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Abstract 

 
The usage of cache memories in time-critical 

applications has been limited as caches introduce 
unpredictable execution behavior. Cache partitioning 
techniques have been developed to reduce the impact 
of unpredictability owing to context switch effects. 
However, partitioning reduces the cache size available 
for each task resulting in capacity related cache 
misses. This paper introduces a fully associative cache 
architecture for multi-tasking applications where 
effective partition sizes are increased by tag 
compression in the cache. The proposed scheme uses a 
few don’t care cells in its least significant bits of the 
tag to aggregate multiple tag entries into a single 
entry. The experimental results indicate that the 
proposed scheme is context switch resilient when eight 
different real-time benchmarks use the cache 
concurrently. Further, this cache architecture requires 
less time and less energy to perform tag table search 
compared to contemporary fully associative caches of 
the same size. 
 
1. Introduction 
 

Cache memories are commonly used resources in 
multitasking environments. Upon a context switch, a 
newly scheduled task changes the cache contents by 
replacing existing entries used by other tasks. With the 
cache as a common resource, the tasks uncontrollably 
affect the execution times of each others due to 
unpredictable compulsory cache misses. This in turn 
adversely affects the tight bound estimation of the 
worst case execution times of critical applications. 
Partitioning the cache and allocating each partition 
exclusively to different tasks is a well known method of 
achieving a predictable environment. However this 
leads to cache misses due to the reduced cache size 
available in the partition for each task. In fully 
associative cache organization, although the cache 
misses due to the address contention is absent, the 

tasks’ execution time becomes unpredictable due to 
compulsory and capacity type cache misses. Any 
attempt to keep these cache misses predictable deserves 
attention. 
 

In the past, both hardware and software based cache 
partitioning have been proposed by many researchers 
[1-4]. The hardware partitioning method has been 
discussed in [1] where Kirk proposed the partitioning 
of direct mapped and set associative caches. Software 
based cache partitioning, introduced by Wolfe [2], is 
based on partitioning the address space of the 
processor. Mueller [3] discussed the compiler and 
linker support needed for automating software based 
cache partitioning. Liedtke et al. [4] introduce the 
method of free coloring of memory pages for 
improving software based cache partitioning in terms 
of memory space, required by each partition. 
 

In this paper, we have introduced a hardware based 
cache partitioning mechanism for fully associative 
cache architecture. It features with a small tag table 
size to keep the search time low and a larger data table 
to hold enough items in the partitions. Using few don’t 
care cells in its tag we adopt compaction of tag entries 
of fully associative cache memory. The don’t care cells 
are implemented using ternary content addressable 
memory (TCAM) cells. Using a trace driven 
multitasking simulator and eight real-time benchmarks, 
our experiments show the miss ratio remains consistent 
and predictable in spite of varying task context switch 
period. The proposed architecture consumes less 
energy and requires less search time compared to 
contemporary fully associative cache architecture. 
 

The organization of this paper is as follows. Section 
2 gives a general overview of our research. Section 3 
presents the fully associative cache architecture that is 
considered for partitioning. The experimental results 
that empirically justify the effectiveness of the 
proposed architecture are given in Section 4. Finally 



Section 5 concludes this work. The terms task and 
process are used interchangeably throughout the text. 
 
2. Research Overview 
 

The proposed fully associative cache architecture 
employs TCAM cells in the last significant L bits of the 
tag entries to compact tag table. Each TCAM cell can 
store don’t care state (x) in addition to the regular 0 
and 1 binary states. This don’t care state is used as a 
wild bit to aggregate multiple entries in the tag table to 
single entry to achieve tag table compaction. This 
scheme is different from traditional tag compression 
schemes [11]. As an example, the compaction can be 
effective up to eight times in reducing the tag table size 
with three don’t care bits in the tag when program 
locality behaves favorably. Due to tag table 
compaction, it is possible to build large sized caches 
with fewer number of tag entries. This in turn provides 
larger working cache area for each task when 
partitioning takes place and improves the miss ratio 
performance. 

 
The overhead to maintain the above compaction 

comes with a price of additional hardware but no 
additional time overhead. The aggregation process that 
is responsible for tag compaction is neither on the 
critical path of cache access nor needs extensive 
hardware. The details of the aggregation module are 
not discussed in this paper. The decoding of the 
compacted tag entry is done concurrently with the tag 
table search and does not affect the critical path of the 
cache access. The decoder is implemented using off- 
the-shelf de-multiplexers.  
 
