
RTES Demo System2004

Shikha Ahuja1, Ted Bapty1, Harry Cheung2, Michael Haney3, Zbigniew Kalbarczyk3, Akhilesh
Khanna3, Jim Kowalkowski2, Derek Messie4, Daniel Mosse5, Sandeep Neema1, Steve

Nordstrom1, Jae Oh4, Paul Sheldon1, Shweta Shetty1, Long Wang3, Di Yao1

Vanderbilt University1, Fermi National Accelerator Laboratory2, University of Illinois at Urbana-
Champaign3, Syracuse University4, University of Pittsburgh5

shikha@isis.vanderbilt.edu, bapty@isis.vanderbilt.edu, cheung@fnal.gov, m-haney@uiuc.edu,
kalbar@crhc.uiuc.edu, akhanna@uiuc.edu, jbk@fnal.gov, dsmessie@syr.edu,

mosse@cs.pitt.edu, sandeep@isis.vanderbilt.edu, steve.nordstrom@vanderbilt.edu,
jcoh@ecs.syr.edu, paul.sheldon@vanderbilt.edu, shweta.shetty@vanderbilt.edu,

longwang@crhc.uiuc.edu, dyao@isis.vanderbilt.edu

Abstract

The RTES Demo System 2004 is a prototype for
reliable, fault-adaptive infrastructure applicable to
commodity-based dedicated application computer
farms, such as the Level 2/3 trigger for the proposed
BTeV high energy physics project. This paper
describes the prototype, and its demonstration at the
11th IEEE Real Time and Embedded Technology
Applications Symposium, RTAS 2005.

1. Introduction

The Real Time Embedded Systems (RTES) project
[1] was established to develop reliable and fault-
adaptive middleware in support of large, dedicated,
heterogeneous computational resources. The
archetypical application for the RTES product was the
proposed BTeV high energy physics experiment [2],
with its embedded hard real-time Level 1 processing
farm (originally to have been approximately 2500
DSPs), and commodity rate-based real time Level 2/3
computer farm (originally to have been a like number
of commercial personal computers).

A prototype system was developed by the RTES
project for the Level 1 farm, and was presented during
the SC2003 Supercomputing Conference [3]. This
paper describes the prototype developed by the RTES
project in support of the Level 2/3 farm.

 This work was supported in part by the National Science

Foundation Information Technology Research Program (number
#ACI-0121658)

2. Environment

A number of hardware and software aspects of the
prototype were not developed by the RTES project,
and are enumerated here to set the RTES development
in context.

The hardware was a heterogeneous Linux processor
farm [4] consisting of:
• 15 (500 MHz P3) dual-CPU worker computers
• 84 (1 GHz P3) dual-CPU worker computers
• three (500 MHz P3, 1 GHz P3, and 2.8 GHz P4)

cluster manager nodes
These were recycled from other computing applications
at Fermilab, for use as a prototype of the BTeV Level
2/3 trigger farm. The age and infirmity of (some of)
these processors provided an effective setting for the
testing of reliable software middleware.

In addition to conventional software found on most
Linux systems, the RTES Demo System employed:
• Elvin [5] publish-subscribe messaging

middleware, which was used as the primary
communications channel between the RTES
components

• Ganglia [6] cluster (computing) toolkit, to display
long time-scale CPU utilization

Also, Matlab [7] was run on Windows laptop(s) to
provide GUI widgets (buttons, text boxes, etc.) to
control and display the System.

3. Demo System 2004

The following subsections describe the components
developed for this project.

3.1. Domain Specific Modeling Languages

Model-based approaches for designing large scale
systems can mitigate complexity associated with
design management and component integration.
Embedded systems should be modeled using domain-
specific modeling languages (DSML) specialized for a
particular domain [8]. For a large scale system,
complexity can be further reduced by using multiple
interdependent DSMLs to describe different aspects of
the system. In Demo System 2004, we developed a
modeling tool suite for specifying the relevant aspects
of the prototype system. This tool is composed of a
set of narrowly focused DSMLs integrated through a
system level language implemented using Generic
Modeling Environment (GME) tool [9]. Models
constructed using DSMLs were then automatically
translated to useful implementation artifacts using
generation tools. This concept is illustrated in Figure
1. The following paragraphs provide an overview of
these modeling languages along with their generated
artifacts.

