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1. Introduction
Stability is a very important property of feedback con-

trol systems. For linear feedback control systems, methods
for proving or disproving system stability are well known.
They basically amount to eigenvalue computations. For
more general classes of feedback control systems, however,
these methods are not applicable. A very general method
is based on Lyapunov theory [7]. It uses a so-called Lya-
punov function which can be regarded as generalized “en-
ergy function” of the system under investigation. If energy
converges to zero over time then the system state will con-
verge towards an equilibrium state.

In the scope of the AVACS project,1 we are concerned
with automaticallyproving hybrid system stability. In a first
phase of the project, we focus on a special subclass of hy-
brid systems, namelypiecewise affinehybrid systems. Hy-
brid systems contain both, discrete states and continuous-
time dynamics. Piecewise affine hybrid systems require the
continuous-time dynamics to be affine for each discrete
state. A powerful method of verifying stability for such sys-
tems is based on extensions of Lyapunov theory, as pro-
posed by Pettersson [9], Johanssonet. al. [6] or Branicky
[4]. These approaches still require system dependent in-
puts which could – up to now– only be provided by a hu-
man proof designer based on his or her intuition and expert
knowledge of the problem domain.

The work presented in this paper reports on our current
status with respect to achievefull automatizationof the sta-
bility verification task. The goal is to be able to prove sta-
bility of piecewise affine hybrid systems “by the push of a
button” and without any further knowledge provided by a
human user. In the future, we plan to extend and to com-
plement the approach in order to cope with more general
non-linear systems, possibly through approximation.

2. Preliminaries
Definition 1 A continuous-time, autonomous hybrid sys-
tem (HS)is a system of the form

ẋ(t) = f(x(t), m(t))

m(t+) = φ(x(t), m(t)) (1)
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wherex(t) ∈ R
n is the continuous state vector2 of the

HS at time instantt and m(t) ∈ M := {1, .., M} is
its discrete state. m(t+) denotes the updated discrete state
right after time instantt. H = R

n × M is called hy-
brid state space. The functionf : H → R

n describes
the behavior of the continuous state andφ : H → M de-
scribes the behavior of the discrete state of the HS.f is as-
sumed being continuously differentiable.Sm1,m2

= {x :
φ(x, m1) = m2}, m1 6= m2, denotes theswitch setfrom
discrete statem1 to discrete statem2. A solution x(t) of
the HS (1) for a particular tuple(x(0), m(0)) of starting
points is called atrajectory. A HS is calledpiecewise affine
if for eachm ∈ M, f(x, m) is affine inx, i.e. there ex-
ist a matrixAm ∈ R

n×n and a vectorbm ∈ R
n, such that

f(x, m) = Amx + bm for all x. �

The most widespread notion for stability of autonomous
systems is Lyapunov stability [8].

Definition 2 ([7]) A system3 is globally asymptotically
stablein 0 (0 being then-dimensional zero vector), iff

(A1) for all ε > 0 there exists aδ > 0, such that for
all initial continuous statesx(0) with ‖x(0)‖ < δ,
‖x(t)‖ < ε holds for allt ≥ 0.

(A2) for all initial continuous statesx(0):
x(t) → 0, t → ∞

If only (A1) holds then the HS isglobally stablein 0. A
globally asymptotically stable system is calledglobally ex-
ponentially stableif for all ε > 0 there existδ, k1, k2 ∈ R,
all greater than0, such that‖x(0)‖ < δ implies‖x(t)‖ ≤
k1e

k2t‖x0‖ for all x(0) andt ≥ 0. �

For non-hybrid systems (equivalent to HS with a single
discrete state), a means to prove global asymptotic stabil-
ity is via a Lyapunov function. The Lyapunov function con-
verges towards0 for t → ∞.

Theorem 1 (Lyapunov [8])
Let ẋ = f(x) be a continuous-time (non-hybrid) system
with f(0) = 0. If there exists a continuously differentiable
functionV : R

n → R, such that

(L1) V (x) is positive definite, i.e.V (0) = 0 andV (x) > 0
for all x 6= 0

2 If the value oft is not important, we will simplifyx(t) to x andm(t)
to m.

3 The system may also be hybrid.



(L2) V̇ (x) is negative definite, i.e.̇V (0) = 0 andV̇ (x) <
0 for all x 6= 0

(L3) V (x) → ∞ for ‖x‖ → ∞

then the system is globally asymptotically stable in0. V is
then called aLyapunov functionof the system. �

This theorem can be generalized for hybrid systems by
partitioning the state space into so-calledregions. For each
region, it is required to find a “pseudo-Lyapunov func-
tion,” that fulfills conditions(L1) and (L2) for that par-
ticular region. If we assure that the “composite pseudo-
Lyapunov function” consisting of the composition of the
region-specific “pseudo-Lyapunov functions” does not in-
crease when crossing region boundaries, this implies global
exponential stability. This is formalized in the following
theorem.

