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Abstract 

 

The region-based memory model of The Real-
time Specification for Java (RTSJ) is quite rigid, 
and it complicates the development of reusable 
predictable software for large-scale systems. In this 
paper, we propose an extension to the region model 
of the RTSJ called AGCMemory (Acyclic Garbage 
Collected Memory). This extension enables the 
transparent destruction of floating garbage created 
during the execution of Java methods. The 
integration within the memory model of the RTSJ 
and its automatic memory management algorithm, 
based on run-time barriers, are described. 

 
1. Introduction 

 

As many other environments, large-scale systems 
can benefit from high-level languages in order to 
reduce application development cost. The complexity 
of such systems makes the Java language a good 
candidate for the following reasons: portability, 
automatic memory management, simplicity, and 
networking support. These features reduce the 
development time and help to produce applications that 
are easier to maintain. However, when we introduce 
the real-time constraint, the automatic memory 
management facility becomes a drawback; the garbage 
collector, that automatically recycles the unused 
memory, introduces unpredictable pauses in program 
execution. 
 

The problem of producing a predictable automatic 
memory management for Java does not have a perfect 
solution. The natural candidate is the real-time garbage 
collector technique, like the one described in [6]. This 
technique bounds the pauses in program execution, but 
its operation requires a priori information that is not 
always easy to calculate. Among such data, it requires 
the object allocation rate of each application and the 

maximum alive memory. Furthermore, the real-time 
garbage collector technique consumes extra memory 
and CPU; these extra resources are not always 
available in embedded systems. For this reason, current 
real-time Java specifications (The Real Time 
Specification for Java RTSJ [1] and the Real Time 
Core Extensions RTCE [2]) provide a lower level 
mechanism based on regions [11].  
 

The predictability that the region model provides 
to the Java language makes it suitable for meeting time 
requirements at the nodes of critical large-scale real-
time systems [7]. However, from the perspective of the 
programmer, there is a reduction of the automatic 
memory management benefits; the programmer has to 
collaborate in such a process. 
 

The aim of this paper is to recover some of 
portability provided by general collectors in the 
context of regions. The idea is to produce an enhanced 
region that detects unused objects and recycles them 
when they become unreachable. The automatic 
memory management algorithm of this new type of 
region will not be as complex as general garbage 
collectors.  

 

In large-scale real-time systems, where multiple 
RTSJ-enabled nodes are used, and each node executes 
a different version of the RTSJ libraries, the new type 
of region (called AGCMemory) may reduce the 
number of manual changes required to adapt existing 
libraries to the region model of the RTSJ. 
 

The rest of the paper is organized as follows: 
Section 2 reviews those research works that have 
influenced us in the design of this new type of region; 
Section 3 presents the memory model of RTSJ 
explaining how we have integrated AGCMemory is 
this model; Section 4 exemplifies the benefits of 
AGCMemory in the context of floating garbage; 
Section 5 deals with the internals of the 



implementation of AGCMemory, mainly the structures 
and run-time barriers involved in its automatic memory 
management algorithm; Section 6 draws some 
conclusions. 

 
 

2. Related Work 
 

One of the most active areas of research in real-
time Java is the memory management. In this area, 
research is mainly directed towards the improvement 
of predictability and efficiency of the real-time garbage 
collectors [6] and the mitigation of problems that the 
region-based solution of RTSJ, scoped memory, posses 
(e.g.[4],[3],[5],[10]). Our work falls into the second 
category. 
 

Implicitly, scoped memory introduces two main 
problems: efficient validation of the run-time checks 
required to maintain the integrity of the model of 
scoped memory and the assignment of scopes to Java 
code. In [4], the efficient implementation of the run-
time rules of RTSJ is addressed. The run-time checks 
required to validate the assignment rule, one of the 
most troublesome penalties introduced by the region 
model of RTSJ, is reduced from linear complexity to a 
constant time function using the display technique. The 
work presented in [3] deals with the automatic 
assignment of scoped memory instances to plain Java 
code. The main advantage of this technique is that it 
reduces the number of manual assignments. This is 
done in two phases. The first one is an off-line 
analysis, based in the escape technique, where the life 
of all objects is found out. In the second one, an 
automatic tool assigns the scopes to portions of the 
code using aspect programming. 
 

RTCE [2] defines the stackable objects as a 
complementary mechanism to the region model. If an 
object is defined as stackable, the object will be 
created in the stack of the thread. Also, it will be 
destroyed when the method ends, using the same 
approach followed in Java for the local variables. 
RTCE avoids the problems of dangling pointers using 
static analysis of code that determines when a 
stackable object is referenced from outer objects. 
 

