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Abstract

We present an autonomous, mobile, robotics application
that requires dynamic adjustments of task execution rates
to meet the demands of an unpredictable environment. The
Robotic Safety Marker (RSM) system consists of one lead
robot, the foreman, and a group of guided robots, called
robotic safety markers (a.k.a., barrels). The application re-
quires adjusting task periods on the foreman to achieve de-
sired performance metrics with respect to the speed at which
a system activity is completed, the accuracy of RSM place-
ment, or the number of RSMs controlled by the foreman.
A static priority scheduling solution is proposed that takes
into consideration the strict deadline requirements of some
of the tasks and their dynamic periods. Finally, a schedu-
lability analysis is developed that can be executed online to
accommodate the dynamic performance requirements and
to distinguish between safe operating points and potentially
unsafe operating points.

1. Introduction

The Robotic Safety Marker (RSM) system [2, 8, 7],
poses a new and interesting real-time scheduling problem.
The RSM system is a mobile, autonomous, robotic, real-
time system that automates the placement of highway safety
markers in hazardous areas, thereby eliminating risk to hu-
man workers. The RSMs operate in mobile groups that con-
sist of a single lead robot—called the foreman—and worker
robots—called RSMs—that carry a highway safety marker,
commonly called a barrel.

Control of the RSM group is hierarchical and broken into
two levels—global and local control—to reduce the per-
robot cost. The foreman robot performs global control. To
move the robots, the foreman locates each RSM, plans its
path, communicates destinations points (global waypoints),
and monitors performance. Local control is distributed to
individual RSMs, which do not have knowledge of other
robots and only perform local tasks.

In this work we consider finding a static priority schedul-
ing solution for the tasks running on the foreman. Some of
tasks running on the foreman have variable rates. In fact,
the execution rate of many of the tasks are directly related

∗Supported, in part, by grants from the National Science Foundation
(EHS-0208619, CNS-0409382, and CCF-0429149).

to system performance criteria. The dynamic parameters of
the system and desired performance, however, can lead to
overload conditions. That is, the system is not schedulable
unless the performance of one of the system activities is re-
duced. Thus, an online schedulability test is presented that
can be used to distinguish between safe operating points and
potentially unsafe operating points.

2. Foreman Path Planning and Speed Control
The foreman depends on sonar sensors to plan its path by

processing sonar signals to determine the presence of obsta-
cles and their distance. The maximum speed at which the
foreman can travel is related to the rate the sonar signals can
be gathered and processed. If the foreman moves faster than
the sonar signals can be processed, then the motion will be
unsafe because there might be an obstacle in the path that
will be undetected at that rate.

2.1 The Motion Control Task Set

The sonar unit consists of a ring of 24 active sonar sen-
sors, with15◦ separation. The 24 sonar sensor signals are
pinged in sequence with a delay of2ms between consecu-
tive sensors to eliminate crosstalk. The motion control for
the foreman code can be modeled as a set of periodic tasks:
24 tasks for sending sonar signals (one for each sensor), sim-
ilarly another 24 tasks for receiving sonar signals and a path-
plan/speed-control task. These tasks all execute with a com-
mon periodps, which is called the scan period. Each sonar
send task sends a command to its corresponding sonar sen-
sor to transmit its signal. Each sonar receive task reads the
corresponding sonar sensor after the signal is echoed back
to the sensor. The parameters for the motion control task set
are shown in Table 1, wheree, p, d, φ andmaxJ are the exe-
cution time, period, relative deadline, phase, and maximum
jitter respectively. The phase represents the earliest possible
release time for a task and maximum jitter is the maximum
delay between the phase and the actual release time of the
task. In this task set, jitter is caused by delays in receiving
sonar signals, which are primarily dependent on the location
of objects in the environment.

The sonar send tasks are released with a delay between
them to eliminate crosstalk. The phase of these tasks,
φsendi, is given by Equation (1), wherei is the task index,τ



Task e p d φ maxJ

Sonar-Sendi esend = .085ms ps esend φsendi 0
Sonar-Receivei erecv = .03ms ps esend + erecv+max∆t φrecvi max∆t

Path-Plan/Speed-Control eplan = 1.32ms ps eplan φplan 0

Table 1. Motion control task set. Phase parameters φsendi , φrecvi , and φplan are defined by Equations (1), (2), and (5)
respectively. The maximum jitter parameter max∆t is defined by Equation (4).

is the delay used to eliminate crosstalk between consecutive
sonar send tasks andesend is the execution time of a sonar
send task. These tasks have zero jitter and are required to
execute as soon as they are released; hence a relative dead-
line equal to its execution time.

