
Regression Testing of Multi-Tasking Real-Time Systems: A Problem Statement

Daniel Sundmark, Anders Pettersson and Henrik Thane
MRTC, Mälardalen University

Box 883, SE-721 23 Västerås, Sweden
{daniel.sundmark, anders.pettersson, henrik.thane}@mdh.se

Abstract

Regression testing is one of the most intricate parts of
software development and maintenance. In complex multi-
tasking real-time systems, task interleaving issues, dead-
lines and other factors further complicate this activity. In all
software, however, the process of regression testing comes
down to two basic activities: (1) selecting which test cases
to re-execute and (2) actually performing the re-tests.

The twofold contribution of this paper is the definition of
the following problems: The regression test selection prob-
lem and the reproducibility problem for multi-tasking real-
time system regression testing.

1. Background

In a perfect world, software defects are nonexistent and
programmers in bliss and harmony build flawless systems.
Unfortunately, in our somewhat less than perfect world,
bugs constitute a part of the harsh reality we have to deal
with. The discipline-inherent difficulty of producing error-
free software has consolidated testing and debugging as ma-
jor ingredients in the software engineering process.

1.1. Test Cases and Test Sets

Ideally, testing should be performed in an exhaustive
manner, leaving no doubt that the produced and tested soft-
ware is free of bugs. Sadly, very few programs exhibit such
a low level of complexity that allows exhaustive testing to
be performed. Since exhaustive testing in general is imprac-
ticable, test set creation must deal with the issue of restrict-
ing the number of test cases. The two most common prag-
matic approaches for creating non-exhaustive test sets are
(1) to derive these from the expected functional behavior
(denoted functional test case selection, and used for black-
box testing), and (2) by analyzing the internal structure of
the software (denoted structural test case selection, and used
for white-box testing).

It could be stated that a test case is best defined by its in-
put and its expected output. However, to be of more prac-
tical use, a test case should comprise of <Id, Input, Out-
put, Configuration>, where Id is a unique identifier used
for traceability of a test case. Input is the set of values that
must be passed as input parameters in order to traverse the
desired execution path and/or test the desired functionality.
Output is the set of expected delivered values, and Config-
uration is the description of how to set up the test environ-
ment, how to exercise the test case, etc.

1.2. Regression Testing

Testing is performed at different levels during the soft-
ware development process. Throughout the entire develop-
ment cycle and at every level, testing will reveal bugs. Most
often, these bugs will be corrected via changes in the source
code, leading to a necessity to re-test the software. Hence, a
need for regression testing has evolved. IEEE software glos-
sary defines regression testing as: “Selective retesting of a
system or component to verify that modifications have not
caused unintended effects and that the system or component
still complies with its specified requirements” [7]. Based on
the type of modifications, regression testing can be divided
into two categories [4]: Corrective regression testing is trig-
gered by changes of the source code, whereas progressive
regression testing is triggered by specification changes.

Regression testing has been thoroughly exploited for
single-tasking software (i.e. software executed in a sequen-
tial manner). The main research focus in this area has been
on the regression test selection problem. This is because of
the fact that a careful test selection can significantly reduce
testing efforts. The basic idea is to select test cases such that
only modified parts are re-tested (since the verifications of
non-modified parts still are valid). This is a non-trivial prob-
lem because of the difficulty of determining how changes
propagate and affect non-changed parts of the code.

