
Fully Associative Cache Partitioning with Don’t Care Bits
for Real-Time Applications

Ali Chousein Rabi N. Mahapatra
Department of Computer Science, Texas A&M University

{chousein,rabi}@cs.tamu.edu

Abstract

The usage of cache memories in time-critical

applications has been limited as caches introduce
unpredictable execution behavior. Cache partitioning
techniques have been developed to reduce the impact
of unpredictability owing to context switch effects.
However, partitioning reduces the cache size available
for each task resulting in capacity related cache
misses. This paper introduces a fully associative cache
architecture for multi-tasking applications where
effective partition sizes are increased by tag
compression in the cache. The proposed scheme uses a
few don’t care cells in its least significant bits of the
tag to aggregate multiple tag entries into a single
entry. The experimental results indicate that the
proposed scheme is context switch resilient when eight
different real-time benchmarks use the cache
concurrently. Further, this cache architecture requires
less time and less energy to perform tag table search
compared to contemporary fully associative caches of
the same size.

1. Introduction

Cache memories are commonly used resources in
multitasking environments. Upon a context switch, a
newly scheduled task changes the cache contents by
replacing existing entries used by other tasks. With the
cache as a common resource, the tasks uncontrollably
affect the execution times of each others due to
unpredictable compulsory cache misses. This in turn
adversely affects the tight bound estimation of the
worst case execution times of critical applications.
Partitioning the cache and allocating each partition
exclusively to different tasks is a well known method of
achieving a predictable environment. However this
leads to cache misses due to the reduced cache size
available in the partition for each task. In fully
associative cache organization, although the cache
misses due to the address contention is absent, the

tasks’ execution time becomes unpredictable due to
compulsory and capacity type cache misses. Any
attempt to keep these cache misses predictable deserves
attention.

In the past, both hardware and software based cache
partitioning have been proposed by many researchers
[1-4]. The hardware partitioning method has been
discussed in [1] where Kirk proposed the partitioning
of direct mapped and set associative caches. Software
based cache partitioning, introduced by Wolfe [2], is
based on partitioning the address space of the
processor. Mueller [3] discussed the compiler and
linker support needed for automating software based
cache partitioning. Liedtke et al. [4] introduce the
method of free coloring of memory pages for
improving software based cache partitioning in terms
of memory space, required by each partition.

In this paper, we have introduced a hardware based
cache partitioning mechanism for fully associative
cache architecture. It features with a small tag table
size to keep the search time low and a larger data table
to hold enough items in the partitions. Using few don’t
care cells in its tag we adopt compaction of tag entries
of fully associative cache memory. The don’t care cells
are implemented using ternary content addressable
memory (TCAM) cells. Using a trace driven
multitasking simulator and eight real-time benchmarks,
our experiments show the miss ratio remains consistent
and predictable in spite of varying task context switch
period. The proposed architecture consumes less
energy and requires less search time compared to
contemporary fully associative cache architecture.

The organization of this paper is as follows. Section
2 gives a general overview of our research. Section 3
presents the fully associative cache architecture that is
considered for partitioning. The experimental results
that empirically justify the effectiveness of the
proposed architecture are given in Section 4. Finally

Section 5 concludes this work. The terms task and
process are used interchangeably throughout the text.

2. Research Overview

The proposed fully associative cache architecture
employs TCAM cells in the last significant L bits of the
tag entries to compact tag table. Each TCAM cell can
store don’t care state (x) in addition to the regular 0
and 1 binary states. This don’t care state is used as a
wild bit to aggregate multiple entries in the tag table to
single entry to achieve tag table compaction. This
scheme is different from traditional tag compression
schemes [11]. As an example, the compaction can be
effective up to eight times in reducing the tag table size
with three don’t care bits in the tag when program
locality behaves favorably. Due to tag table
compaction, it is possible to build large sized caches
with fewer number of tag entries. This in turn provides
larger working cache area for each task when
partitioning takes place and improves the miss ratio
performance.

The overhead to maintain the above compaction

comes with a price of additional hardware but no
additional time overhead. The aggregation process that
is responsible for tag compaction is neither on the
critical path of cache access nor needs extensive
hardware. The details of the aggregation module are
not discussed in this paper. The decoding of the
compacted tag entry is done concurrently with the tag
table search and does not affect the critical path of the
cache access. The decoder is implemented using off-
the-shelf de-multiplexers.

3. Fully Associative Cache for Partitioning

Fully associative cache supports the flexibility to
place the contents of a memory location in any cache
line. This means there is less contention for the same
cache lines. In the sub-sections that follow we
introduce the architectural design of the fully
associative cache suitable for partitioning and discuss
the cost of its implementation.

