
1

An intra-task DVS algorithm exploiting path probabilities for real-time systems

G. Sudha Anil Kumar and G. Manimaran
Real Time Computing & Networking Laboratory
Dept. of Electrical and Computer Engineering
Iowa State University, Ames, IA 50011, USA

Email: {anil,gmani}@iastate.edu

Abstract—In this paper, we present a novel intra-
task Dynamic Voltage Scheduling (DVS) algorithm
based on the knowledge of frequently executed paths
in the control flow graph for real time systems. The
basic idea is to construct a common path composing all
the frequently executed paths (hot-paths) and perform
DVS scheduling based on this common path, rather
than the most probable path. We compare the perfor-
mance of the proposed algorithm with an existing algo-
rithm. The preliminary results show that the proposed
algorithm performs better than the existing algorithm.

I. introduction

Portable embedded devices, such as personal digital
assistants, mobile phones and palmtops have become ex-
tremely popular in the recent past. These devices rely on
batteries for power supply and their operation is limited
by the available battery life. Therefore, efficient utilization
of energy is one of the key challenges in the design and
operation of embedded devices. Most of the embedded
processors are based on CMOS technology, where the
energy dissipated per cycle is directly proportional to
the square of the supply voltage,Vdd [8]. A widely used
technique that exploits this characteristic is the DVS,
whose goal is to choose the supply voltage and operating
frequency as per the performance level required by the
tasks. Several energy aware DVS algorithms have been
proposed for real-time systems[1], [6], [3].
The existing real-time DVS (RT-DVS) algorithms can

be broadly classified into two categories based on the
system’s constraints:

• Energy aware algorithms: The objective of this class
of algorithms is to minimize the energy consumption
while meeting all the deadlines. The algorithms pro-
posed in [1] belong to this class, where the goal is
to dynamically exploit the slack created due to early
completion of tasks.

• Reward aware energy constrained algorithms: The
objective of this class of algorithms is to meet as
many deadlines as possible and maximize the total
reward of the system while operating within a given
energy budget. The heuristic algorithms proposed in
[6] belong to this class.

The RT-DVS algorithms can further be classified into
intra-task and inter-task DVS algorithms based on the
granularity at which the voltage scaling is performed. The
intra-task voltage scaling algorithms [2], [3], [9] adjust

the supply voltage within a task boundary. The inter-task
voltage scaling algorithms [1], [6] perform voltage scaling
on a task by task basis.

II. Background and Motivation

Intra-task DVS algorithms typically work with the con-
trol flow graph (CFG) of the real-time programs. CFG
represents the block level control flow structure of the
program. Each node in the CFG of the program denotes a
basic block of computation. The edges in the CFG indicate
the control dependency between the blocks.
The objective of an intra-task voltage scheduling al-

gorithm for real-time programs is to assign proper clock
frequency to each of the basic blocks so as to minimize
the total energy consumption while meeting the task
deadline. Ideally, each basic block can be operated at any
voltage point which lies in the operational range of the
processor. However, current commercial processors supply
a fixed number of discrete voltage (and corresponding
frequency) levels [10]. Therefore, each basic block needs
to be operated in one of the discrete supply voltage levels.
In this paper, we assume the processor supports a fixed
number of supply voltage (and corresponding frequency)
levels.

A. Related Work

Lee et. al. [7] introduced the basic idea of intra-task
voltage scheduling. Shin et.al. [2] extended this work with
a worst case execution path based scheme which does
not consider the likelihood of different possible execution
paths. However, programs typically display a high degree
of path locality, that is, only a small fraction of total
possible paths execute most of the time [5].
Seo et al.[9] take the path locality into account by

considering the branch probabilities of the CFG. Based on
the branch probabilities, the proposed algorithm achieves
optimal average energy savings. However, obtaining all the
branch probabilities for a large program (with large degree
of path locality) is impractical. On the other hand, the
less detailed information like the most frequently executed
paths (hot-path information) is much easier to obtain as
it incurs less profiling.
Shin et. al. [3] proposed a hot-path information based

intra-task DVS scheme (RAEP), which chooses one of the
hot-paths and perform voltage scaling at each basic block
that gives the best possible energy savings when the chosen



2

path is executed. However, this heuristic scheme does not
always achieve the minimum energy consumption, since
there can be more than one hot path.