Figure 1 . Re lationships be twee n the
System Inte gration and GUI
Configuration, Data Type s, Fault
Mitigation, and Run Control Mode ling
Language s

System Integration Modeling Language (SIML) is a
language used for high level specification of the
system. It allows the capture of system components,
component hierarchy, component interactions within
the system, and system configuration information.
SIML also serves as the highest level language through
which models of other languages are accessed using a
Link type. The target modeling language is identified
by the attributes of a Link. The generated artifacts are
used to configure, deploy, and build the system.

Data Types Modeling Language (DTML) is a
language used for specifying simple and composite
data types for modeling message. It hides the
implementation details of the underlying
communication protocol by generating message
marshalling and de-marshalling code that are used by

all of the components of the system for
communication.

Fault Mitigation Modeling Language (FMML) is a
language used for specifying the behavior of fault
management components in the system. Users can
create custom fault-mitigation behaviors to suit their
needs using a generalized notation with additional
domain specific features. Complete generation of
source code including object classes, middleware API,
and communication API calls to implement the
behavior of these fault management components, is
performed from these models.

GUI Configuration Modeling Language (GCML) is
a language used for layout and design of user interfaces
for control, monitoring, diagnosis, and fault injection
of the system. The generated Structural Specification
file is used for implementing the structure of user
interfaces in Matlab. Data flow interaction between
user interfaces and other system components are
specified in generated data-flow code.

Run Control Modeling Language (RCML) is a
language used to describe the behavior of the control of
the physics applications. These behaviors include
loading application-related software, and the starting
and stopping of the applications. The implementations
of these behaviors are generated as script files.

3.2. Adaptive Reconfigurable Mobile
Objects for Reliability

We have deployed adaptive reconfigurable mobile
objects for reliability (ARMOR) middleware to
provide a scalable high-availability test platform for
physics applications running on the processor farm.

ARMOR infrastructure. ARMORs are
multithreaded processes internally structured around
objects, called elements, which provide elementary
functions or services. Every ARMOR process contains
a basic set of elements that provide core functionality,
e.g., reliable point-to-point messaging between
ARMORs and the ability to checkpoint ARMOR
state. ARMOR processes communicate via message
passing: the microkernel present in each distributes
messages between elements within an ARMOR and
between the ARMORs in a system. This modular,
event-driven architecture permits developers to
customize an ARMOR process’s functionality and
fault-tolerance services (detection and recovery)
according to the application’s needs. Several ARMOR
processes constitute the self-checking runtime
environment. Basic ARMOR types include: (i) fault-
tolerance manager (FTM) initializes an ARMOR-
based system configuration, maintains registration
information on all ARMORs and applications, and
initiates recovery from ARMOR and node failures, (ii)
heartbeat ARMOR (HB) detects failures in the FTM by
periodically polling for “liveness,” (iii) daemon

ARMOR, serves (on each node) as a gateway for
ARMOR-to-ARMOR communication, and (iv)
execution ARMOR launches and monitors application
processes on a given node ([10], [11], [12], [13]).

RTES application configuration. Our initial focus
has been to integrate the data dispatch and processing
with the ARMOR infrastructure to provide fault-
tolerant operations. As shown in Figure 2(a), there are
four types of nodes in RTES: the global manager
(where the FTM resides), the heartbeat/source node, the
regional manager, and the worker node. Each regional
manager node hosts an execution ARMOR which
oversees all the worker nodes within a given region.
Several applications reside on each worker node (a
worker node is a dual processor machine) and an
execution ARMOR, local to the worker node,
monitors these applications. Figure 2(b) depicts an
example configuration of the execution ARMOR. In
this configuration the infrastructure elements support
core ARMOR functionality, and the custom elements
implement services specific to the RTES applications
and enable utility functions, e.g., a node status
reporting. In addition, message routing service
(supported by an Elvin router), external to ARMORs,
is established to support communication between the
ARMOR-based infrastructure and the graphical user
interface (GUI). This ARMOR-based system enables
detection and automated recovery of application and
ARMOR crashes, hangs, corrupted data, time
requirement violations, and memory leaks.

Current efforts concentrate on the deployment of
ARMORs in large networks. Multiple manager
ARMORs with elements necessary to establish the
ARMOR management hierarchy (with the FTM on

top) are allocated, each with a distinct subset of
computing nodes in the system to supervise. This
approach will allow us to simplify the system
monitoring and runtime fault management. An

important goal is also to conduct fault/error injection
based assessment of system behavior under realistic
failure scenarios.