As a piece of software evolves during its life cycle, the
set of test cases used to verify the correct functionality of the
software cannot remain static. Software test sets need to be



Tk

tk

Ck+1

tk+1

Tk

CHANGES

E
k

E
k+1

Tk

tk

Ck+1

tk+1

Tk

CHANGES

E
k

E
k+1

Figure 1. Test case sets Ek and Ek+1.

maintained and kept updated as the software evolves. Each
change to the software will require a corresponding change
in the test set. An initial set of test cases T0 should evolve to
a modified test set T1 following software changes. Hence,
after n changes, the software is verified by exercising the
test cases in Tn. In Figure 1, the process of test set evolu-
tion is shown. We assume that Ek is a set of test cases, in-
cluding all possible test cases of our system (i.e. an exhaus-
tive test set). The smaller set Tk ⊂ Ek contains all test cases
that are selected for software verification by the functional-
or structural test selection method of our choice. Further-
more, tk ∈ Tk is a specific test case, which results in an
error. In order to correct this error, the source code of the
software is changed. This change yields a new system, and
hence a new test set Ek+1 (the exhaustive set of all possi-
ble test cases of the new system). Since the selected test set
Tk was created based on the system before the changes, it
might not be a clean subset of Ek+1. Finally, the set Ck+1

defines all test cases that are affected by program changes.
From the above sets, we can derive four subsets of par-

ticular importance for test set maintenance (see Figure 2):

I Tk \ (Ek+1 ∩ Tk) contains test cases that no longer are
part of the behavior of the software. Note the possibil-
ity of tk+1 /∈ Ek+1. By changing the system, we may
have prohibited execution of tk.

II (Ek+1∩Tk)\Ck+1 is is the set of unaffected, still valid
test cases. These require no re-testing at this stage.

III Ck+1\(Tk∩Ck+1) holds untested test cases that should
be tested due to the software changes.

IV Tk ∩ Ck+1 contains still valid test cases, possibly af-
fected by software changes. These need to be re-tested.

In short, set I needs to be identified, such that no effort
is spent trying to exercise test cases that cannot be exer-

CHANGES

1

2

3 4

Figure 2. Derived test case subsets.

cised. Similarly, a tight identification of set II saves us the
effort of testing test cases that need not be tested. Identifica-
tion of set III is also required in order to keep the test set up
to date with the changed system. For this paper, however, set
IV is of highest importance. This set contains all test cases
that are possibly affected by software changes. The valid-
ity of these test cases must be re-verified by means of re-
gression testing. In the next iteration of software and test
set evolution, (Ek+1 ∩ Tk) ∪ Ck+1 will serve as Tk+1.

2. Regression Testing of Real-Time Systems

While the regression test selection problem for sequen-
tial software has been thoroughly examined, regression test-
ing for multi-tasking real-time systems has often been per-
formed in an ad-hoc manner. Not surprisingly, regression
testing for real-time systems implies differences in the test
process compared to regression testing of single-tasking
software.

2.1. Multi-Tasking Test Cases

The main concern for multi-tasking software is system-
level testing (i.e., testing at the level of concurrent task
execution). Concurrent execution may cause race condi-
tions and interleaving of task statements. This calls for ad-
ditional efforts in order to ensure the uniqueness of each
test case, with respect to execution behavior. This require-
ment is posted by the fact that two or more test cases with
identical input may traverse different task interleaving se-
quences. Basically, each test case that is exercised traverses
a task interleaving sequence (i.e., an ordered sequence of
task switches, interrupts and synchronization operations).
Hence, we define a test case for testing of multi-tasking



Test suite

Recorded behavior
Initial test

Modifications Static analysis

Done

Test verdict

Replay based 
regression test

Debug

OK

failure

1

2

3
4

Figure 3. The replay based regression testing
process and its phases.

software at system level as <Id, Input, Output, Configura-
tion, Interleaving Sequence>. In our previous research, we
have used System-Level Control Flow (SLCF) graphs for
describing these sequences [9]. Other methods that uniquely
define task interleaving sequences [1, 2] can be used for this
purpose. However, most other methods settle for the syn-
chronization sequence (useful for detecting “ordering” and
“synchronization” failures), whereas the SLCF graphs also
capture timing aspects required for detecting “preemption”
and “timing” failures. In regression testing of real-time sys-
tems, such failure sources should not be ignored.