φsendi = (i− 1) · (τ + esend) 1 ≤ i ≤ 24 (1)

φrecvi
= (i− 1) · τ + i · esend 1 ≤ i ≤ 24 (2)

∆t =
2 ·Dobstacle

340m/s
(3)

max∆t =
2 ·D

340m/s
(4)

φplan = ps − eplan (5)

A sonar receive task is not released until its correspond-
ing sonar send task has been executed and the signal is re-
flected back, which is called an echo. Equation (2) gives
the phase for any sonar receive taski. The jitter of a sonar
receive task, however, is dependent on the time delay be-
tween the transmission of a sonar signal and the reception
of its echo, denoted as∆t. If an object isDobstacle me-
ters away, the echo time delay can be computed using Equa-
tion (3) where the speed of sound is assumed to be340 me-
ters/second.1 (Dobstacle is multiplied by 2 in Equation (3)
because the signal has to travelDobstacle meters before it
is reflected back). Since we do not know the distance to
objectsa priori, a minimum distance,D, at which an ob-
ject must be detected for the path-plan/speed-control task to
safely control the robot’s motion is defined. The maximum
echo time delay—and hence maximum jitter—is then com-
puted usingD in Equation (4). If an object is farther thanD
meters away, the path-plan/speed-control task does not need
to know about it because it will not provide any additional
useful data in this scan period. Thus, receipt of an echo after
max∆t time units is ignored.

The path-plan/speed-control task computes the path of
the foreman and controls its speed based on the data col-
lected from the sonar signals. The design of the control sys-
tem is based on the assumption that this task executes at the
end of the scan period, but after all of the useful sonar sig-
nals have been received.

1The actual speed of sound varies slightly depending on environmental
conditions.

2.2 Continuous Motion Planning

The goal of this task set is to achieve a continuous safe
movement of the foreman at the maximum safe speed while
still being able to meet all task deadlines. To achieve con-
tinuous movement, the path is divided into a number of seg-
ments. Each segment is delineated by a scan point that
marks the beginning of a scan period. We must, however,
allow enough time for all motion control processing to com-
plete within the scan period (i.e., before arriving at the next
scan point). Thus, the length of the scan period,ps, is depen-
dant on the traveling speed of the foreman and the desired
minimum object detection distanceD. To simplify control,
it is desirable for the foreman to have a constant speed be-
tween any two scan points. Under these constraints and as-
sumptions, Equation (6) defines a lower bound onps that is
required to safely control the foreman’s motion.

ps ≥ φrecv24 + drecv24 + eplan

= 23 · τ + 24 · esend + max∆t + erecv + esend + eplan

= 23 · τ + 25 · esend +
2 ·D

340m/s
+ erecv + eplan

(6)

We now quantify the relationship betweenps, the fore-
man’s speed,D, and objects in the environment. Let each
scan point in the foreman’s path be denotedSi. At least
ps time units must elapse before the foreman leaves point
Si and arrives at pointSi+1. A Scanning Zone, or simply
Zone i, is defined as the area we can travel safely in with-
out the need for another sonar scan. ScanningZone i is the
area between pointSi and pointSi+1. The foreman achieves
continuous motion by scanningZone i + 1 while traveling
throughZone i. Of course, this requires that the foreman
scanZone 0, the first zone, before starting its movement.
Figure 1 shows the distribution of scan points in time and
distance from the moment the system starts (note: vmax is
the foreman’s maximum speed).

Let vmaxi denote themaximum safe speedat which the
foreman can move throughZone i while guaranteeing a
continuous, crash-less motion. Obstacles in the environ-
ment,ps andτ , all constrainvmaxi.

Let Msafe represent the maximum distance the robot can
move safely. In this case,Msafe is the minimum distance
scanned by the sonar sensors:D. As we can see in the top
part of Figure 1, at timet = 0 the foreman is initially at
scan pointS0. We start our initial scan but do not start the
motion until the end of the first scan period. At this time
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Figure 1. Scanning point distribution in time and space

with no obstacles.

Msafe = D because the foreman does not start the motion
until the end ofps time units. ThereforeZone 0∗ extends
to a distance ofD. We can keep moving safely inZone 0∗,
but this will imply the need to stop at pointS2 at the end of
Zone 0∗ to scanZone 2. We can avoid the stop if we divide
Zone 0∗ into two smaller zones—Zone 0 andZone 1—and
scanZone 2 while moving inZone 1. With this modified
division of zonesvmax can be calculated from Equation (7).

vmax =
Msafe

Avilable Time to Complete the Motion

=
D − vmax · ps

ps
=

D

ps
− vmax =

D

2 · ps

(7)

If at any scan pointSi we change the sonar periodps

or change the sonar detection rangeD, then Equation (7)
becomes

vmaxi+1 =
Di − vi · psi

psi+1

(8)

3. RSM Motion Planning and Tracking
The RSM motion planning and tracking performed by the

foreman can be modeled as a set of periodic tasks with at-
tributese, p, d, φ, andmaxJ , as listed in Table 2. This RSM
motion planning and tracking task set is nearly the same task
set that was analyzed in [8]. However, a path prediction task
has been added to identify and correct deviations from the
planned path in the actual path taken by RSMs. (Full details
of the path prediction algorithm are presented in [6], while
[8] provides a description of the other tasks in this task set.)

4. Real Time Scheduling
In this section we analyze the schedulability of the sys-

tem and derive an online schedulability test. An affirmative
result from the schedulability test ensures that all relatively

deadlines will be met. A negative result indicates a possible
overload condition in which performance guarantees cannot
be made.