B. Motivation

The optimal frequency with respect to a particular
execution path in the CFG depends on its length, where
path length is defined as the execution time of the path
when operated at the maximum frequency. Therefore,
operating at a frequency that is based on the lengths of
the hot-paths results in the best energy savings.
The RAEP algorithm takes the above approach by

considering one of the hot-paths (most probable hot path).
It operates at a frequency closest to the optimal frequency
of the chosen path. However, there could be several hot
paths of varying lengths which would mean the non-chosen
hot-paths may together contribute a higher probability of
execution.
Consider the following example with (CFG shown in

figure 1) three hot-paths: (p1(B1, B2, B8), p2(B1, B3, B8),
p4(B1, B5, B8)). Let the respective execution probabilities
be 0.35, 0.30 and 0.30. The probabilities for the other
paths are unknown. For this example, the RAEP considers
path p1 only, though it contributes less to the total energy
consumption as compared to executing paths p2 and p4

together. Therefore, considering just the most probable
hot-path may not be very effective in energy savings.
Consider a slightly different situation, in which the CFG

has two equally likely hot-paths of considerably different
path lengths and hence different optimal frequency values.
Operating the program at a frequency based on just one
of them will result in considerable energy loss if the pro-
gram executes the other hot-path. This example further
motivates to perform DVS scheduling considering all the
hot-paths rather than a single hot-path.
In this paper, we present an energy aware intra-task

DVS algorithm which considers all the hot-paths together.
The algorithm is described in the next section.

III. Common hot path (CHP) based intra-task
algorithm

The CHP algorithm considers all the hot paths together.
The basic idea is to combine all the hot-paths into a single
common path which represents a (virtual) hot-path that
is common in length to majority of the hot-paths.
The common hot path is formed by first composing

all the paths into a single path of computation called
the common-total-path, tpc, which represents the longest
path that the program can ever take. Each computation
unit in the tpc is contributed by one or more paths in
the CFG. In figure 1, the first 15 units of the tpc are
contributed by all the paths, while the last 10 units of the
middle 110 units in the tpc are contributed by the path
p5(B1, B6, B8)(110units) alone.
The computational units contributed by majority of the

hot paths constitute the common-hot-path, hpc. In figure
1, the highlighted 130 units of computation, form the hpc.

The hpc represents the path that is common to majority
of the hot paths. Therefore, performing DVS scheduling
based on this common hot path length would be beneficial
to all the hot paths rather than a single hot-path.
We use the following notations in the rest of the paper:

• D: deadline of the task.
• tc: current time.
• tl: time remaining until the deadline, (D − tc).
• l(pi): length of a particular path pi.
• nh: number of hot paths.
• fi: normalized frequency(normalized with respect to
the maximum frequency) at which the basic block bi

is operated.
• wcet(bi): represents the worst case execution time of
the task starting from block (bi) to the completion
when operated at the maximum frequency.

Following is the detailed description of the CHP algorithm.
The algorithm traverses the CFG in a breadth first search
fashion and assigns the operating frequency for each basic
block.
The CHP based Algorithm

Input: CFG graph, List of hot-paths, processor frequency
levels
Output: Frequency assignment to each basic block.
Algorithm steps:
For each basic block bi, perform the following four steps:

• step 1: Find the wcet(bi) and construct a single path
of length equal to wcet(bi). This forms the tpc of block
bi.

• step 2: The computation units of the tpc which are
common to at least nh/2 hot-paths are recognized
(and marked) as the common-hot-path, hpc. The sum
of all the marked computational units forms the path
length of the hpc.

• step 3: The operating frequency for bi is chosen so
as to operate the common-hot-path at its minimum
possible frequency(normalized), which is given by:

fi =
l(hpc)

tl − (l(tpc)− l(hpc))
(1)

• step 4: The smallest discrete frequency level which
is greater than (or equal to) fi is chosen as the bi’s
operating frequency.

The asymptotic run time of this algorithm is O(v + e),
where v and e represent the number of basic blocks and
number of edges in the CFG respectively.