2.2. The Test Process

Depicted in Figure 3 is our proposal for a replay based
regression testing process. Our work is concentrated to the
static analysis for validity of test cases (regression test se-
lection problem (3)) and the replay based re-test (repro-
ducibility problem (4)). Starting in phase (1) an inital set,
A, of test cases is created based on the chosen test tech-
nique for integration and system testing. In addition to A
there must also exists a set of interleaving sequences, I. I
can either be empty (I= ∅) or containing possible interleav-
ing sequences that is analytical derived. After creating A and
I the initial test case set T0 is composed by mapping each
sequence in I onto the derived test cases in A. During ini-
tial test runs the behavior of executions (i.e., intereleaving
sequences) is recorded. If failures are revealed, the test ver-
dict is false and a debugging phase (2) is started. Via de-
bugging the cause of the failure is pin-pointed. When the
exact cause is established the fault(s) are removed by mod-
ifying the source code. Before the software is retested it is

analyzed in order to establish the validity of the test cases
(3). This is done in two steps, first the chosen test tech-
nique is responsible for creating the set of canditates for
the re-test (to form Ck+1). Then, the temporal behavior of
the modified program must be analyzed in order to estab-
lish the validity of the previously recorded interleaving se-
quence. Those test cases in Ck+1 with valid recorded inter-
leaving sequences are re-tested using the deterministic re-
play technique [10]. And for test cases where replay can-
not be used the system is re-tested with techniques used to-
day.

2.3. The Regression Test Selection Problem

For efficient regression testing, the goal is to chose test
cases from Tn−1 in order to establish the correctnes of the
modification. However, there is a trade-off between running
a large number of test cases (to be confident that the sys-
tem is correct), and running a small number of test cases
(to spend as little resources on re-testing as possible). This
problem of finding the minimal sufficient set of test cases is
denoted the regression test selection problem.

A major issue in the regression test selection problem for
multi-tasking software is the act of finding infeasible task
interleaving sequences (i.e. execution orderings that practi-
cally cannot re-occur). The order and timing of task inter-
leavings are highly affected by code changes. Code changes
may also affect the temporal behavior, leading to that some
interleaving sequences become infeasible. Basically, when
the number of statements to execute is changed, the location
(in execution time) of task interleavings is also changed.

2.4. The Reproducibility Problem

An important test case attribute when performing regres-
sion testing is the test repeatability attribute. This attribute
is defined as: for a test case, the same output (and the same
task interleaving sequence) is produced each time the test
case is run [7]. Test repeatability must be achieved in or-
der to establish that encountered faults have been corrected
and no further faults have been introduced. If the interleav-
ing sequence of a test case definition and the interleaving
sequence of its re-execution do not prove identical, the test
case is not properly re-tested. Hence, a regression testing
method for multi-tasking systems must ensure the proper
reproduction of test cases. This is the reproducibility prob-
lem of multi-tasking real-time system regression testing.

3. Related Work

Previous research work in the regression testing domain
has identified five main problem areas. These problem ar-
eas are: (1) The problem of analyzing the source code for



changes and their impact on the behavior of the software,
(2) version management, (3) creation of test cases, (4) the
problem of selecting test cases for regression testing and
(5) the nondeterministic run-time behavior during exercise
of test cases. (For completeness it should also be described
how to deal with maintenance of test cases but this is con-
sidered to be included in area (2), (3) and (4).)

As for (1), it is important not only to be able to detect tex-
tual changes, but also semantic changes. Detection of se-
mantic changes can be detected e.g. by using a Program
Representation Graph, as shown by Horwitz et al. [5].

To our knowledge, there has been no work done on in-
vestigating the impact of changes on the temporal execution
behavior in the sense of control-flow and data-flow at sys-
tem level (i.e., flows that are dictated by system calls, task
interleaving events, and by the task scheduling mechanism).
As for (2), both industry and academia has learned to rely
on tools that can manage different versions of source code.