Our proposed new subclass of scoped memory of 
RTSJ, AGCMemory, shares common ideas with the 
above mechanisms. As in [4], all extra run-time checks 
are performed in constant time. We share with [3] the 
idea of the definition of an automatic mechanism that 
assigns regions to code. However, our mechanism is 
executed on-line using run-time barriers instead of 
relying on an off-line analysis, as done in [2] and [3]. 
The use of run-time barriers performs a dynamic 
adaptation of the region structure to code. The escape 

analysis performed by our algorithm is simpler than 
the one in [3]; it is less powerful, but it reduces the 
execution overhead. Eventually, our work may also be 
understood as an extension to stackable objects of 
RTCE in the context of RTSJ. In RTCE, the stackable 
objects allocated in the stack have to be destroyed 
when the method ends, whereas in an AGCMemory 
region they do not have to. 
 

3. Memory Management in the RTSJ 
 

The memory model of RTSJ [1] is based in 
memory areas. Each memory area is related to a block 
of physical memory where Java objects are allocated 
by applications using the new or newInstance 
operators. In the RTSJ, there are three types of 
memory areas: 
 

-Heap Memory. It is the traditional heap of Java, 
and there is a single instance in each virtual machine. 
Objects allocated in this memory area are garbage 
collected, and its usage for real-time purposes requires 
a real-time garbage collector. 

 

-Immortal memory. There is a single instance of 
immortal memory in each virtual machine, and the 
objects that it contains can not be destroyed. In real-
time environments, this memory is typically used to 
store objects that have a life equal to the life of the 
virtual machine. 

 

-Scoped memory. Scoped memory instances 
enable the predictable allocation and de-allocation of 
objects. Unlike immortal memory and heap memory, 
the scoped memory instances are explicitly instantiated 
by the programmer which has to decide the amount of 
memory that each scoped memory instance has. 
 

As heap memory, objects stored in a scoped 
memory instance may be reclaimed but instead of 
using a garbage collector mechanism, based in root 
scanning, scoped memory instances use an internal 
counter. When this counter reaches zero, all objects 
allocated in the scoped memory instance are destroyed.  

 

Besides, in order to avoid dangling pointers to 
objects allocated in scoped memory, RTSJ imposes 
two rules: the assignment rule and the single parent 
rule. These rules are verified by virtual machine using 
run-time barriers. 
 
Integrating AGCMemory within the RTSJ 

 
The scoped memory is an abstract class that may 

not be directly instantiated. The programmer has to use 
one of its subclasses: LTMemory or VTMemory. The 
integration of AGCMemory in the class hierarchy of 



the RTSJ, as shown in figure 1, has been done 
extending the scoped memory. AGCMemory is a 
subclass of scoped memory; like all scoped memory 
subclasses, the AGCMemory is constrained to the 
assignment and single parent rule. 
 

HeapMemory

Memory Area

VTMemory LTMemory AGCMemory

Scoped Memory

ImmortalMemory

ImmortalPhysicalMemory

LTPhysicalMemory VTPhysicalMemory

Figure 1: AGCMemory within the class hierarchy of RTSJ 
 

In some sense, AGCMemory combines the 
advantages of both LTMemory and VTMemory. On 
one hand, the use of LTMemory guarantees that the 
allocation time for objects is bounded by a linear 
function whereas in VTMemory this is not guaranteed. 
And on the other hand, VTMemory may support the 
partial de-allocation of objects during the instantiation 
of new objects, improving the reusability of memory. 
In the AGCMemory, the allocation time is bounded by 
a linear function, and it supports the partial de-
allocation of objects after the invocation of Java 
methods. 
 

4. Recycling floating garbage with 
AGCMemory 

 

Using a simple example, this section shows how 
the recycling property of AGCMemory enables the 
destruction of the floating garbage created during the 
execution of Java methods, reducing the necessity of 
nested scopes. 
 

In order to illustrate the problem of floating 
garbage, we have chosen a very simple application, 
PeriodicCounter. As shown in figure 2, 
PeriodicCounter has an infinite loop that increments a 
counter and prints out its value.  

 

In the PeriodicCounter constructor (line 11), we 
associated an LTMemory instance to the run method 
of the thread. This means that all objects created using 
new during the execution of the method run will be 
allocated in this memory area instance. 

