
Opportunistic scheduling in a constraint-rich world
David Johnstone and Steven Bradley

Department of Computer Science
University of Durham

UK, DH1 3LE
Email:

�
D.I.Johnstone, S.P.Bradley � @dur.ac.uk

Abstract— The latest planners and schedulers allow expressive
domain modelling and problem definition, particularly with
respect to the inclusion of constrained resource usage and inter-
task dependencies. This increased complexity removes the ability
to guarantee schedulability of a problem at run-time.

In hard real-time systems, where ‘hard’ emphasizes the critical
nature of meeting task deadines, the estimated worst-case exe-
cution time is used in the task representation. If a solely static
framework is used to schedule these systems, the pessimism in the
prediction of task execution times will lead to unused resources.

This paper describes a framework to include a local dynamic
scheduler with a large-scale planner or scheduler. The local
scheduler can take advantage of any unused resources by
scheduling additional task sets. It can also handle online plan
repair by switching between different quality levels of tasks.

I. INTRODUCTION

The role of a planner is to provide a linear ordering on
a set of jobs to allow a system to progress from an initial
state to a defined goal state1. A plan is a sequence of jobs
typically created prior to execution where each job in the
plan is a distinct achieving activity. In the popular Plan-
ning Rover Domain [1], examples of jobs include navigation
between two locations, photographing an object and data
transmission. In 2002, the International Planning Competition
(IPC) unveiled PDDL2.1 [2], an extended temporal planning
language. It relaxed the classical planning assumption that
all actions are simultaneous, allowing the language to model
jobs with duration. A job in PDDL2.1 comprises start effects
and preconditions, end effects and preconditions, invariants
and continuous effects. Invariants are predicates that must be
true over the duration of the job. Continuous effects allow a
numeric resource to change continuously over the duration of
a job.

Once a plan has been created each job in the plan must
be broken down into low-level tasks which can be exe-
cuted directly. Examples of tasks include starting the rover
engine, obtaining the current location, turning towards the
goal and driving forwards. Schedulers select an ordering on
task execution to maintain each task’s internal deadlines and
resource constraints. Tasks within a job are typically periodic
in nature, so a scheduler must schedule each instance of the
task so they complete at regular intervals of time. They can
also include inter-task dependencies which affect the relative
release of the tasks. Dynamic Scheduling is concerned with

1Partial Order Planners allow concurrency between jobs, but they will not
be considered within the scope of this paper.

on-line scheduling, where tasks are selected by the scheduler
to execute based upon assigned priorities. Many analysis
techniques have been designed that provide guarantees on the
task deadlines for diffferent priority assignment algorithms,
including algorithms where the priorities can change during
execution or remain constant2.

A. Planning with Uncertainty

In 2004, the 4th IPC presented a new probabilistic track [4].
The aim was to highlight the advancements made in planners
and schedulers which model domains where unexpected events
occur. An unexpected event could be a task finishing earlier
than anticipated or a deadline being brought forward for a
job. An off-line planner or scheduler which creates a single
schedule cannot respond quickly to either targets of opportu-
nity or unexpected difficulty. Just-In-Case Scheduling[5] (JIC)
is a method which allows contingencies within a schedule. A
static schedule is created and analysis takes place off-line to
find potential break-points. Starting from the point of highest
likelihood and continuing while time and space permit, new
schedules branching from each break point are created. If a
break occurs during execution, the contingency schedule can
be executed from the break point and the system will still
respond in expected fashion. JIC works well if there are a
small number of high priority schedule breaks, but can suffer
in large schedules where each new contingency must be fed
through all of the branches created.

A less expensive solution to modelling uncertain domains
is to use opportunistic planning. Opportunistic Planning [6]
constructs a single plan using estimates of the job durations
based on a level of certainty obtained through experimentation.
The estimate is conservative to ensure the plan is reliable and
robust. The aim is to modify the plan using local extensions to
reduce any resource wastage during execution. Each extension
or opportunity acts as a loop to return the executive to a
state from which the remainder of the plan can be executed.
An opportunity might be taking an extra photograph whilst
navigating through terrain. Selection will be based upon the
time the rover must transmit its data back to a control satellite
and whether there is sufficient memory to store the additional
image. There are areas for improvement within this solution.
Due to performance guarantees, opportunities are seen as

2Dynamic scheduling has been criticised in the past for allowing non-
deterministic behaviour in fault-tolerant systems. This problem has now been
addressed[3].



plan extensions rather than as alternatives, and job overrun
is not handled. This means the nominal plan must be very
conservative and opportunities must be selected quickly and
efficiently to maximise the underused resources. This paper
proposes a solution to increasing the number of opportunities
taken within a plan and minimising the unused resources.