3.3. Very Light Weight Agents

Multiple layers of very lightweight agents (VLAs)
are responsible for providing the RTES/BTeV
environment with a lightweight, adaptive layer of fault
mitigation. The agents consist of a relatively few lines
of code embedded within each node, which monitor
hardware and software integrity. The VLA is both
proactive and reactive. In Demo System 2004, the
VLA was responsible for monitoring run times of the
filter application, and alerting upstream processes of
average and outlier processing times. It also tracked
individual process memory and CPU utilization.

Given the number of components and intractable
number of possible fault scenarios involved, it is
infeasible to design an `expert system’ that applies
mitigative actions triggered from a centralized
processing unit acting on a priori rules capturing every
possible system state. Instead, a distributed multi-
agent systems approach using self-organizing VLAs is
being investigated to provide fault mitigation within
the large-scale real-time RTES/BTeV environment.
The latest phase of VLA development combines
strategies from game theory, stigmergy, and other
biologically inspired models to coordinate the actions
of individual VLAs embedded within each node [14].
3.4 Physics Applications

A "user context" was needed for the RTES runtime
infrastructure. The BTeV runtime environment had not

yet been developed, and appropriate Level 2/3 trigger
codes were not available. Consequently, an existing
BTeV Level 1 muon trigger application was co-opted
to serve as the Level 2 trigger. For the sake of the

FTM

Global Mgr Heartbeat/Source node

Regional Mgr 1

Worker 1.1

HB

Exec ARMOR

Exec ARMOR
Filter 1 Filter 2 Event Builder

Worker 1.2

Regional Mgr 2
Exec ARMOR

Worker 2.1

Elvin
Router GUI

Region 1

Elvin msg
ARMOR msg Exec ARMOR

Event Source

(a) ARMOR configuration in RTES

Figure 2: Data dispatch and processing
with ARMOR provided fault tolerance

Worker

Exec ARMOR

Filter 1 Filter 2 Event Builder

ARMOR MicrokernelARMOR Microkernel

Msg tableMsg table

Named pipeNamed pipe

Msg routingMsg routing

Process mgmtProcess mgmt

App id mgmtApp id mgmt

Crash detectionCrash detection

Infrastructure
elements

Elvin/Armor msg converterElvin/Armor msg converter

Hang detectionHang detection

Node status reportNode status report

Filter crash reportFilter crash report

Bad data reportBad data report

Execution time reportExecution time report

Custom
elements

Memory leak reportMemory leak report

(b) Execution ARMOR configuration

Demo System, the muon trigger code served as the
whole of the Level 2 computation. To provide an
appropriate compute load, the trigger algorithm was
repeated 1500 times on each data package, to achieve a
3.5 ms (mean) processing time, commensurate with
expected Level 2 operation.

To supply data to the Level 2 trigger, and to create
an event processing time distribution, a file reader
("data source") was developed. The file contained 210
GEANT generated, muon rich crossings, with typically
6 events per crossing. Since the purpose of the data
source and trigger were simply to provide a non-
uniform behavior for the RTES infrastructure, the
small data set was sufficient to create a wide
distribution of processing times.

To coordinate data handling between the event
source and the trigger process(es), an event builder was
developed. The event builder process maintained a
queue of data packages (crossings), which it supplied
to the trigger processes running on the same node.

One data source (node) provided 1 Kbyte data
packages to the entire system of (variously) 12 to 64
worker nodes. Each worker node ran one event builder
process, which served 2 trigger processes on that node.
Each trigger process ran on its own CPU.
Communication between the data source and the event
builders was via TCP/IP sockets; communication
between the event builders and their trigger processes
was by named pipes. Mean processing time per data
package was tuned to 3.5 ms; typical I/O time between
packages (for a 3-worker micro-system) was a bimodal
distribution with peaks at 1.5 ms and 6 ms.

3.5 Development Infrastructure

It is desirable to integrate design methods of Model
Integrated Computing (MIC, [15]) (model-based
design abstractions, model interpretation, and
automated domain artifact generation) with an existing
code management system. The RTES build system
integrates RTES system models with the traditional
code management system facilities to allow end-to-end
automation from design to implementation.

The addition of models to the build and deploy
process requires additional tasks of model
interpretation to be performed before the source tree can
be built. Typical executable compilers operate on
source files to produce objects (for example, g++
operates on .cpp .hpp, etc. files to produce objects).
Model translators can be thought of as compilers for
models; in a similar fashion, model translators or
interpreters also use an executable which operates on
source files (models stored in .xml format) to produce
objects. The objects produced from models may be any
domain artifact (.cpp, .h, .rc, makefiles, .conf, etc) and
may be placed in a variety of locations throughout the
source tree. Figure 3 shows the propagation of artifacts

from metamodel language specification to the creation
of a run tree from which the final system can be
deployed.