A. Illustrative Example

Consider the CFG shown in figure 1 with three
hot paths. Paths p1(B1, B2, B8), p2(B1, B3, B8), and
p4(B1, B5, B8) are the hot paths with p2 being the most
probable hot path. The execution probability of the paths
p1, p2 and p4 are 0.35, 0.30 and 0.30 respectively. The
probabilities of the other paths are unknown. In this
example, we assume the processor can operate at any
of the ten equally spaced discrete frequency levels (nor-
malized with respect to the maximum frequency)in the



3

Fig. 1. Working of the CHP algorithm

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

Time

F
re

qu
en

cy

Frequency settings of the RAEP algorithm

Execution of p1
Execution of p2
Execution of p3

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

Time

F
re

qu
en

cy

Frequency settings of the CHP algorithm

Execution of p1
Execution of p2
Execution of p3

Fig. 2. Frequency settings of RAEP and CHP algorithms

range [0.1, 1.0]. The numbers in each basic block represent
the computation time of the block when the processor is
operated at the maximum frequency.
The RAEP calculates the frequency of each basic block

based on the most probable path [3]. The operating fre-
quency of block B1 is calculated as follows:

l(p1)

tl
=
40

200
= 0.20 (2)

Operating B1 at this frequency results in operating at
the maximum frequency on the execution of longer paths
(say p2 or p4) as shown in figure 2. Since paths p2 and
p4 together constitute a higher probability of execution,
the RAEP executes at the maximum frequency for most
of the program runs. This results in a high average energy
consumption.
The proposed CHP scheme calculates the operating

frequency of each basic block by considering all the hot
paths. The following is the step by step execution of the
CHP algorithm for basic block B1:

• The worst case path of the CFG rooted at B1 is
(B1, B6, B7) with a path length of 140 computation
units. Therefore a single path with l(tpc) = 140 is
constructed (as shown in figure 1).

• In step 2, the computation units that are common
to majority (two in this case) of the hot-paths are
marked. This is done in a breadth first search fashion
considering just the hot-paths. The block B1 is com-
mon to all the hot-paths, so the first 15 units (equal

to the size of B1) get marked in the tpc. In the next
level, two of the hot paths (p2 and p4) will execute 100
computational units. Therefore, 100 units are marked
as the common (in length) computation units. The
block B8 is again common to all the hot-paths and
hence 15 more units get marked in tpc. Therefore,
l(hpc) = 130. The hpc is shown shaded in figure 1.

• The operating frequency for the block B1 is calculated
using equation (1) as:

fi =
130

200− (140− 130)
= 0.68 (3)

• The smallest operational frequency level which is
greater than 0.68 is 0.7, hence B1 is operated at 0.7.

The program continues to execute at the same frequency
if it executes one of the two hot-paths p2 and p4. On the
other hand, it reduces the frequency when it executes path
p1. Since, both paths p2 and p4 together execute with a
higher probability, CHP consumes lesser energy for most
of the times the program is run. This results in a lower
average energy consumption than the RAEP scheme. For
this example, CHP shows an improvement of 40% over the
RAEP scheme.

IV. Preliminary Results

A. Performance evaluation

We have compared the performance of the proposed
CHP scheme with the existing RAEP scheme. The per-
formance metric is the normalized average energy con-
sumption (normalized with respect to the DVS unaware
scheduler).

We have evaluated the average energy consumption of
the above schemes on the basic fan graph [4]. The basic
fan graph (shown in figure 6) has nh hot paths and nl

non hot-paths. All the nh hot paths together execute with
a probability of 0.95. The most probable path executes
with a probability pm and has a path length equal to (l1+
x + y) while the remaining hot paths execute with equal
probabilities and each has a length of (l2+x+ y). Each of
the non hot-paths have a path length equal to (l3+x+y).

We have assumed l1 = 10 and x = y = 15 for all our
performance studies and varied the following parameters:

• Hot-path length ratio:

r =
l1
l2

(4)

• non hot-path length ratio:

r′ =
l1
l3

(5)

• slack factor:

sf =
D − wcet(B1)

D
(6)

• pm = probability of the most probable path



4

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Slack factor

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

RAEP
CHP

Fig. 3. Varying sf with r = r
′ =

0.1 & pm = 0.3

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Probability of the most probable path (Pm)

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

RAEP
CHP

Fig. 4. Varying pm with r = r
′ =

0.1 & sf = 0.5

0 0.5 1 1.5 2

0.2

0.25

0.3

0.35

0.4

Length Ratio (r)

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

RAEP
CHP

Fig. 5. Varying r with r
′ = 0.5,

pm = 0.3 & sf = 1.0
Fig. 6. Basic fan-graph

B. Results

Figure 3. shows the relative performance of the above
two schemes varying the slack factor. At slack factor equal
to zero, both the schemes behave similarly. In general, with
the increasing slack factor both the schemes operate at
relatively lower frequencies and hence consume less energy.
However, it is interesting to note that the RAEP consumes
more energy when the slack factor is increased from 0.5 to
0.6. This counter intuitive behavior of RAEP is due to its
greedy nature of lowering frequency.

