Actions; Frequency & distributions of
interrupts; I/O block distributions and sizes; Distribution
of values of selected variables; and Coordination delays
between multiple processors].

Fortunately, support for system testing – both
validation and anomaly identification1[11] calls for
measuring many of these same parameters. The major
differences between these broad goals for instrumentation
are Tracing and Complex Triggers. Tracing here refers to
the need for debugging equipment to be able to
adequately store execution history information as well as
variable accesses histories to provide clues to the cause of
improper behavior. ‘Complex triggering’ is the notion of
allowing a tester to use various pieces of information that
he has about the system behavior and clues derived from
ongoing test activities and traces to narrow down the
search space to trap problem causes. To complete
anomaly detection, we use a process we identify as re-
execution’ which, similar to REPLAY, allows for
ambiguities in execution to be resolved.

Only the needs for history data and code coverage in
tests places requirements on the processor
instrumentation support needed beyond that needed for
performance measurements and modeling – and in fact,
these are the driving requirements. The other
characteristics listed can be implemented in external
hardware.

Finally, the approach described can become a
resource for use in the SIMPLEX approach [12] to
graceful evolution of systems, a technique being
integrated into Real-Time systems due to the extensive
test requirements for those systems. The SIMPLEX
approach requires some significant changes to baseline
software, an aspect that can be improved. The RTNI
approach described affords the possibility to provide
software comparisons required in SIMPLEX with
significantly reduced software changes.

1 Anomaly detection will be loosely equated to
‘debugging’ in the following.

3. RTNI MEASUREMENT DETAILS

This section addresses the demands placed on a
RTNI capability to provide the required data for each of
the goal areas outlined above. Several aspects of current
RISC technology need to be kept in mind in terms of their
impact on these measurement needs. The major concerns
include: Pipelining, Speculative Execution, Multiple
Execution Units and Register Renaming. These will be
extensively treated in a final paper.

The system in development extends the
MicroBlaze™ 32 bit RISC architecture developed by
Xilinx [13]. Figure 1 below shows the architecture of this
‘soft’ processor. This system runs in many different
FPGA models with speeds currently exceeding 500
Dhrystone MIPS.

4. RTNI INSTRUMENTATION
METHODS

Figure 1 Architecture block diagram of the
Xilinx MicroBlaze™

Visibility of all busses, including the bus between
the L1 interface and the processor provides excellent
access to all needed signals for high fidelity RTNI
support and for re-execution in special cases..

Figure 2 below shows this block diagram in context
with the rest of the CPU and peripherals, and with the
add-on features needed to provide for RTNI, SIMPLEX,
and the other features described above.

On-board instrumentation resources are required for
these instrumentation instructions to call on. These are
outlined the following Figure.

The on-chip counters provide a method of totaling
statistics required for measurements as described in
sections 2 and 3.

Tactical
Code
Map

(Instructions,
Data)

Instrumentation
Memory

Instrumentation
‘Op-Codes’

and flags, I/D’s
(Typ. 4bits

opcode, 4bits ID)
For Timers,

Instrumentation
Port, and Flags

1:1 address
correspondence
with tatical code
and data map

0000
0001

.

.

.

232-1

0000
0001

.

.

.

232-1

Figure 2 Expanded MicroBlaze™ diagram with
RTNI add-on.

Counter and flag logical assignments are made with
the instrumentation compiler. Counters and flags are
logical and are mapped to physical resources similarly to
techniques used within the basic CPU design.

The resource flags may set at one location within
instrumentation memory and be tested by later
Instrumentation Memory instructions to determine
whether to emit an event.

A fairly common debug step is to capture specific
internal CPU state information at the occurrence of an
event. This is provided for by providing access to these
signals for saving into the FIFO.

Complete tracing is almost always an unrealistic
approach in instrumentation as processors by their nature
press the storage size and speed limits with each
processor generation. A successful instrumentation
strategy must limit data using complex conditions – or
‘instrumentation filters.’ In early systems, banks of high
speed comparators of various types were used; pairing up
to bracket procedures and data structures.

The purpose of using these conditions is to reduce
the bandwidth required in the instrumentation bus and to
reduce the size of the resulting dataset that must be
processed to extract the desired metrics. Recall that a
typical embedded system may not recycle all tasks for
seconds or minutes, and the target processor is executing
at hundreds of mega-operations per second with tens of

processors. Finally, we employ a high speed serial link,
readily available on this specific (and other vendor’s
components) FPGA parts.

Some of these data-reduction approaches can be
accomplished with the resources shown in Figure 2, but
another concept can help even more.

5. INSTRUMENTATION MEMORY
CONCEPTS

The final instrumentation concept incorporated has
been dubbed the ‘Instrumentation Memory’ – a concept
developed by the author but impractical to incorporate in
most COTS processor concepts [5]. The concept was not
implemented at that time due to the then expense of the
high speed memory required by the architecture. The
concept is outlined in Figure 3 below.