Run Tree System
binaries

Source Tree

Domain Models
UDM
binaries

UDM
Interpreters

Metamodels
(.xsd)

metamodel
specification

Source
artifacts
(.cpp, .h,
makefiles)

Figure 3. Propagation of model and
source artifacts through the many layers
of the RTES model integrated build
system

Native support for command-line model
interpretation on both Windows and Unix platforms is
one feature of the Universal Data Model (UDM) [16]
tools used by the build system. Using these tools, a
set of models can be placed under version control in a
traditional code management system and the process of
extracting information from the models is automated
within the build process.

Stages of the build system and details the actions
taken at every step of the process are the following:
1) Language creation – Languages are created by

interpreting metamodel paradigm specifications
with the MetaGME interpreter. Each resulting
language specification is placed in the build tree
for use by other interpreters.

2) Domain specific language interpretation – Domain
specific language interpreters are built from source
code. This stage can be though of as “compiling
the model compilers.”

3) Domain model interpretation – For each model in
the tree, the model-appropriate interpreter is
identified, and executed using the model as input.

4) Coalescing of generated artifacts – Artifacts
generated by the interpretation process are placed
in their appropriate location the source tree.

5) Source Tree Compilation – Binaries are built for
all modules in the source tree. Executables are
placed into the run tree.

6) Coalescing of compiled artifacts – All artifacts
generated by the compilation process are placed in
their appropriate location throughout the run trees.

3.6 Control and Monitoring

Monitoring and control of a large scale system is
essential to ensure its correct functioning. Graphical
user interfaces provide an excellent way to visually
monitor and control the system. In order to support
monitoring and control of different aspects of the
system at different times, the need for configurable
user interfaces arises. Configurable user interfaces
enable the users to dynamically view data and error
conditions in ways that aid analysis as well as enable
them to configure and control the state of the system.

The GUI Configuration Modeling Language
(GCML) developed in GME facilitates the rapid layout
and design of monitoring, control, diagnostics and
fault injection user interfaces. The user interfaces use
Data Type Modeling Language (DTML) to
communicate with the system. DTML provides an
abstraction over the Elvin publish-subscribe
communication protocol used for message passing in
the system. Once the models have been created in
GCML, the user interface layout code as well as the
dataflow code for the communication of the user
interface with the system components is generated
from the models.

 The current run-time environment for the generated
user interface is Matlab and the current run-time
platform is Windows. In order to facilitate the
communication of the user interface with the nodes on
the Linux farm that are a part of a private network,
Elvin Forwarder applications have been developed.
These Forwarders are simple message repeaters written
in Python that enable the exchange of messages
between the nodes of the system and the user interface.
This facilitates fast communication of the system with
the user interfaces set up on any machine connected to
the internet. While provisions have been made for
multiple monitoring user interfaces to run
simultaneously on different machines by running the
one-way Elvin Forwarder application that forwards
messages from the nodes to the monitoring GUI, only
one instance of the control user interface can send
control messages to the system.

4. Discussion

Two configurations were developed for presentation
at the FALSE-II Workshop, held in conjunction with
the 11th IEEE Real Time and Embedded Technology
Application Symposium, March 7, 2005. The primary
configuration employed 12 worker nodes with 4
additional nodes providing regional and global control;
this configuration was the basis of the workshop
demonstration. The second configuration employed 54
worker nodes, with 11 control nodes, and was an
exercise in system scaling.

Several lessons were learned in the course of
developing this demonstration.

4.1 Orthogonality

Efforts were made to provide a separation between
the "physics code" and the RTES infrastructure, with
the understanding that the physicist-authors of the
trigger algorithms, etc., would at most have access to
an API-level perspective of the RTES infrastructure.
Similarly, the RTES developers would not be allowed
to instrument physicist-authored code.

An example of this "Chinese wall" was the
handling of fault initiation. Rather than sending a "run
slower" message directly from the Matlab GUI a
worker node (which would not be a normal
command/channel), the fault instruction was routed
through the data source, and embedded in the body of
a data package. The trigger application, on receipt of
this tainted data package, would then process more
slowly, emulating a fault. This reduced unnatural
command/channels in the Demo, compared to a real
system implementation.