On the other hand, CHP performs consistently better
than RAEP through out the range. It shows about 7%,
25% and 40% improvement at slack factors 0.1, 0.3 and
1.0, respectively.

Figure 4. shows the relative performance of the above
two schemes varying the probability of the most probable
path (pm). CHP performs better than RAEP at lower
values of pm, while RAEP performs better at higher
values of pm. This is due to the following reason: as the
probability (pm) increases, the most probable path be-
comes increasingly important as it contributes more to the
average energy consumption; therefore, scheduling based
on the most probable path at higher values of pm will be
effective. On the other hand, at lower values of pm, all
the hot-paths are roughly of equal probability; therefore,
scheduling based on all the hot-paths would be helpful.
Consequently, CHP performs better than RAEP at lower
values of pm and at higher values of pm RAEP performs
better than the CHP. The exact point of crossover is
dictated by the path length ratio r.

Figure 5. shows the relative performance of the two

schemes varying r. This graph shows the effect of path
length variations. At lower values of r, the most probable
path is significantly different from other hot-paths, there-
fore, scheduling based on the most probable path will not
be very effective. Consequently CHP performs better than
RAEP in the graph. At r = 1, all the hot-paths are of equal
length, therefore scheduling based on the most probable
path will be very effective. Consequently, RAEP performs
better than CHP for r ≥ 1. The crossovers prior to the
point r = 1 are due to the discrete frequency settings.

V. Conclusion and Future Work

In this paper, we proposed an energy aware intra-task
DVS algorithm which takes path locality into account by
considering the frequently executed paths. We have evalu-
ated the proposed CHP scheme with an existing algorithm
(RAEP) and observed that CHP performs better than
RAEP algorithm for the basic fan graph in the following
cases:

• when all the hot-paths are (almost) equally likely.
• when the most probable hot-path has considerably
different path length than the other hot-paths.

• when the slack is non-zero.

Our performance studies are preliminary and require fur-
ther analysis. We plan to perform more rigorous perfor-
mance studies to understand the behavior of the proposed
CHP scheme better. We also plan to devise an integrated
intra-task DVS algorithm which combines the benefits of
RAEP and CHP to offer the best performance for all
execution scenarios.

References

[1] P. Pillai and K. G. Shin, “Real-Time Dynamic Voltage Scaling for
Low-Power Embedded Operating Systems,” ACM Symposium on
Operating System Principles, 2001, pp.89-102.

[2] D. Shin, J. Kim, and S. Lee. “Intra-task Voltage Scheduling for
Low-energy Hard Real-Time Applications,” IEEE Design and
Test of Computers, Vol. 18, No. 2, 2001, pp.20-30.

[3] D. shin and J. Kim, “A Profile-based Energy-Efficient Intra-task
Voltage Scheduling Algorithm for Hard Real-Time Applications,”
in Proc. of International Symposium on Low Power Electronics
and Design(ISLPED), Aug. 2001.

[4] H. El-Rewini and H. H. Ali, “Static Scheduling of Conditional
Branches in Parallel Programs,” Journal of parallel and Dis-
tributed computing., Vol. 24, Jan. 1995, pp.41-54.

[5] T. Ball and J. R. Larus. “Using Paths to Measure, Explain,
and Enhance Program Behavior,” IEEE Computer., Vol.33, No.7,
2000, pp.57-65.

[6] T. A. AlEnawy and H. Aydin, “Energy-Constrained Performance
Optimizations for Real-Time Operating Systems,” Workshop on
Compilers and Operating Systems for Low Power (COLP), Sept.
2003.

[7] S. Lee and T. Sakurai, “Run-Time Voltage Hopping for Low-
Power Real-Time Systems,” in Proc. of ACM Design Automation
Conference(DAC)., 2000, pp.806-809.

[8] T. D. Burd and R. W. Brodersen, “Energy efficient CMOS
microprocessor design,” in Proc. of International conference on
System Sciences., Jan. 1995, pp.288-297.

[9] J. Seo, T. Kim, K. S. Chung, “Profile-Based Optimal Intra-task
Voltage Scheduling for Hard Real-Time Applications,” in Proc. of
ACM Design Automation Conference(DAC), June 2004, pp.87-
92.

[10] Transmeta Corporation. Crusoe Processor.
http://wwww.transmeta.com, June 2000.