Theorem 2 (Pettersson/Lennartson [10])
Let R = {R1, ..., RN} be a partitioning ofH. For each
pair of regionsRi andRj , define thetransition setTi,j :=
{(x, m) | ∃t > 0 : (x(t − ε), m(t − ε)) ∈ Ri and(x(t +
ε), m(t + ε)) ∈ Rj , whenε → 0, ε > 0}. Let IΛ ⊆
{1, ..., N} × {1, ..., N}, with (i, j) ∈ IΛ iff Ti,j 6= {}. As-
sume that for eachRi we have a continuously differentiable
functionVi : R

n → R. If there existα, β, γ ∈ R, all posi-
tive, such that:

(H1) for eachRi: αxT x ≤ Vi(x) ≤ βxT x
for all x with ∃m : (x, m) ∈ Ri

(H2) for eachRi:
∂Vi(x)

∂x
f(x, m) ≤ −γxT x

for all (x, m) ∈ Ri

(H3) for each pair of regionsRi andRj with (i, j) ∈ IΛ:
Vj(x) ≤ Vi(x) for all x ∈ Ti,j

then the HS is globally exponentially stable in0. �

3. LMI-Based Verification
For piecewise affine (PWA) systems, it is advisable to re-

strict the search for such a set of “pseudo-Lyapunov func-
tions”Vi to a parameterized subset. In particular, we choose
quadratic expressions: polynomials of degree2. This re-
striction allows us to employ convex optimization methods
[3], while still retaining an adequate degree of flexibility.

Definition 3 A quadratic expressionis a function of the
form g(x) = xT Px + 2pT x + π, P ∈ R

n×n, p ∈ R
n, π ∈

R. Then,g(x) = x̃T P̃ x̃ holds, with

x̃ :=

[

x
1

,

]

P̃ :=

[

P p
pT π

]

�

This allows us to reduce Theorem 2 to a linear matrix in-
equality problem for any given partitioning. Since linear
matrix inequalities (LMIs) are special cases of convex opti-
mization problems, they can be solved efficiently [2, 3].

Theorem 3 (Pettersson [9])

(P1) For eachRi, 1 ≤ k ≤ κi, κi > 0, find sets of
Q̃k

i ∈ R
n×n with x̃T Q̃k

i x̃ ≥ 0
for all x with ∃m : (x, m) ∈ Ri.

(P2) For eachRi and eachm with ∃x : (x, m) ∈ Ri,
1 ≤ k ≤ κi,m, κi,m > 0, find sets of
Q̃k

i,m ∈ R
n×n with x̃T Q̃k

i,mx̃ ≥ 0
for all x with (x, m) ∈ Ri.

(P3) For each pair of regionsRi andRj

with (i, j) ∈ IΛ, 1 ≤ k ≤ κi,j , κi,j ≥ 0, find sets of
Q̃k

i,j ∈ R
n×n with x̃T Q̃k

i,j x̃ ≥ 0
for all x ∈ Ti,j .

Let I be then × n identity matrix and define

Ĩ :=

[

I 0
0T 1

]

, Ãm :=

[

Am bm

0T 0

]

then

ẋ(t) = Amx(t) + bm

m(t+) = φ(x(t), m(t))

is globally exponentially stable in0 if there exist real num-
bersα > 0, µk

i ≥ 0, νk
i ≥ 0, ϑk

i,m ≥ 0 andηk
i,j ≥ 0, such

that the following LMI problem has a solution:

Minimize β subject to

αĨ +

κi
∑

k=1

µk
i Q̃k

i ≤ P̃i ≤ βĨ −

κi
∑

k=1

νk
i Q̃k

i ,

1 ≤ i ≤ N (2)

ÃT
mP̃i + P̃iÃm +

κi,m
∑

k=1

ϑk
i,mQ̃k

i,m ≤ Ĩ ,

1 ≤ i ≤ N, ∃x ∈ R
n : (x, m) ∈ Ri (3)

P̃j +

κi,j
∑

k=1

ηk
i,jQ̃

k
i,j ≤ P̃i,

(i, j) ∈ IΛ (4)

�

For eachk, the sets{x|xT Q̃k
i x ≥ 0} over-approximate

{x|∃m : (x, m) ∈ Ri}, the sets{x|xT Q̃k
i,mx ≥ 0} over-

approximate{x|(x, m) ∈ Ri} and the sets{x|xT Q̃k
i,jx ≥

0} over-approximateTi,j . The LMIs result from a relax-
ation calledS-procedure [11] that allows local definiteness-
constraints, so that the equivalents of(H1)-(H3) need only
be fulfilled locally. Therefore, each̃Q matrix corresponds
to a quadratic expression.