3. Fully Associative Cache for Partitioning 
 

Fully associative cache supports the flexibility to 
place the contents of a memory location in any cache 
line. This means there is less contention for the same 
cache lines. In the sub-sections that follow we 
introduce the architectural design of the fully 
associative cache suitable for partitioning and discuss 
the cost of its implementation. 
 
3.1 Architectural Design 
 

Figure 1 shows the fully associative cache 
architecture with tag and data table entries. Each tag 
entry has additional bits to store the process ID number 
(PID) of a task Ti (PIDTi). A tag entry �� is declared as 
private by setting bit P (not shown in this figure) in that 
entry. 

 

 
Figure 1. Fully associative cache architecture 
 

In Figure 1, each tag table entry has been built using 
content addressable memory (CAM) cells in 
conjunction with a few bits of ternary content 
addressable memory (TCAM) cells. Traditionally the 
tag table entries in a fully associative cache are built 
with CAM cells only [7]. In [8] it has been shown that 
integration of CAM and TCAM cells in TLB design 
enhances the TLB reach and reduces miss ratio. In this 
design the tag table is relatively small in size and the 
data table with SRAM is large. We adopt this technique 
for designing fully associative cache architecture with a 
compact tag table. In Figure 1 the least significant L 
bits of each tag table entry �� are TCAM cells. The rest 
of the tag bits and the augmenting bits are CAM cells. 
There are 2L many data lines associated with each tag 
table entry �x. By setting one or more TCAM cells of a 
tag table entry �x to don’t care state, multiple SRAM 
entries (the number is always a power of 2) are 
associated with �x. The SRAM entries associated with 
�x are stored from left to right in the data tables. Let us 
say the entries �1 and �2 are used by task T1 and the 
entry �m is used by task T� as shown in Figure 1. If the 
private bits of �1, �2 and �m are set, then task T1 owns a 
partition of 2�2L bytes, and task T� owns a partition of 
2L bytes. Note that each task can use the maximum of 
the partition space allocated to it, if the program 
locality behaves favorably. 
 

Like XScale processors [6], we use seven bits for 
the PID one bit for storing bit P. This requires one byte 
overhead for each tag table entry. 
 
3.2 Aggregation of Tag Entries 
 

Multiple SRAM entries are aggregated together 
such that they are associated with a single tag entry to 
create a consolidated partition segment in the cache. If 
a tag table entry has D TCAM cells set to don’t care 



state, then 2D many SRAM entries are aggregated 
together. In the following we present the definitions 
and the steps involved in the aggregation. 
 
Definition 1 – Basic Aggregation: Two tag table 
entries �� and �� aggregate if the following three 
conditions are satisfied: 

1. The entries �� and �� have at least one TCAM cell 
with a value other that don’t care, 

2. The entries �� and �� have the same number of 
TCAM cells set to don’t care, 

3. The entries �� and �� differ by the least significant 
TCAM bit only that is not set to don’t care. 

 
If a new cache line �� is nadmitted to cache none of 

the TCAM cells in �� is set to don’t care. 
 

Definition 2 – Escalated Aggregation: Escalated 
aggregation is performed between two tag table entries 
�� and �� that already exist in the cache. Aggregation is 
performed if the three conditions given in Definition 1 
are satisfied. 
 

When a newly allocated line �� aggregates with an 
existing line ��, the type of this aggregation is basic. 
This basic aggregation sets the least significant TCAM 
cell of �� to don’t care to obtain ��’. If ��’ aggregates 
further with another entry in the cache, this second 
aggregation is known as escalated aggregation. It is 
possible to have a chain of escalated aggregations 
before a tag entry is maximally compacted. 
 
Aggregation Steps: When two tag table entries �� and 
�� aggregate, the following actions are taken. 

1. If the least significant TCAM cell of �� that is not 
set to don’t care is equal to zero, then �l=�� and 
�h=��; else, �l=�� and �h=��,  

2. The least significant TCAM cell of �l that is not 
set to don’t care, is set to don’t care,  

3. The SRAM entries associated with �h and that 
contain valid information are copied to the 
SRAM entries associated with �l, starting from 
the first entry from the left that does not store 
valid information,  

4. If �h is not a newly allocated entry, it is set to 
invalid.  

 
Aggregation of the tag entries is done when a new 

entry is admitted to the cache and it does not affect the 
critical path of cache access. 
 