In this concept, a second memory fetch stream is
matched word-for-word with the operational software
execution in each processor. This memory has a small
data field, each ‘op-code’ of which defines
instrumentation functions. By monitoring the CPU
address register, the Function Memory can execute the
‘instrumentation program’ in lock-step. In this manner,
each location of memory becomes in effect an
independent comparator with a measuring function that
may be associated with each location. This may be
likened to a ‘watchpoint’ with the option to take any
instrumentation step at the pause - though in this case
there is no pause in processor execution. The opcode
structure for the instrumentation memory must of course
allow for functions that may overlap addresses.

Figure 3 Overview Of Instrumentation Memory

6. SUMMARY

Extracting high data-rate software instrumentation
data from a system is equivalent to the basic system I/O
problem. Fortunately, emerging processor resources now
have real estate available to provide for number of high
performance multi-gigabit serial ports - attractive as pin
costs may be much higher than silicon costs. The writer
thinks that this method of data extraction has significant
potential for standardization, as did the now popular
JTAG approach. The more recent Nexus standard effort
[14] is not incompatible with this approach.

Another approach to reducing the bandwidth
requirement is to encode the data using standard
compression schemes. The nature of the data indicates
that a factor of 2X speed improvement in the data
exporting port may be expected from this alone, though
studies are incomplete.

System modeling and testing - especially for
embedded hardware/software intensive systems - requires
accurate and trustable models of hardware, software and
hardware / software interactions and measured behavior.

The RTNI approach outlined, enhanced with the
Instrumentation Memory design provides a number of
means of acquiring the needed data from such systems
using new processors. True non-intrusive data capture
for REPLAY along with enhanced SIMPLEX operation
are direct benefits of the approach.

Specific hardware impact (FPGA resource
requirements) are in detailed assessment at present.

5. REFERENCES

[1] Kishon, A., P. Hudak and C. Consel. “Monitoring
Semantics: A Formal Framework for Specifying, Implementing,
and Reasoning about Execution Monitors”, Proceedings of the
ACM Sigplan ‘91 Conference on Programming Language
Design and Implementation, Toronto. ACM, New York, New
York, June 26-28, 1991. pp 338-352.

[2] Xu, M. Bodik, R. and Hill, M. “A ‘Flight Data Recorder’ for
Enabling Full-system Multiprocessor Deterministic Replay”,
30th International Symposium on Computer Architecture (ISCA
2003), 9-11 June 2003, San Diego, California, USA. IEEE
Computer Society 2003, ISBN 0-7695-1945-8 pp. 122-135.

[3] Harelick, M. and Stoyen, A. “Concepts from Deadline Non-
Intrusive Monitoring”, 24th IFIP Workshop on Real-Time
Programming, Saarland, Germany, May 1999.

[4] Carpenter, R.. “Performance Measurement Instrumentation
at NBS”, Proceedings of the Workshop on Instrumentation for
Future Parallel Computing Systems, Sante Fe, New Mexico.
ACM Press, New York, New York. May 1989. pp. 159-184.

[5] Lemon, L. M., “Hardware system for developing and
validating software”, Proceedings of the 13th Asilomar
Conference on Circuits, Systems and Computers. Pacific Grove,
CA, November 1979. IEEE Piscataway, N.J. pp. 455-459.

[6] Cannon, W.J., M. T. Michael, and D. D. Beeson, “Real
Time, Non-Intrusive Instrumentation of Reduced Instruction Set
Computer (RISC) Microprocessors”, Proceedings of the
National Aerospace and Electronics Conference (NAECON).
Dayton, OH. IEEE Piscataway, N.J. May 1992. pp. 550-557.

[7] Shobaki, M.E. and Lindh, L., “A Hardware and Software
Monitor for High-Level System-on-Chip Verification,” in
International Symposium on Quality Electronic Design
(ISQED), March 2001 pp56-61.

[8] LeBlanc, T.J. and J.M. Mellor-Crummey, “Debugging
Parallel Programs with Instant Replay,” in IEEE Transactions
on Computers, Vol. C-36, No. 4, Apr. 1987 pp. 78-86.

[9] Thane, H., Sundmark, D., Huselius, J. and Pettersson, A.,
“Replay Debugging of Real-Time Systems using Time
Machines”, International Parallel and Distributed Processing
Symposium (IPDPS ’03), IEEE Piscataway, N.J., April 2003,pp
288-295.

[10] Ronsse, M. et. al. “Record/Replay for Nondeterminstic
Program Executions”, Communications of the ACM, V46 #9,
September 2003, pp. 62-67

[11] Telles, Matt, and Y. Hsieh, 2001 The Science of
DEBUGGING, Coriolis, Scottsdale, AZ.

[12] Sha, L. “Dependable System Upgrade”, Proceedings of the
IEEE Real-Time Systems Symposium, December 02-04, 1998
pp. 440-449.

[13] Spencer Isaacson, Doran Wilde: “The Task-Resource
Matrix: Control for a Distributed Reconfigurable Multi-
Processor Hardware” RTOS. ERSA 2004: pp. 130-136

[14] O’Keeffe, H. “IEEE-ISTO-1999, the Nexus 5001 Forum
Standard,” in IEEE-ISTO Forum, (January 2000).