From an application point of view, it is preferable that the
motion control task set execute with strictly greater priority
than the RSM motion planning and tracking task set. Com-
bining this desire with the optimality of deadline monotonic
scheduling [5] results in the task priority assignment shown
in Table 3. The priority assignment is not strictly dead-
line monotonic since the range forps is 55.34ms ≤ ps ≤
3650ms, while the range forpl is 50ms ≤ pl ≤ 1000ms.
Under most operating conditions, however, the chosen pri-
ority assignment is deadline monotonic.

Note that Tasks 1, 3, and 9 in Table 3 are not single tasks
but actually groups of tasks with common characteristics.
For brevity, we assign them a single task index and priority.
This is reasonable as long as priority ties are assumed to be
broken in favor of the task with the smaller indexi subscript
(and hence earlier phase for the send and receive tasks).

The task set has predefined static priorities with phases
and deadlines less than or equal to periods. The task set also
has two dynamic periods. The goal is to find an efficient
schedulability test for the task set that can be executed on-
line (because of the dynamic work load). Our approach is
based on the principles of time demand analysis presented
in [4, 1].

A schedulability test using the time demand analysis re-
quires finding a solution to an iterative time demand equa-
tion for every task in the task set. This is inefficient for two
reasons. First, it assumes worst-case alignment of periods
for all tasks, which over states the response time for most
of the tasks in this task set. Second, dynamic periods in
the task set require this test to be done online and the com-
putation time to find a solution for Equation (3) in [1] is not
deterministic. Therefore we present a more efficient schedu-
lability test for this task set based on time demand analysis
principles and proprieties of the task set.
Theorem 4.1. All Sonar Send tasks (Task 1) will always
meet their deadlines ifps ≥ 23 · τ + 24 · esend + max∆t +
erecv + esend + eplan.
Theorem 4.2. The Path-Plan/Speed-Control task (Task 2)
will always meet its deadline ifps ≥ 23 · τ + 24 · esend +
max∆t + erecv + esend + eplan.
Theorem 4.3. All Sonar Receive tasks (Task 3) will always
meet their deadlines ifps ≥ 23 · τ + 24 · esend + max∆t +
erecv + esend + eplan.

For the rest of the tasks, offline analysis is not enough to
determine the schedulability of the tasks because some of
the tasks have dynamic periods that are independent ofps.
Dynamic periods introduce complexity in determining the
scheduling condition because of the need to do the time de-
mand analysis online. Applying the time demand analysis
method presented in [1] to Tasks 4 to 9 requires finding a
solution to Equation (3) in [1] for each task iteratively. A
careful analysis of the task set, however, reveals that even



Task e p d φ maxJ
Scanning 12ms pl pl 0 0
Detecting .0172 · n2 + .1695 · n + 12.69 pl pl 0 0
Predicting epredict = 3.8 · n pl pl 0 0
Planning 16ms 1500ms 1500ms 0 0

Way Pointi 8.33ms 1500ms 1500ms 0 0
Window Resizing 2ms pl pl 0 0

Table 2. RSM motion planning and tracking task set. The variable n represents the number of RSMs being controlled by the

foreman.

Task Index Task p Priority
1 Sonar Sendi ps 1
2 Plan/Speed ps 2
3 Sonar Receivei ps 3
4 Scanning pl 4
5 Detecting pl 5
6 Predicting pl 6
7 Window Resizing pl 6
8 Planning 1500 7
9 Way Pointi 1500 8

Table 3. Task priority assignments.

though several tasks have dynamic periods there are only
three distinct periods in the task set at any one time. Theo-
rem 4.4 states that schedulability can be established online
with an affirmative result from two conditions.

Before we present the schedulability condition, we define
the following notation:
• DEMTi, i=j,...,k(L): Demand (interference) by tasks

j throughk in any interval of lengthL.
• ∑

pi=L ei: Total execution time of tasks with periodL.
Theorem 4.4. All tasks will meet their deadlines if Equa-
tions(9) and (10)hold.

∑
pi=pl

ei + DEMTi, i=1,...,3(pl) ≤ pl (9)

∑
pi=1500

ei + DEMTi, i=1,...,7(1500) ≤ 1500 (10)

The demand created by higher priority can be calculated
by application of Equations (2) and (11) in [1] by Audsley
et al. Equation (11) is a generalization of Equation (2) and
computes the demand of “sporadically repeating tasks” with
inner and outer periods [1].

5. Conclusion and Future Work
We presented a mobile robotic application that requires

adjusting sensor sampling rates to produce desired perfor-
mance levels. A static priority scheduling solution is pro-
posed that takes into consideration the strict deadline re-
quirements of some of the tasks and their dynamic periods.
We have shown how system parameters and environment
changes can create overload conditions on the system pro-
cessor and how system schedulability can be evaluated on-
line.

The online schedulability test can be used to distin-
guish between safe operating points and potentially un-
safe operating points. Moreover, the analysis and on-
line schedulability test provides a framework for a future
application-level control algorithm that can make dynamic
performance/schedulability tradeoffs. Future work will also
include generalizing the modeling and schedulability anal-
ysis presented here so that it can be applied more easily to
tasks of other real time mobile autonomous systems.
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