Decoupling fault management from the application
also ensures low overhead during error-free operation,
and simplifies future maintenance.

4.2 Scaling

The development of both "16 node" and "65 node"
configurations illuminated several key characteristics of
the toolset and project approach:
• debugging multiple configurations quickly

identified scale-dependent and scale-independent
aspects of the code. A healthy laziness, manifest
as the desire to fix the "same problem" only once,
promoted improved organization and automation
in system generation. Model weaving tools may
further improve multiple configuration support.

• scaling and remapping between configurations
uncovered subtle design problems (e.g. timing and
race conditions), not exposed by the testing of a
single configuration. Hierarchical approaches can
address scaling issues, and model analysis can
identify sensitivities in advance, but exploring
multiple configurations may be necessary to reveal
serious system sensitivities.

4.3 Collaboration and Communication

Code was developed by 4 groups, with overlapping
scopes. Well-defined APIs and development
procedures, as well as collaborative communication
resources (CVS, Wiki, videoconferencing), enabled
members of the research team to contribute new
functionalities to the system without precise
knowledge of the complete runtime environment.

An excellent example of this was the development
of custom ARMOR elements, to provide fault-specific
behaviors. These custom elements (and the FMML
graphical language for representing them) were
developed by a team member who was not
immediately involved in the development of the
ARMOR middleware.

5. Conclusions

A prototype for reliable, fault-adaptive middleware
for a commodity-based dedicated application computer
farm has been developed and demonstrated. The
prototype employs graphical representations capturing
several dimensions of the system design, and both
systemic and point solutions to fault detection and
mitigation. Automated code generation simplified the
support of multiple configurations. The prototype
exhibits decoupling of fault management from the
application, and benefited greatly from scaling, and the
effective use of collaboration tools.

6. References

[1] Information on the RTES project is available from
www-btev.fnal.gov/public/hep/detector/rtes/index.shtml

[2] Information on the BTeV Experiment is available from
www-btev.fnal.gov/public/GeneralInformation.shtml

[3] Several SuperComputing2003 documents are
available via www-btev.fnal.gov/public/hep/detector/rtes
/Publications/index.html

[4] The farm is described in www-btev.fnal.gov/cgi-
bin/DocDB/ShowDocument?docid=3939

[5] Elvin is a product of Mantara Software;
www.mantara.com

[6] Ganglia is available from ganglia.sourceforge.net

[7] Matlab is a product of MathWorks, Inc;
www.mathworks.com

[8] G. Karsai, J. Sztipanovits, A. Ledeczi, T. Bapty,
“Model-Integrated Development of Embedded Software”,
Proceedings of the IEEE, Vol. 91, Number 1, January,
2003, pp. 145-164.

[9] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C.
Thomason IV, G. Nordstrom, J. Sprinkle, P. Volgyesi, “The
Generic Modeling Environment”, Workshop on
Intelligent Signal Processing, Budapest, Hungary, May
17, 2001.

[10] Z. Kalbarczyk, R. K. Iyer, and L. Wang, “Application
Fault Tolerance with Armor Middleware,” IEEE Internet
Computing, Special Issue on Recovery-Oriented
Computing, March/April 2005, pp 28-37.

[11] K. Whisnant, R. Iyer, Z. Kalbarczyk, et al. “The Effects
of an ARMOR-Based SIFT Environment on the
Performance and Dependability of User Applications,” in
IEEE Transactions on Software Engineering, 30(4), April,
2004, pp. 257-277.

[12] K. Whisnant, Z. Kalbarczyk, R. Iyer, “A System Model
for Reconfigurable Software,” in IBM Systems Journal,
42(1), 2003.

[13] Z. Kalbarczyk, et al. “Chameleon: A software
infrastructure for adaptive fault tolerance,” IEEE Trans. on
Parallel and Distributed Systems, 10(6), June, 1999, pp.
560-579.

[14] D. Messie, J. C. Oh,, “Polymorphic Self-* Agents for
Stigmergic Fault Mitigation in Large-Scale Real-Time
Embedded Systems”, Fourth International Joint
Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), Utrecht, The Netherlands, July, 2005.

[15] J. Sztipanovits, G. Karsai, “Model-Integrated
Computing”, IEEE Computer, April, 1997, pp. 110-112.

[16] Universal Data Model tools are available from ISIS
and the Escher Research Institute:
escher.isis.vanderbilt.edu/tools/get_tool?UDM