3.1 Architectural Design

Figure 1 shows the fully associative cache
architecture with tag and data table entries. Each tag
entry has additional bits to store the process ID number
(PID) of a task Ti (PIDTi). A tag entry �� is declared as
private by setting bit P (not shown in this figure) in that
entry.

Figure 1. Fully associative cache architecture

In Figure 1, each tag table entry has been built using
content addressable memory (CAM) cells in
conjunction with a few bits of ternary content
addressable memory (TCAM) cells. Traditionally the
tag table entries in a fully associative cache are built
with CAM cells only [7]. In [8] it has been shown that
integration of CAM and TCAM cells in TLB design
enhances the TLB reach and reduces miss ratio. In this
design the tag table is relatively small in size and the
data table with SRAM is large. We adopt this technique
for designing fully associative cache architecture with a
compact tag table. In Figure 1 the least significant L
bits of each tag table entry �� are TCAM cells. The rest
of the tag bits and the augmenting bits are CAM cells.
There are 2L many data lines associated with each tag
table entry �x. By setting one or more TCAM cells of a
tag table entry �x to don’t care state, multiple SRAM
entries (the number is always a power of 2) are
associated with �x. The SRAM entries associated with
�x are stored from left to right in the data tables. Let us
say the entries �1 and �2 are used by task T1 and the
entry �m is used by task T� as shown in Figure 1. If the
private bits of �1, �2 and �m are set, then task T1 owns a
partition of 2�2L bytes, and task T� owns a partition of
2L bytes. Note that each task can use the maximum of
the partition space allocated to it, if the program
locality behaves favorably.

Like XScale processors [6], we use seven bits for
the PID one bit for storing bit P. This requires one byte
overhead for each tag table entry.

3.2 Aggregation of Tag Entries

Multiple SRAM entries are aggregated together
such that they are associated with a single tag entry to
create a consolidated partition segment in the cache. If
a tag table entry has D TCAM cells set to don’t care

state, then 2D many SRAM entries are aggregated
together. In the following we present the definitions
and the steps involved in the aggregation.

Definition 1 – Basic Aggregation: Two tag table
entries �� and �� aggregate if the following three
conditions are satisfied:

1. The entries �� and �� have at least one TCAM cell
with a value other that don’t care,

2. The entries �� and �� have the same number of
TCAM cells set to don’t care,

3. The entries �� and �� differ by the least significant
TCAM bit only that is not set to don’t care.

If a new cache line �� is nadmitted to cache none of

the TCAM cells in �� is set to don’t care.

Definition 2 – Escalated Aggregation: Escalated
aggregation is performed between two tag table entries
�� and �� that already exist in the cache. Aggregation is
performed if the three conditions given in Definition 1
are satisfied.

When a newly allocated line �� aggregates with an
existing line ��, the type of this aggregation is basic.
This basic aggregation sets the least significant TCAM
cell of �� to don’t care to obtain ��’. If ��’ aggregates
further with another entry in the cache, this second
aggregation is known as escalated aggregation. It is
possible to have a chain of escalated aggregations
before a tag entry is maximally compacted.

Aggregation Steps: When two tag table entries �� and
�� aggregate, the following actions are taken.

1. If the least significant TCAM cell of �� that is not
set to don’t care is equal to zero, then �l=�� and
�h=��; else, �l=�� and �h=��,

2. The least significant TCAM cell of �l that is not
set to don’t care, is set to don’t care,

3. The SRAM entries associated with �h and that
contain valid information are copied to the
SRAM entries associated with �l, starting from
the first entry from the left that does not store
valid information,

4. If �h is not a newly allocated entry, it is set to
invalid.

Aggregation of the tag entries is done when a new

entry is admitted to the cache and it does not affect the
critical path of cache access.

4. Experimental Results

We designed experiments for studying the impact of
context switch frequency and aggregation on cache
miss performance when considered with and without
cache partitioning. Traces of eight SNU Real-Time
Benchmarks [9] (insertsort, jfdctint, ludcmp, matmul,
minver, qsort, qurt and select) have been used as input
to a trace driven fully associative instruction cache
simulator that simulates the architecture explained in
Section 3. The tag table consists of 64 entries and
cache line size is 32 bytes. The experiments that allow
aggregation use three TCAM cells in the least
significant bits of the tag table entries. These
parameters yield cache sizes of 16KB and 2KB when
there is aggregation and there is not aggregation
respectively. The traces are scheduled using the round-
robin approach with a selectable context switch period
which is measured in terms of instruction cycles. We
measure the average cache miss ratio of eight
benchmarks when the cache is partitioned and without
being partitioned. The average cache miss ratio of both
cases is measured with and without aggregation. When
the cache is partitioned each task (a task corresponds to
a benchmark in our experiments) is allocated an equal
portion of the cache (the partition size is equal to the
cache size divided by the number of tasks).

