Towards Automatic Verification of Affine Hybrid System Stability *

Jens Oehlerking, Henning Burchardt, Oliver Theel
Carl von Ossietzky Universitat Oldenburg
Department of Computer Science
D-26111 Oldenburg, Germany

{jens.oehlerking henning.burchardt oliver.thee} @informatik.uni-oldenburg.de

1. Introduction wherez(t) € R" is the continuous state vectbrof the
HS at time instant and m(t) €¢ M = {1,..,M}is

Stability is a very important property of feedback con- .. = . X :
trol systems. For linear feedback control systems, methods®S discrete statemn(i") denotes the updated discrete state

for proving or disproving system stability are well known. Eﬁgts?;tt% r ggié‘?ﬁ??‘ﬁhgio:f R”Hx fl ﬁgn Cdatl—:!ggrrby(;s
They basically amount to eigenvalue computations. For he behaviofof the continuous sfate and H — M de-

more general classes of feedback control systems, howeverI cribes the behavior of the discrete state of the Fil8. as-
these methods are not applicable. A very general method® - ) ; . SIS

: sumed being continuously differentiablg,,, ,,, = {z :

is based on Lyapunov theory [7]. It uses a so-called Lya- o ) = ma) " denotes thesv&itcﬁ seffrom

punov function which can be regarded as generalized “en-&"""11) = 25, M1 7 M2,

- : Y discrete staten; to discrete staten,. A solution x(t) of
ergy function” of the system under investigation. If energy the HS (1) for 611 particular tuple(x(zo) m(0)) of stggting
converges to zero over time then the system state will con- oints is called araiectory. A HS is calied iccewise affine
verge towards an equilibrium state. b y Y P

In the scope of the AVACS projeétye are concerned :fstf %r nigfr?xrz € ef‘%'nfi&xé;"c} ;szfgtr(l)% mg,ﬂgs : ;ﬁi;etﬁ;';
with automaticallyproving hybrid system stability. In a first ( )= A m b forall m ' 0
phase of the project, we focus on a special subclass of hy-/ (%27) = Am + bm -
brid systems, namelgiecewise affin@ybrid systems. Hy- The most widespread notion for stability of autonomous
brid systems contain both, discrete states and continuoussystems is Lyapunov stability [8].
time dynamics. Piecewise affine hybrid systems require the
continuous-time dynamics to be affine for each discrete
state. A powerful method of verifying stability for such sys
tems is based on extensions of Lyapunov theory, as pro-(A1) for all ¢ > 0 there exists & > 0, such that for

Definition 2 ([7]) A systen? is globally asymptotically
stablein 0 (0 being then-dimensional zero vector), iff

posed by Pettersson [9], Johanssbnal. [6] or Branicky all initial continuous states(0) with ||z(0)|| < §,
[4]. These approaches still require system dependent in- lz()|| < e holds for allt > 0.

puts which could — up to now— only be provided by a hu- (A2) for allinitial continuous states(0):

man proof designer based on his or her intuition and expert z(t) = 0,t — oo

knowledge of the problem domain. ) )

The work presented in this paper reports on our current T only (A1) holds then the HS iglobally stablein 0. A
status with respect to achiefidl automatizatiorof the sta- ~ 9lobally asymptotically stable system is caligidbally ex-
bility verification task. The goal is to be able to prove sta- Ponentially stablef for all € > 0 there exisv, k1, ks € R,
bility of piecewise affine hybrid systems “by the push of a 2l greater thar, such that|z(0)|| < ¢ implies|lz(t)|| <
button” and without any further knowledge provided by a k1€"**[|zo]| for all z(0) andt > 0. O
human user. In the future, we plan to extend and to com- oy non-hybrid systems (equivalent to HS with a single
plement the approach in order to cope with more generalgjscrete state), a means to prove global asymptotic stabil-
non-linear systems, possibly through approximation. ity is via a Lyapunov function. The Lyapunov function con-

verges towards for t — oc.