Informally, Theorem 3 implies that one has to define a
suitable partitioning, calculateIΛ and find appropriatẽQ
matrices. Then it is possible to solve the LMIs through con-
vex optimization in order to obtain a “family” of̃Pi matri-
ces. These matrices represent the quadratic expressions that
form the “pseudo-Lyapunov functions”Vi required by The-
orem 2. The entire procedure will be explained next.



4. Automatization of the Verification Task
There are four steps which have to be performed for an

automatization of the verification task. The first step, de-
scribed in Section 4.1, is partitioning the state space intoa
number of regions for which “pseudo-Lyapunov functions”
must be found. The second step deals with finding the tran-
sitions between the regions. This is shown in Section 4.2.
Step three describes the conversion of the regions found so
far as well as the transitions into an LMI problem. This is
presented in Section 4.3. Finally, step four (given in Sec-
tion 4.4) is concerned with the solution of the LMI prob-
lem.

4.1. Partitioning of the Hybrid State Space

In our current research, we restrict ourselves to switch
sets that are defined by hyperplanes since for those switch
sets the transitions between regions can be calculated more
efficiently. In our approach, the partitioning of the hybrid
state space results in regions that only span a single discrete
state, i.e. for each discrete state the continuous subspaceof
the hybrid state space will be partitioned separately. How-
ever, in this paper, we assume that this partitioning will be
the same for all discrete states.

We follow two different approaches in order to partition
the hybrid state space. The first approach uses a grid for par-
titioning. This leads to cubic regions and infinite cuboid-
like regions. See Figure 1(a) for an example. The second
approach uses the hyperplanes of the switch sets to cre-
ate a partitioning. Figure 1(b) shows a partitioning into re-
gions A to G using three hyperplanes. In both approaches,
the boundary between two neighboring regions can be de-
scribed by an intersection of a hyperplane

S = {x | cT x + d = 0}, c ∈ R
n, d ∈ R (5)

and one of the two regions. The regions created by one of
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x2

(a) Partitioning using a
grid.
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(b) Partitioning accord-
ing to the switch sets.

Figure 1. Two different approaches of parti-
tioning the state space.

the two approaches may be partitioned further into smaller
subregions. This may become necessary if global exponen-
tial stability cannot be shown using a certain partitioning
although one assumes that the respective hybrid system is
indeed globally exponentially stable. On the other hand, it
may be possible to merge regions in order to increase effi-
ciency of the verification task, e.g. one could use a single
region for a certain discrete state spanning the whole con-
tinuous state space.

4.2. Identifying the Region Transitions

Let us once again refer to Theorem 2. Generally, cal-
culating IΛ may not be easy. Note that using a superset
of IΛ in place ofIΛ in formula (4) will also result in a
proof of global exponential stability if a solution is found.
Therefore, it is safe to over-approximateIΛ by starting with
{1, ...N} × {1, ...N} and successively removing all region
transitions that are known to be impossible. The closer this
over-approximation is toIΛ, the higher the chance of find-
ing a solution of the LMI.

Luckily, for affine functionsf(x, m), it is easy to deter-
mine whether transitions between two regionsRi andRj

are possible in either direction or only in a single one. The
procedure we are using is as follows: for each discrete state
m with affine vector fieldf(x, m) = Amx + bm identify
the hyperplaneS defined by formula (5) which separatesRi

andRj , and identify the hyperplaneT = {x | (cT Am)x +
cT bm}. T defines the points at whicḣx is a vector parallel
to S. The intersection ofS andT gives the set of points at
which the direction of the trajectories crossingS changes.
Refer to Figure 2 for an example inR2 in which S ∩ T
contains only a single elementx̄. Let Bi,j be the bound-
ary betweenRi andRj . If the intersection ofT andBi,j

is empty then the boundary can only be crossed in at most
one direction. WhetherT ∩Bi,j is empty or not, can be de-
cided by solving a linear program. The particular manner in

x̄

Rj

Ri Bi,j

Figure 2. Trajectories cross Bi,j in either di-
rection.

which the transitions between regions having different dis-
crete states are calculated, depends on the approach used to
partition the continuous state space. If the “hyperplane ap-
proach” is used, it only needs to be checked whether the
discrete state changes on a boundary between two regions.
If the “grid approach” is pursued, it must be checked for
each region whether there are switching hyperplanes inter-
secting with it. This, again, can be tested using linear pro-
grams.