 

01: import javax.realtime.*;
02: public class PeriodicCounter extends RealtimeThread{
03: public PeriodicCounter(){
04: super( null, //Schedulling Parameters
05: new PeriodicParameters(null,
06: new RelativeTime(1000,0),//T
07: new RelativeTime(50,0),  //C
08: new  RelativeTime(100,0),//D
09: null,null);
10: null,
11: new LTMemory(250,250),
12: null);
13: start(); //starts thread
14: }//@constructor
 

15: int counter=1;

16: public void run(){
17: do{System.out.println(counter);
18:              counter++;}while(waitForNextPeriod());
19: }//@run
20: public static void main(String s[]){
21: new HelloPeriodicCounter();
22: }
23: }

 
Figure 2: Full code of PeriodicCounter application 
 
However, the application, as it is written, does not 

work in all virtual machines. In JTime virtual machine 
[9], it will throw an out-of-memory exception. Each 
time we print out the counter value, using 
System.out.println, the method allocates 88 bytes 
within the LTMemory (250,250) instance in order 
to convert the int value into a string. During the third 
invocation, the lack of free memory will cause an 
exception to be thrown. 

 

In RTSJ, the way to eliminate these temporal 
objects created during the invocation of a method is to 
use nested scopes. 

 

Figure 3 shows how to use nested scopes to 
eliminate the temporal objects created during the 
invocation of println. The nested scope is lt and it 
manages 150 bytes of memory. Impr is a runnable 
object and it contains the code, in our case println 
method, whose temporal objects we want to eliminate. 
The mechanism to bind the memory lt and the logic 
impr of run is the enter method. When 
lt.enter(impr) is invoked, the virtual machine 
performs three actions: it changes the default allocation 
context of objects to lt; it executes impr.run(), 
allocating the objects in lt; and it destroys objects 
allocated in lt memory, restoring the allocation 
context. 

 



01: import javax.realtime.*;
02: public class PeriodicCounter extends RealtimeThread{
03: public PeriodicCounter(){
04: super( null, //Schedulling Parameters
05: new PeriodicParameters(null,
06: new RelativeTime(1000,0), //T
07: new RelativeTime(50,0),   //C
08: new  RelativeTime(100,0), //D
09: null,null);
10: null,
11: new LTMemory(250,250),
12: null);
13:        start();
14:            }

15: int counter=1;
16: public void run(){
17: do{ lt.enter(impr);
18: counter++;}while(waitForNextPeriod());
19: }

20: LTMemory lt=new LTMemory(150,150);
21: Runnable impr=new Runnable(){
22: public void run(){
23: System.out.println(counter);};
24: public static void main(String s){
25: new HelloPeriodicCounter();
26: }
27: }

Figure 3: Using nested scopes to eliminate floating garbage 
 

 
Figure 4 shows the memory profile of the two 

mechanisms. Whereas the use of a non-nested scope is 
not able to recycle the objects created during the 
println invocation, crashing during the third 
execution of the loop, the nested scope recycles the 88 
bytes required to convert the int value into a string. 
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Figure 4: Allocated memory profile in PeriodicCounter 

 
However, the use of an auxiliary scope comes 

with several problems. Firstly, the use of runnable 
objects difficult the maintenance of programs. These 
new objects do not come as a result of a requirement in 
the modeling of applications but as an aspect of 
memory management. Secondly, we have to analyze 
which methods of the API create objects during its 
invocation. This may be complex because depending 

on the implementation, a method may create temporal 
objects during its invocation or not. Eventually, we 
have to dimension (e.g. 150 bytes) the size of each 
scope. Once again, this is complex because the number 
of objects allocated during the execution of a method 
may depend on the platform and on the invocation 
parameters. 
 

The AGCMemory was designed to mitigate these 
problems; it hides some of these complexities to the 
programmer. The AGCMemory is able to collect 
floating objects created during the invocation of Java 
methods after its execution. 

 

In the PeriodicCounter example, we are able to 
eliminate the temporal objects created during the 
invocation of println without requiring the use of a 
nested scope. The only requirement is that instead of 
using an LTMemory, we use and AGCMemory region. 
Therefore, the code of figure 2 only requires one 
change in line 11: the replacement of new 
LTMemory(250, 250) statement with new 
AGCMemory (250,250). Once changed, the memory 
profile of the application will be same that we obtained 
for the nested scopes, shown in figure 4. 
 
 

Eventually, the example is simple helping us to 
understand the benefits of AGCMemory; however, it 
does not give us information about the importance of 
the problem of floating garbage in Java. In Java, this is 
a relevant problem. In current J2SE library classes, 
more than 50% of the class methods may create objects 
during their invocation [8]. 
 

5. Supporting AGCMemory 
 

In the previous section we have illustrated how 
AGCMemory may reduce the number of manual 
adaptations on code; however, we have not dealt with 
the implementation details. In this section we will 
explore the utilization of a non-shared and imprecise 
algorithm for such purpose. Similarly to [4] and [5], 
the algorithm has been supported using run-time 
barriers. 

 
Algorithm features 

 

In order to simply the AGCMemory support, two 
main restrictions are introduced by our algorithm. 