B. Resources

A resource in a planning domain is modelled as a reservoir,
a material that can either be produced or consumed by a job. A
planner cannot plan down to the task level and hence relies on
including factors to model the complex resource dependencies.
Jobs using continuous effects define the rate of change of the
numerical resources in the domain. The planner handles the
resource constraints by ensuring that over the totality of the
job the reservoir of the resources will not be exceeded. A
system of differential equations must be solved to determine
the values of the resources at any time point during the job
execution.

There are many reasons why interaction may happen at the
task level, including shared memory regions and resources,
socket communication and communication through message
passing [7]. Schedulers are concerned with the allocation of
resource locks to tasks rather than consumption of a physical
resource. The problems schedulers face are those concerned
with resource contention between multiple tasks. A system
can suffer deadlock and individual tasks may miss deadlines
when a low priority task prevents a higher priority task from
executing because it holds a required resource lock. These
problems have led to the necessary development of resource
access control protocols, including protocols for fixed priority
algorithms [7] and for dynamic priority algorithms [8]. An aim
of this research is to handle domains which include complex
resource dependencies at both the job and the task levels.

C. Objectives

Time

Utility

0

(a) Pushing future jobs earlier into the schedule

Job Job1 2

completion trigger
Job

(b) Scheduling additional jobs in free time

job
New

Fig. 1. Opportunistic Approach

This paper looks to build upon the Opportunistic framework
discussed in Section I-A and improve its efficiency. The
primary improvement is to schedule the transition between
jobs at the task level. By introducing controlled concurrency
between the completing tasks in the old job and the tasks
starting in the next job this will provide a greater flexibility
within the plan. It will allow future jobs to be pushed further
up the schedule and it will also allow additional tasks to be
scheduled as part of the opportunistic structure, see Figure 1.

Pedro and Burns [9] provide a mode change analysis which
can be performed to check the schedulability of tasks during
the change from one mode of operation to another. A mode
in their research is equivalent to a job within this work.
Their analysis was effective in situations where there were
a small number of modes or jobs and all of the transitions
could be calculated off-line. Any analysis developed within
this paper must be able to handle larger number of jobs and
also transitions unknown before execution. For this reason
the analysis must be performed during run-time, providing
additional information on the current task states but limiting
the time available.

The next section of this paper describes an architecture that
uses an opportunistic planner and local dynamic scheduler to
identify and accept more opportunities. Section 4 is a discus-
sion of an on-line analysis that the scheduler can perform when
organising the transition to the next job in the plan. Section
5 describes the test mechanism for proving the reliability and
advantages of this research. Section 6 summarises the paper
and its potential impact.

II. STRUCTURE

This section describes the interactions between a planner
and scheduler as part of the three-tier architecture shown in
Figure 2.

Resource Level Updates
Task Progress and

Execution Schedule

Opportunity Library
Pruned

Job List

Executive

Planner

Scheduler

Fig. 2. System Architecture

A planner will pass a job sequence and a library of extra
jobs to the scheduler. If an opportunistic planner is used,
the job sequence will be a conservative plan and the library
will contain a set of additional jobs which will represent
opportunities. Each opportunity will include the minimum
resource requirements necessary for it to be executed. A
position in the job sequence or a time window in which the
opportunity must be taken may also be supplied.



Replacement jobs with functionality mirroring that within
the job sequence will also be included in the library. This
approach is taken from a paper by Marchand and Rutten [10]
which concentrates on systems that implement jobs with
different levels of quality and cost. The scheduler will select
an alternative job to that in the original plan to improve the
utility if there are unused resources or to repair a plan that is
running behind schedule.

A key advantage in using a dynamic scheduler is exploited
by the executive, which can pass back information during run-
time to influence the scheduler. In this framework, the progress
of tasks and the current resource levels can be obtained during
any stage in the execution. This data allows the scheduler to
take opportunities or repair a schedule without halting the jobs
or referring back to the planner3. The algorithm outline is
included here to describe when and where these decisions are
made.

1) Plan until the horizon
2) Schedule and execute each job in the plan
3) When a job is triggered to complete:

� Calculate the response time for each old task as it
finishes� Use these results to calculate the slack and identify
unused resources as the job winds down� Search the opportunity library for an opportunity or
a repair job� If a job is found Then next job = opportunity
Else next job = next job in plan� Calculate start-times for each task in the next job

The algorithm highlights several areas where work is re-
quired to implement the opportunistic framework. The next
section examines in more detail the scope of the work and the
new analysis methods needed.