Figure 3 shows four graphs that display the effects
of the context switch period on the average cache miss
ratio. The top two and bottom two graphs are for 2KB
(no aggregation) and for 16 KB (with aggregation)
instruction caches respectively. When the cache is not
partitioned a change in context switch frequency affects
the cache miss ratio. In this case the cache miss ratio
decreases with increasing context switch period as
expected since the effect of compulsory misses is less
there. However, when the cache is partitioned, the
cache miss ratio becomes independent of the context
switch frequency indicating the fact that such a scheme
will not adversely affect the predictability of the worst
case execution time. Anomalies occur when the cache
miss ratio depends on context switch frequency. As
seen in the bottom non-partitioned graph of Figure 3,
when the cache is not partitioned and the context
switch period is equal to 700 instruction cycles, the
cache miss ratio is higher than when the context switch
period is 650 instruction cycles. Such anomalies do not
occur when the cache is partitioned, because the cache
miss performance becomes independent of the context
switch frequency.

EFFECT of CONTEXT SWITCH on CACHE MISS RATIO

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 100 200 300 400 500 600 700 800 900 1000

CONTEXT SW ITCH PERIOD

A
V

E
R

A
G

E
 C

A
C

H
E

 M
IS

S
 R

A
TI

O

16KB - No Partition 16KB - Partition 2KB - No Partition 2KB - Partition

Figure 3. Effects of context switch on
cache miss performance

We used the CACTI model [10] for estimating the

time and energy needed for making tag table search for
the proposed and the contemporary fully associative
cache architectures. Table 1 displays the parameters
supplied to CACTI. The tag table size of the proposed
architecture with three TCAM cells is one eighth of the
tag table size of contemporary architectures. To reflect
this difference the size of the proposed cache
architecture given as input to CACTI is one eighth of
the contemporary cache sizes. Table 2 compares the
time needed and the energy consumed for making tag
table search by the proposed and the contemporary
fully associative cache architectures.

Cache Size Line Size Assoc Techn Banks

PROPOSED 0.5KB-8KB 32 FA 0.18 1
CONTEMPORARY 4KB-64KB 32 FA 0.18 1

CACTI PARAMETERS

Table 1. CACTI parameters

CACHE TIME ENERGY TIME ENERGY
4KB 1.29 ns 0.045 nJ 1.42 ns 0.243 nJ
8KB 1.45 ns 0.071 nJ 1.72 ns 0.407 nJ
16KB 1.50 ns 0.169 nJ 2.30 ns 0.735 nJ
32KB 1.50 ns 0.311 nJ 2.37 ns 1.537 nJ
64KB 1.80 ns 0.514 nJ 3.55 ns 2.851 nJ

PROPOSED CONTEMPORARY

Table 2. Time and energy requirements

comparison

5. Conclusion and Future Work

We proposed a fully associative cache architecture
that is easy to partition and has good performance in
terms of access time and energy consumption. Future
research will extend this work to set associative caches.
We will also develop a demand driven adaptive cache

partitioning and incorporate it into the TCAM based
cache architecture research.

10. References

[1] D. B. Kirk, “SMART(Strategic Memory Allocation
for Real-Time) Cache Design”, Proceedings of the
Tenth Real-Time Systems Symposium, 1989, pp. 229-
237.

[2] A. Wolfe, “Software-Based Cache Partitioning for
Real-Time Applications”, Workshop on Responsive
Computer Systems, 1993, pp. 174-180.

[3] F. Mueller, “Compiler Support for Software-Based
Cache Partitioning”, ACM SIGPLAN Workshop on
Languages, Compilers and Tools for Real-Time
Systems, 1995, pp. 125-133.

[4] Jochen Liedtke, Hermann Härtig and Michael
Hohmuth, “OS-Controlled Cache Partitioning for Real-
Time Systems”, Third IEEE Real-time Technology and
Application Symposium, 1997, pp. 213-224.

[5] Swagato Basumallick and Kevin D. Nilsen, “Cache
Issues in Real-Time Systems”, Proceedings of the
ACM SIGPLAN Workshop on Language, Compiler and
Tool Support for Real-Time Systems, 1994.

[6] Intel, “Intel® XScaleTM Core, Developer’s
Manual”, 2000.

[7] T. Kohonen, Content-Addressable Memories,
Second Edition, Springer-Verlag, 1987.

[8] A. Kumar and R. Mahapatra. “Enhancing TLB
Reach with Ternary-CAM Cells”, Technical Report
2004, Texas A&M University

[9] http://archi.snu.ac.kr/realtime/benchmark/

[10]
http://research.compaq.com/wrl/people/jouppi/CACTI.
html

[11] A. R. Alameldeen and D. A. Wood, “Adaptive
Cache Compression for High Performance Processors”,
Proceedings of the 31st Annual International
Symposium on Computer Architecture (ISCA-31), June
2004