2. Preliminaries
o _ _ . Theorem 1 (Lyapunov [8])
Definition 1 A continuous-time, autonomous hybrid sys- Let & = f(z) be a continuous-time (non-hybrid) system

tem (HS)s a system of the form with f(0) = 0. If there exists a continuously differentiable
it = fz(t),m(t)) functionV : R" — R, such that
mtt) = ¢(z(t), m(t)) 1) (L1) V(x) is positive definite, i.eV(0) = 0 andV (z) > 0
forallz #£0
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(L2) V(x) is negative definite, i.6/(0) = 0 andV (z) <
Oforallz #£0
(L3) V(x) — oofor ||z|]| — oo

then the system is globally asymptotically stabl@irl is
then called d.yapunov functiomf the system. O

This theorem can be generalized for hybrid systems by
partitioning the state space into so-caltedions For each
region, it is required to find a “pseudo-Lyapunov func-
tion,” that fulfills conditions(L1) and (L2) for that par-
ticular region. If we assure that the “composite pseudo-
Lyapunov function” consisting of the composition of the
region-specific “pseudo-Lyapunov functions” does not in-
crease when crossing region boundaries, this implies floba
exponential stability. This is formalized in the following
theorem.

Theorem 2 (Pettersson/Lennartson [10])

Let R = {R;,..., Ry} be a partitioning of{. For each
pair of regionsk; and R;, define theransition setl; ; :=
{(x,m) |3t > 0: (x(t —¢),m(t —¢)) € R; and(z(t +
€),m(t +¢€) € R;, whene — 0,e > 0}. Let [y C
{1,.,N} x {1,..., N}, with (¢,5) € I, iff T; ; # {}. As-
sume that for eacR; we have a continuously differentiable
functionV; : R™ — R. If there existo, 5,7 € R, all posi-
tive, such that:

(H1) foreachR;: az’z < V;(z) < BaT
forall z with Im : (z,m) € R;
(H2) for eachR;: a‘g;ff)f(a: m) < —yalx

forall (z,m) € R;
(H3) for each pair of region®; andR; with (7, 5) € Ix:
Vi(z) < Vi(z)forallz € T; ;

then the HS is globally exponentially stabledin O

3. LMI-Based Verification

For piecewise affine (PWA) systems, it is advisable to re-
strict the search for such a set of “pseudo-Lyapunov func-
tions” V; to a parameterized subset. In particular, we choose
guadratic expressiongolynomials of degre@. This re-
striction allows us to employ convex optimization methods
[3], while still retaining an adequate degree of flexibility

Definition 3 A quadratic expressiofis a function of the
formg(z) = 27 Px + 2Tz + 7, PER™™ pe R, 7 €
R. Then,g(x) = &7 P holds, with

p

s

S

This allows us to reduce Theorem 2 to a linear matrix in-
equality problem for any given partitioning. Since linear
matrix inequalities (LMIs) are special cases of convex-opti
mization problems, they can be solved efficiently [2, 3].

P

pT

P

Theorem 3 (Pettersson [9])

(P1) For eaclR;, 1 < k < k4, k; > 0, find sets of

e R with 27 QF% > 0
m) € R;.

QF

for all z with Im : (z,

(P2) For eactR; and eachn with 3z : (x,m) € R;,

1< k < Kim, Ki,m > 0, find sets of
e R with z7QF 7 >0

l m l m

for all z with (z,m) € R;.

(P3) For each pair of regions; andR;

with (¢,4) € In, 1 <k < K45,k > 0, find sets of
QF, e R with #7QF ;3 > 0
forall z € T; ;.