In (3), an initial set of test cases must be created. Ini-
tially the test cases are selected based on coverage criteria.
Furthermore, in (4), the regression testing subset must be
chosen with the trade-off between the ability to reveal fail-
ures, and the cost of selecting and exercising the test cases
in mind.

In (5), non-deterministic behavior during test runs makes
it difficult or even impossible to determine if faults have
been corrected. Multi-tasking software testing has focused
on testing the order of synchronization events [2] or concur-
rent events in Java [3], but to the authors knowledge, there
are very few research results on testing at the granularity of
program statement interleaving [9].

4. Conclusion

In this paper, we have emphasized that regression test-
ing of multi-tasking real-time systems includes two main
problem domains: the test selection problem and the repro-
ducibility problem. The test selection problem deals, in ad-
dition to selecting the appropriate set of inputs and outputs
for re-testing of changed systems, also with the problem
of selecting the appropriate set of interleaving sequences.
As for the reproducibility problem, the issues discussed are
the practical problems of actually repeating test cases that
have been selected for re-testing. These problems include
repeating task interleaving sequences, system-level- as well
as task-level control and data flow.

Even if academic results make regression testing meth-
ods and techniques more efficient and less time-consuming,
there are other benefits. More important for the industry
might be an automation of the test activities such that they
can be performed during non-working hours and more fre-
quently, in order to capture faults more early in the soft-
ware development [8]. Therefore, future proposed solutions

must, in addition to solving the technical issues, also allow
for automation. This combination will result in economi-
cal benefits for the industry, especially for severe faults that
rarely propagate to failures [6].

5. Future Work

We intend to tackle the test selection problem, as well as
the reprocibility problem in a pragmatic way, starting with
small systems and software changes of low complexity.

We assume the need for some type of static analysis
of code, run-time behavior and interleaving sequences for
approaching the test selection problem. As for the repro-
ducibility problem, we will extend the Deterministic Replay
method [10] in order to be able to reproduce changed sys-
tems by means of interleaving sequence recording and exe-
cution replay.

References

[1] S. Blaustein, F. Oliveto, and V. Braberman. Observing timed
systems by means of message sequence chart graphs. Pro-
ceedings of the 24rd International Conference on Software
Engineering, ICSE 2002, pages 707–, 2002.

[2] R. H. Carver and K.-C. Tai. Replay and Testing For Concur-
rent Programs. In IEEE Software, volume 8(2), pages 66–74,
1991.

[3] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, and
S. Ur. Framework for testing multi-threaded java programs.
Concurrency and Computation: Practice and Experience,
15(3-5):485–499, 2003.

[4] I. Granja and M. Jino. Techniques for regression testing:
Selecting test case sets taylored to possibly modified func-
tionalities. In Proceedings of the Third European Confer-
ence., Software Maintenance and Reengineering, pages 2–
11, 1999.

[5] S. Horwitz. Identifying the Semantics and Textual Differ-
ences Between Two versions of a Program. In Proceedings
of ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 234–245, June 1990.

[6] NIST. The Economic Impacts of Inadequate Infrastructure
for Software Testing., May 2002.

[7] I. S. G. of Software :Engineering Terminology. IEEE Stan-
dards Collection, IEEE Std 610.12-1990. September 1990.

[8] A. K. Onoma, W. T. Tsai, M. Poonawala, and H. Suganuma.
Regression testing in an industrial environment. In Proceed-
ings of IEEE Transactions on Software Engineering, volume
22(8), pages 529–551, 1996.

[9] H. Thane and H. Hansson. Towards Systematic Testing of
Distributed Real-Time Systems. In Proceedings of The 20th
IEEE Real-Time Systems Symposium, pages 360–369, 1999.

[10] H. Thane, D. Sundmark, J. Huselius, and A. Pettersson.
Replay Debugging of Real-Time Systems Using Time Ma-
chines. In Proceedings of Parallel and Distributed Systems:
Testing and debugging (PADTAD, pages 288–295. ACM,
April 2001.