III. ANALYSIS

The aim of this paper is to add a local on-line scheduler to
a powerful off-line system, requiring that the local scheduler
is able to model an equal level of complexity as the off-line
planner or scheduler. From the planning domain, the scheduler
must handle reservoir resources, for example a fuel reservoir
where tasks can either consume or supply the fuel. The
scheduler must also model the discrete locking of resources,
where different tasks require different numbers of locks on a
limited resource before they can execute.

One solution is to maintain the blocking criteria proposed
by Sha et.al. [7], who implement a priority ceiling protocol
in which a task can only be blocked by the longest critical
section of any lower priority task. For a discrete resource,
this would mean a task could not obtain a lock unless there
are enough additional free locks to satisfy a higher priority
task with at most one task completing. At implementation this
would require one additional item of data stored per resource
for each task: the maximum number of locks required of this

3The planner may be required if an unexpected event occurs which damages
the execution sequence and requires a re-plan to correct the job ordering.

resource by all higher priority tasks. An additional check can
then be placed in the scheduler when allocating a discrete
resource.

At the task level, any analysis must additionally handle
release chains: a task is only released once another task
completes. Release chains are used to model the critical
sections and communication in more complex tasks.

Analyses are required to calculate how the old tasks from
a job complete gracefully, the search and selection criteria for
an opportunity and the start-time allocation for the tasks in
the next job. The remainder of this section describes the first
of these analysis methods.

When a job signals it has completed and hence will wind-
down and end all of its tasks, an exact characterisation can
be performed which will calculate the response times for all
of the old tasks. These response times can then be used to
calculate the slack available during this phase which could be
used either to bring forward the tasks from the next job, add
in an additional job or repair a schedule running behind time.

This analysis is concerned with at most one period of
execution for each task as they complete for the final time.
For this reason, the priority assignment algorithm chosen has
a lesser impact: using either a static algorithm or one such
as the Deadline Monotonic assignment algorithm [11], where
a task priority is constant for a period, will lead to a similar
analysis. The algorithm outline when using such a priority
assignment algorithm is now described.

1) Obtain the list of completing tasks in descending priority
order. Neither unreleased tasks in chains or tasks blocked
by resource contention will appear in this set.

2) For each task in the list:

a) Obtain the lists of tasks chained and blocked by
this task

b) Sort the two lists into descending priority order
c) Pass any resources required to the chained tasks

(to represent the larger task defined)
d) For each blocked task, check if there are enough

resources to free:
If not, remove the task and the remaining tasks
in the list. Check and add these removed blocked
tasks to one or more of the chained tasks.

e) Add List of remaining blocked tasks into active list
immediately after current task being checked

f) Merge list of remaining chained tasks into complet-
ing task list (use binary chop to find first insertion
and then check priorities from that point)

3) Calculate response times and the slack available for each
task in the ordered list.

A more complex analysis is required only when the pri-
orities of tasks are allowed to change during execution,
for example when using the Least Slack Time assignment
algorithm [12]. The additional difficulty is that tasks can
preempt the current executing task due to priority changes.
Three additional calculations are reqired: when a task can
first preempt the executing task, which task will complete



first and how much interference will be caused by the pre-
emption. It also requires a looser structure as tasks in the
original completing list are not guaranteed to finish in that
order.

Whichever priority assignment algorithm is chosen, an exact
characterisation of the slack available as a job winds-down is
available.

IV. WORK IN PROGRESS

Once the analyses listed in Section III are completed,
they will be included within a testing platform. Initially the
platform will include a temporal planner and a repair list.
The planner will generate real plans from problem domains
and pass these along with repair jobs to be scheduled on
an implemented simulator. This simulator will schedule and
execute the plans whilst running the analyses to make the
decisions on assigning start-times and changing jobs within
the plan. The aims are two-fold: first to check the correctness
of the scheduling by checking the actual slack and deadline
potential of the tasks; and second, to judge the effect of repairs
on task and job deadlines against schedules where the original
plan is strictly followed.

The next stage will be to replace the temporal planner with
an opportunistic planner, and include additional opportunities
in the repair list. The primary test is to assess the time gained
within the schedule and the usage of additional resources
which would otherwise have been wasted. As important is
the effect of taking opportunities on the rest of the schedule,
including missed deadlines or instigating repairs. This may
lead to changes in the way that opportunities are represented
in the library with respect to their minimum requirements for
selection, and a difference in approach when scheduling tasks
with hard deadlines to those where meeting the deadline is not
critical.