4.3. Formulating Regions and Transitions as LMI

In this section, it is described how thẽQ matrices of The-
orem 3 can be identified. For simplicity, we assume that the
partitioning presented in Section 4.1 is the same for every
discrete state. Thus, we omit the indexm in theQ̃k

i,m.
Either of our approaches to partition the hybrid state

space uses regionsRi that can be represented as an inter-
section of half-planes{x | cT x + d ≥ 0}. In [9] it is pro-
posed to create quadratic expressions for every half-plane
and for each combination of two of them. This results in
κi = ((σi + 1)σi)/2 expressions whereσi is the number of
half-planes for regionRi. The matrices̃Qk

i , k ∈ {1, . . . , κi}
are then calculated in an analogous manner to the calcula-
tion of matrixP̃ in Definition 3. Cubic regions can be han-
dled in a simpler way: one determines the smallest ellipsoid
containing the cubic region which can be described by a
simple quadratic expression. This results in fewer quadratic
expressions while reducing flexibility.

For the boundariesBi,j , as needed in formula (4), an-
other approach to create quadratic expressions is used. As-
sume thatS as in formula (5) is the hyperplane belonging
to the boundaryBi,j . Pettersson [9] suggests a number of
κi,j = n + 1 quadratic expressions to represent a hyper-
plane. As a region boundary often is a bounded subset of
such a hyperplane, one can think of weakening the partic-
ular constraint by adding one or more other quadratic ex-
pressions weighted by new variablesηk

i,j . For example, for
the boundary between two neighboring cubic regions, one
may extend the set of quadratic expressions by the single
quadratic expression describing the smallest ellipsoid en-
closing one of the regions.

4.4. Solving the LMI Problem

After creating the quadratic expressions for regions and
boundaries, the resulting LMI is presented to a solver. So
far, we have used the two semidefinite programming (SDP)
solvers, namely SDPA [5] and CSDP [1]. According to The-
orem 3, our PWA system is globally exponentially stable if
the LMI has a solution. Otherwise, we cannot draw a sim-
ple conclusion. If no solution is found by the solver then
there are three possibilities: (1) the PWA system is unsta-
ble, (2) the PWA system is stable but the partitioning is not
appropriate or not enough transitions have been excluded,
and (3) the solver did not find a solution of the LMI al-
though there exists one.

5. Conclusion and Ongoing Work
We have shown how heuristic methods and convex op-

timization can be combined in order to show global expo-
nential stability of piecewise affine hybrid systems. With
suitable heuristics this approach leads to a fully automatic
polynomial-time algorithm. The approach has plenty of
potential for further improvements and generalizations. In
principle, it can deal with arbitrarily shaped switch sets or
even nondeterministic switching. Furthermore, it is possible
to show stability of a large class of non-linear systems by

“embracing” them with two equally partitioned PWA sys-
tems: the two PWA systems must behave in such a way that
the behavior of the system under investigation will always
stay between these two PWA systems. Then, if identical
“pseudo-Lyapunov” functions for both PWA systems can be
identified, the “embraced” system is guaranteed to exhibit
the same stability properties. Discrete-time systems can also
be treated this way, with a slight modification of the LMIs
and the algorithm for calculating the region transitions. A
third direction for future work is local stability, i.e. a stabil-
ity property that holds only if the initial state lies withina
certain set of states. Then, if it is known that the comple-
ment of the desired “stable region” cannot be reached by
the HS, it is possible to restrict the partitioning accordingly.
Consequently, LMIs are more likely to have solutions.

Before such extensions can be made, a deep understand-
ing of the partitioning process is required. As of now, we
are analyzing different partitioning approaches and the ef-
fects of different choices of quadratic expressions for over-
approximating the regions.

A back-end that translates the partitioning and system in-
formation into a standard format for convex programming
has already been implemented. We are confident being able
to report on full automatization of PWA system stability not
too far in the future.
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