Let I be then x n identity matrix and define

I::{Ql;ﬂ %], Am:z{g}n ban]
then
z(t) = Anz(t) +bm
m(t*) = ¢(x(t), m(t))

is globally exponentlally stable ifif there exist real num-
bersa > 0,uf > 0,vF > 0,9%, > 0andn},; > 0, such

) 1,M

that the following LMI problem has a solution:

Minimize 3 subject to

aI—'_ZMz z—pSﬂN_ Vf@?’
k=1

1<2<N (2)
A%P1+P1Am+zﬁim ng[

k=1
1<i<N,JzeR":(z,m) € R; 3)
P+Z77%J i < B
(7 )GIA (4)

O

For eachk, the sets{z|zTQFz > 0} over-approximate
{z|3m : (z,m) € R;}, the sets{z|xT “n:r > 0} over-
approximate{z|(z, m) € R;} and the set§z|z7 Q¥ .z >

0} over-approximatd; ;. The LMIs result from a relax-
ation calledS-procedure [11] that allows local definiteness-
constraints, so that the equivalentg(BifL)-(H3) need only
be fulfilled locally. Therefore, eac) matrix corresponds
to a quadratic expression.

Informally, Theorem 3 implies that one has to define a
suitable partitioning, calculatéy, and find appropriaté)
matrices. Then itis possible to solve the LMIs through con-
vex optimization in order to obtain a “family” of; matri-
ces. These matrices represent the quadratic expressains th
form the “pseudo-Lyapunov function¥; required by The-
orem 2. The entire procedure will be explained next.



4. Automatization of the Verification Task the two approaches may be partitioned further into smaller
subregions. This may become necessary if global exponen-
tial stability cannot be shown using a certain partitioning
although one assumes that the respective hybrid system is
indeed globally exponentially stable. On the other hand, it
may be possible to merge regions in order to increase effi-
ciency of the verification task, e.g. one could use a single
egion for a certain discrete state spanning the whole con-
inuous state space.

There are four steps which have to be performed for an
automatization of the verification task. The first step, de-
scribed in Section 4.1, is partitioning the state spaceanto
number of regions for which “pseudo-Lyapunov functions”
must be found. The second step deals with finding the tran-
sitions between the regions. This is shown in Section 4.2.
Step three describes the conversion of the regions found s
far as well as the transitions into an LMI problem. This is
presented in Section 4.3. Finally, step four (given in Sec-
tion 4.4) is concerned with the solution of the LMI prob- 4 2. Identifying the Region Transitions
lem.

Let us once again refer to Theorem 2. Generally, cal-
culating Ix may not be easy. Note that using a superset
of I, in place ofI, in formula (4) will also result in a

In our current research, we restrict ourselves to switch proof of global exponential stability if a solution is found
sets that are defined by hyperplanes since for those switchTherefore, it is safe to over-approximdteby starting with
sets the transitions between regions can be calculated moré1,...N} x {1,...N} and successively removing all region
efficiently. In our approach, the partitioning of the hybrid transitions that are known to be impossible. The closer this
state space results in regions that only span a single thscre over-approximation is td,, the higher the chance of find-
state, i.e. for each discrete state the continuous subgpace ing a solution of the LMI.
the hybrid state space will be partitioned separately. How-  Luckily, for affine functionsf (z, m), it is easy to deter-
ever, in this paper, we assume that this partitioning will be mine whether transitions between two regiddsand R;
the same for all discrete states. are possible in either direction or only in a single one. The

We follow two different approaches in order to partition procedure we are using is as follows: for each discrete state
the hybrid state space. The first approach uses a grid for parm with affine vector fieldf (z,m) = A,,x + b, identify
titioning. This leads to cubic regions and infinite cuboid- the hyperplané defined by formula (5) which separatBs
like regions. See Figure 1(a) for an example. The secondand R;, and identify the hyperplang = {z | (¢’ A,,)z +
approach uses the hyperplanes of the switch sets to cre:Tp,, 1. T defines the points at whichis a vector parallel
ate a partitioning. Figure 1(b) shows a partitioning inte re to S. The intersection of and7 gives the set of points at
gions A to G using three hyperplanes. In both approaches,yhich the direction of the trajectories crossiigchanges.
the boundary between two neighboring regions can be de-Refer to Figure 2 for an example &2 in which S N T