A further decision is when to use a fully-dynamic assign-
ment algorithm. Dynamic priorities are used to provide better
processor utilisation, but besides the memory swapping cost
there will be the additional cost of performing a more time-
expensive analysis for repair and opportunity selection.

The final research goal is to identify the best time to look
for opportunities: at the moment this work has assumed the
analysis is always performed whilst a job is completing. In
less complex domains more time could be spent checking for
opportunities. This additional checking may be necessary in
unstable domains where there is much unexpected activity. The
approach could also provide a benefit when slack time made
available in the middle of a job is lost later in the schedule
due to the periodic nature of the tasks. A greater frequency
of checks will mean more time when tasks are not executing,
and taking an opportunity as soon as possible may mean that
a larger or more profitable opportunity can not be taken later
in the schedule.

Each decision discussed amounts to a trade-off, and the goal
of this research is not to provide one definitive answer, but a
series of levels which are changed based on the domain and
the requirements of the user.

V. CONCLUSION

Uncertainty occurs in numerous real-world domains. One
way to cope with uncertainty is to plan and schedule with
conservative estimates on the time and resource requirements
of tasks.

One difference between planning and scheduling is the
emphasis placed on resources and the way they try to reduce
conservatism. Opportunistic Planners seek to identify where
a job produces or consumes less resource than anticipated.
The Planner can then add extra jobs later in the plan, making
use of the excess and maintaining the anticipated levels whilst
achieving a greater utility.

A scheduler is primarily concerned with the utilisation of
the processor and the extra resources and minimising the time
in which they are idle. Improving a schedule means pushing
the future jobs earlier if possible or adding additional jobs
close to the current time point. Additional tasks in the jobs
can then make use of the idle resource.

This paper provides a framework for an Opportunistic
Planner and a local dynamic scheduler to work together to
minimise both types of conservatism. Tradeoffs have been
discussed with respect to the greediness of opportunity selec-
tion and the complexity of the domain being modelled. The
research plans are to test this architecture and highlight its
strength within different application domains featuring both
discrete and reservoir resources.

REFERENCES

[1] M. Fox and D. Long, “The 3rd international planning competition:
Results and analysis,” in Journal of Artificial Intelligence Research,
vol. 20, 2003, pp. 1–59.

[2] M. Fox and D. Long, “PDDL2.1 : An extension to PDDL for
expressing temporal planning domains,” University of Durham, UK,
Tech. Rep., April 2003.

[3] S. Poledna, A. Burns, A. Wellings, and P. Barrett, “Replica determinism
and flexible scheduling in hard real-time dependable systems,” in IEEE
transactions on computers, vol. 49(2), February 2000.

[4] M. Littman and H. L. S. Younes, “Introduction to the probabilistic
track,” 4th International Planning Conference Special Issue, Tech. Rep.,
June 2004.

[5] M. Drummond, J. Bresina, and K. Swanson, “Just-in-case scheduling,”
in AAAI-94, 1994.

[6] M. Fox and D. Long, “Single-trajectory opportunistic planning under
uncertainty,” in Proceedings of the 3rd International NASA Workshop
on Planning and Scheduling for Space, 2002.

[7] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols:
An approach to real-time synchronization,” in IEEE Transactions on
Computers, vol. 39(9), 1990, pp. 1175–1185.

[8] M.-L. Chen and K.-J. Lin, “Dynamic priority ceilings: A concurrency
control protocol for real-time systems,” in Real Time Systems Journal,
vol. 2(4), 1990, pp. 325–346.

[9] P. Pedro and A. Burns, “Schedulability analysis for mode changes in
flexible real-time systems,” in 10th Euromicro Workshop on Real-Time
Systems, Berlin, June 1998.

[10] H. Marchand and E. Rutten, “Managing multi-mode tasks with time
cost and quality levels using optimal discrete control synthesis,” in 14th
Euromicro Conference on Real-Time Systems (ECRTS’02), June 2002.

[11] N. Audsley, A. Burns, and M. Richardson, “Applying new
scheduling theory to static priority pre-emptive scheduling,” in
Software Engineering Journal, vol. 8(5), September 1993, pp. 284–292.

[12] J. Y. T. Leung and J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic real-time tasks,” in Performance Evaluation,
vol. 2, 1982, pp. 37–250.