 

4. Experimental Results 
 

We designed experiments for studying the impact of 
context switch frequency and aggregation on cache 
miss performance when considered with and without 
cache partitioning. Traces of eight SNU Real-Time 
Benchmarks [9] (insertsort, jfdctint, ludcmp, matmul, 
minver, qsort, qurt and select) have been used as input 
to a trace driven fully associative instruction cache 
simulator that simulates the architecture explained in 
Section 3. The tag table consists of 64 entries and 
cache line size is 32 bytes. The experiments that allow 
aggregation use three TCAM cells in the least 
significant bits of the tag table entries. These 
parameters yield cache sizes of 16KB and 2KB when 
there is aggregation and there is not aggregation 
respectively. The traces are scheduled using the round-
robin approach with a selectable context switch period 
which is measured in terms of instruction cycles. We 
measure the average cache miss ratio of eight 
benchmarks when the cache is partitioned and without 
being partitioned. The average cache miss ratio of both 
cases is measured with and without aggregation. When 
the cache is partitioned each task (a task corresponds to 
a benchmark in our experiments) is allocated an equal 
portion of the cache (the partition size is equal to the 
cache size divided by the number of tasks).  
 

Figure 3 shows four graphs that display the effects 
of the context switch period on the average cache miss 
ratio. The top two and bottom two graphs are for 2KB 
(no aggregation) and for 16 KB (with aggregation) 
instruction caches respectively. When the cache is not 
partitioned a change in context switch frequency affects 
the cache miss ratio. In this case the cache miss ratio 
decreases with increasing context switch period as 
expected since the effect of compulsory misses is less 
there. However, when the cache is partitioned, the 
cache miss ratio becomes independent of the context 
switch frequency indicating the fact that such a scheme 
will not adversely affect the predictability of the worst 
case execution time. Anomalies occur when the cache 
miss ratio depends on context switch frequency. As 
seen in the bottom non-partitioned graph of Figure 3, 
when the cache is not partitioned and the context 
switch period is equal to 700 instruction cycles, the 
cache miss ratio is higher than when the context switch 
period is 650 instruction cycles. Such anomalies do not 
occur when the cache is partitioned, because the cache 
miss performance becomes independent of the context 
switch frequency.  
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Figure 3. Effects of context switch on  
cache miss performance 

 
We used the CACTI model [10] for estimating the 

time and energy needed for making tag table search for 
the proposed and the contemporary fully associative 
cache architectures. Table 1 displays the parameters 
supplied to CACTI. The tag table size of the proposed 
architecture with three TCAM cells is one eighth of the 
tag table size of contemporary architectures. To reflect 
this difference the size of the proposed cache 
architecture given as input to CACTI is one eighth of 
the contemporary cache sizes. Table 2 compares the 
time needed and the energy consumed for making tag 
table search by the proposed and the contemporary 
fully associative cache architectures.  
 

Cache Size Line Size Assoc Techn Banks

PROPOSED 0.5KB-8KB 32 FA 0.18 1
CONTEMPORARY 4KB-64KB 32 FA 0.18 1

CACTI PARAMETERS

 
Table 1. CACTI parameters 

 

CACHE TIME ENERGY TIME ENERGY
4KB 1.29 ns 0.045 nJ 1.42 ns 0.243 nJ
8KB 1.45 ns 0.071 nJ 1.72 ns 0.407 nJ
16KB 1.50 ns 0.169 nJ 2.30 ns 0.735 nJ
32KB 1.50 ns 0.311 nJ 2.37 ns 1.537 nJ
64KB 1.80 ns 0.514 nJ 3.55 ns 2.851 nJ

PROPOSED CONTEMPORARY

 
Table 2. Time and energy requirements 

comparison 
 
 
5. Conclusion and Future Work 
 

We proposed a fully associative cache architecture 
that is easy to partition and has good performance in 
terms of access time and energy consumption. Future 
research will extend this work to set associative caches. 
We will also develop a demand driven adaptive cache 

partitioning and incorporate it into the TCAM based 
cache architecture research.  
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