 

The first has been placed in the AGCMemory 
shareability. An AGCMemory may not be concurrently 
used by several threads; only one thread may allocate 
objects on it. Consequently, when a thread enters (e.g. 
using enter(Runnable r)) an already entered 
AGCMemory instance, it gets a memory in use 
exception. 

 



The second limitation is in the garbage detection. 
For garbage collector detection and elimination, the 
proposed algorithm treats all objects created during 
method execution as if they were a single object. That 
is, the algorithm eliminates all objects created during 
the method invocation or neither of them; partial object 
elimination is not supported. 

 

 
Memory model and data structure 

 

As shown in Figure 5, each AGCMemory has a 
chunk of physical memory. This physical memory is 
addressed as linear memory space. The objects are 
allocated in it in increasing addresses number. The free 
memory pointer, free_mem_ptr, points to the 
position where the next object will be allocated. 
 

Besides, the AGCMemory contains a 
complementary structure, the agc_stack. This 
structure is related to the memory management 
algorithm; it contains the information that will allow 
the partial recycling of objects. Each entry of the 
agc_stack contains two elements: the method 
pointer, method_ptr, and the escape pointer, 
scape_ptr. The method pointer keeps information 
about the set of objects that are created during the 
invocation of a method. The escape pointer decides 
whether the objects created during the execution of a 
method may be recycled or not. 

 
 

agc_stack

top
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Figure 5: Internals of the AGCMemory 

Run-time barriers 
 

As said before, automatic memory management of 
the AGCMemory is based on run-time barriers. In our 
case, the barriers are executed before and after each 
Java method and in each reference assignment. The 
execution of these run-time barriers combined with the 
information of the agc_stack destroys the temporal 
objects created during the execution of the Java 
methods. 
 

pre_invocation_barrier 
 

The pre-invocation barrier is executed just before 
the invocation of a Java method. It pushes a new entry 
in the agc_stack. 

 

Both entry values are initialized with the same 
value: free_mem_ptr. That is: 

 

top→scape_ptr=free_mem_ptr; 
top→method_ptr=free_mem_ptr; 

 

The purpose of the barrier is to be able to detect 
which objects are created during the execution of a 
method. 

 
post_invocation_barrier 

 

The post-invocation barrier is executed just after 
the invocation of a Java method. This barrier performs 
two actions. First, it pops an entry from the 
agc_stack. After, it decides whether or not to recycle 
objects allocated during the method execution. 
 

The test performed to detect whether the objects 
may be destroyed consists of the verification of the 
following condition:  
 

top→scape_ptr ≥ top→method_ptr 
 
 

When the condition is true, all objects allocated in 
the range [top→method_ptr, free_mem_ptr] are 
destroyed and the value of free_mem_ptr is set to 
top→method_ptr.  

 

When this condition is not fulfilled, the 
responsibility of the destruction of the objects is 
propagated to the parent method performing this 
assignment top-1→scape_ptr = min{top-
1→scape_ptr, top→scape_ptr} 

 

 

assignment_barrier 
 

Additionally, there is a barrier that updates the 
value of top→scape_pointer. This barrier is 
executed before reference assignments. 

 

The purpose of the barrier is to detect whether the 
objects created during the execution of the method can 
be destroyed when the method ends. 

 

Given a reference attribute of an object, attrib, 
trying to refer to another object, ref, the assignment 
attrib=ref executes the following barrier: 

 

if(memArea(attrib)==memArea(ref)) 
&& (memArea(attrib) instance of AGCMemory)&& 
(ref≥attrib)) 
 
top→scape_ptr=min{top→scape_ptr, attrib} 

 

Besides, the assignment barrier is executed each 
time a method returns a reference. In this case, the 
executed barrier is the following: 



 
top→scape_ptr=min{top→scape_ptr,top→method_p
tr-1} 

 
As main conclusion we may say that introduced 

restrictions have enabled the implementation of a 
lightweight approach. Proposed solution provides us 
two main advantages: the first is that the memory 
structure used to detect dead objects may be a stack-
based one and the second is that run-time barriers 
checks complexity may be bounded by a constant time 
function. 

 
6. Conclusions 

 

Current types of regions in the RTSJ force us to 
choice between a bounded time allocation, using 
LTMemory instances, or an efficient memory 
management, using VTMemory. The combination of 
both features is not directly supported. The predictable 
elimination of the floating garbage requires 
collaboration from the programmer who has to insert 
nested scopes in application code. 

 

In order to provide a more portable region model 
we have defined a new type of region, AGCMemory. 
This new type offers an alternative mechanism where 
the detection and the floating garbage elimination have 
been hidden to the programmer. As consequence of 
this, the necessity of having nested scopes and manual 
configuration has been reduced. This functionality is 
now supported by the virtual machine. 
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