4.1. Partitioning of the Hybrid State Space

scribed by an intersection of a hyperplane contains only a single element Let B; ; be the bound-
. ary betweenR; and R;. If the intersection ofl" and B; ;
S={z|ccx+d=0}, ceR", deR (5) is empty then the boundary can only be crossed in at most

] ) one direction. Whethef N B; ; is empty or not, can be de-
and one of the two regions. The regions created by one ofciged by solving a linear program. The particular manner in

R;
T2 /)( Pl

| B,
| C
””” T A
,,,,, - N Figure 2. Trajectories cross B, ; in either di-
77777 : D rection.
A FoE
I . I which the transitions between regions having different dis
é"’;i)d_Pamt'O”'”g using a i(,% [Partitioning accord- crete states are calculated, depends on the approach used to
partition the continuous state space. If the “hyperplanre ap
proach” is used, it only needs to be checked whether the
. discrete state changes on a boundary between two regions.
Figure 1. Two different approaches of parti- If the “grid approach” is pursued, it must be checked for
tioning the state space. each region whether there are switching hyperplanes inter-

secting with it. This, again, can be tested using linear pro-
grams.




4.3. Formulating Regions and Transitions as LMI “embracing” them with two equally partitioned PWA sys-
) o ) ~ , tems: the two PWA systems must behave in such a way that
In this section, itis described how tlimatrices of The-  {he pehavior of the system under investigation will always
0rem_3 can be |dent|f|eq. For slmpI|C|ty, we assume that thestay between these two PWA systems. Then, if identical
partitioning presented in Section 4.1 is the same for every“pseudo-Lyapunov” functions for both PWA systems can be
discrete state. Thus, we omit the indexn the Q¥ . identified, the “embraced” system is guaranteed to exhibit
Either of our approaches to partition the hybrid state the same stability properties. Discrete-time systems ksan a
space uses regiorfg; that can be represented as an inter- pe treated this way, with a slight modification of the LMIs
section of half-plane$x | "z +d > 0}. In [9] itis pro-  and the algorithm for calculating the region transitions. A
posed to create quadratic expressions for every half-planehird direction for future work is local stability, i.e. aadtil-
and for each combination of two of them. This results in ity property that holds only if the initial state lies within
ki = ((0; + 1)0;) /2 expressions where; is the number of  certain set of states. Then, if it is known that the comple-
half-planes for regio;. The matrice€)*, k € {1,...,x;} ment of the desired “stable region” cannot be reached by
are then calculated in an analogous manner to the calculathe HS, it is possible to restrict the partitioning accogijn
tion of matrix P in Definition 3. Cubic regions can be han- Consequently, LMIs are more likely to have solutions.
dled in a simpler way: one determines the smallest ellipsoid ~ Before such extensions can be made, a deep understand-
containing the cubic region which can be described by aing of the partitioning process is required. As of now, we
simple quadratic expression. This results in fewer quamrat are analyzing different partitioning approaches and the ef
expressions while reducing flexibility. fects of different choices of quadratic expressions forrove
For the boundaries®; ;, as needed in formula (4), an- approximating the regions. o )
other approach to create quadratic expressions is used. As- A back-end that translates the partitioning and system in-
sume thatS as in formula (5) is the hyperplane belonging formation into a s’_[andard format for convex programming
to the boundany; ;. Pettersson [9] suggests a number of has already been implemented. We are confident being able
rij = n + 1 quadratic expressions to represent a hyper- to reporton full automatization of PWA system stability not
plane. As a region boundary often is a bounded subset oftoo far in the future.
such a hyperplane, one can think of weakening the partic-
ular constraint by adding one or more other quadratic ex- References
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