
AGCMemory: A new Real-Time Java Region Type for Automatic Floating
Garbage Recycling

Pablo Basanta-Val, Marisol García-Valls, and Iria Estévez-Ayres

DREQUIEM LAB
DISTRIBUTED REAL TIME SYSTEMS AND MULTIMEDIA LABORATORY

Departamento Ingeniería de Telemática / Universidad Carlos III de Madrid
~http://www.it.uc3m.es/drequiem/

{pbasanta,mvalls,ayres}@it.uc3m.es

Abstract

The region-based memory model of The Real-
time Specification for Java (RTSJ) is quite rigid,
and it complicates the development of reusable
predictable software for large-scale systems. In this
paper, we propose an extension to the region model
of the RTSJ called AGCMemory (Acyclic Garbage
Collected Memory). This extension enables the
transparent destruction of floating garbage created
during the execution of Java methods. The
integration within the memory model of the RTSJ
and its automatic memory management algorithm,
based on run-time barriers, are described.

1. Introduction

As many other environments, large-scale systems
can benefit from high-level languages in order to
reduce application development cost. The complexity
of such systems makes the Java language a good
candidate for the following reasons: portability,
automatic memory management, simplicity, and
networking support. These features reduce the
development time and help to produce applications that
are easier to maintain. However, when we introduce
the real-time constraint, the automatic memory
management facility becomes a drawback; the garbage
collector, that automatically recycles the unused
memory, introduces unpredictable pauses in program
execution.

The problem of producing a predictable automatic
memory management for Java does not have a perfect
solution. The natural candidate is the real-time garbage
collector technique, like the one described in [6]. This
technique bounds the pauses in program execution, but
its operation requires a priori information that is not
always easy to calculate. Among such data, it requires
the object allocation rate of each application and the

maximum alive memory. Furthermore, the real-time
garbage collector technique consumes extra memory
and CPU; these extra resources are not always
available in embedded systems. For this reason, current
real-time Java specifications (The Real Time
Specification for Java RTSJ [1] and the Real Time
Core Extensions RTCE [2]) provide a lower level
mechanism based on regions [11].

The predictability that the region model provides
to the Java language makes it suitable for meeting time
requirements at the nodes of critical large-scale real-
time systems [7]. However, from the perspective of the
programmer, there is a reduction of the automatic
memory management benefits; the programmer has to
collaborate in such a process.

The aim of this paper is to recover some of
portability provided by general collectors in the
context of regions. The idea is to produce an enhanced
region that detects unused objects and recycles them
when they become unreachable. The automatic
memory management algorithm of this new type of
region will not be as complex as general garbage
collectors.

In large-scale real-time systems, where multiple
RTSJ-enabled nodes are used, and each node executes
a different version of the RTSJ libraries, the new type
of region (called AGCMemory) may reduce the
number of manual changes required to adapt existing
libraries to the region model of the RTSJ.

The rest of the paper is organized as follows:
Section 2 reviews those research works that have
influenced us in the design of this new type of region;
Section 3 presents the memory model of RTSJ
explaining how we have integrated AGCMemory is
this model; Section 4 exemplifies the benefits of
AGCMemory in the context of floating garbage;
Section 5 deals with the internals of the

implementation of AGCMemory, mainly the structures
and run-time barriers involved in its automatic memory
management algorithm; Section 6 draws some
conclusions.

2. Related Work

One of the most active areas of research in real-
time Java is the memory management. In this area,
research is mainly directed towards the improvement
of predictability and efficiency of the real-time garbage
collectors [6] and the mitigation of problems that the
region-based solution of RTSJ, scoped memory, posses
(e.g.[4],[3],[5],[10]). Our work falls into the second
category.

Implicitly, scoped memory introduces two main
problems: efficient validation of the run-time checks
required to maintain the integrity of the model of
scoped memory and the assignment of scopes to Java
code. In [4], the efficient implementation of the run-
time rules of RTSJ is addressed. The run-time checks
required to validate the assignment rule, one of the
most troublesome penalties introduced by the region
model of RTSJ, is reduced from linear complexity to a
constant time function using the display technique. The
work presented in [3] deals with the automatic
assignment of scoped memory instances to plain Java
code. The main advantage of this technique is that it
reduces the number of manual assignments. This is
done in two phases. The first one is an off-line
analysis, based in the escape technique, where the life
of all objects is found out. In the second one, an
automatic tool assigns the scopes to portions of the
code using aspect programming.

RTCE [2] defines the stackable objects as a
complementary mechanism to the region model. If an
object is defined as stackable, the object will be
created in the stack of the thread. Also, it will be
destroyed when the method ends, using the same
approach followed in Java for the local variables.
RTCE avoids the problems of dangling pointers using
static analysis of code that determines when a
stackable object is referenced from outer objects.

Our proposed new subclass of scoped memory of
RTSJ, AGCMemory, shares common ideas with the
above mechanisms. As in [4], all extra run-time checks
are performed in constant time. We share with [3] the
idea of the definition of an automatic mechanism that
assigns regions to code. However, our mechanism is
executed on-line using run-time barriers instead of
relying on an off-line analysis, as done in [2] and [3].
The use of run-time barriers performs a dynamic
adaptation of the region structure to code. The escape

analysis performed by our algorithm is simpler than
the one in [3]; it is less powerful, but it reduces the
execution overhead. Eventually, our work may also be
understood as an extension to stackable objects of
RTCE in the context of RTSJ. In RTCE, the stackable
objects allocated in the stack have to be destroyed
when the method ends, whereas in an AGCMemory
region they do not have to.

3. Memory Management in the RTSJ

The memory model of RTSJ [1] is based in
memory areas. Each memory area is related to a block
of physical memory where Java objects are allocated
by applications using the new or newInstance
operators. In the RTSJ, there are three types of
memory areas:

-Heap Memory. It is the traditional heap of Java,
and there is a single instance in each virtual machine.
Objects allocated in this memory area are garbage
collected, and its usage for real-time purposes requires
a real-time garbage collector.

-Immortal memory. There is a single instance of
immortal memory in each virtual machine, and the
objects that it contains can not be destroyed. In real-
time environments, this memory is typically used to
store objects that have a life equal to the life of the
virtual machine.

-Scoped memory. Scoped memory instances
enable the predictable allocation and de-allocation of
objects. Unlike immortal memory and heap memory,
the scoped memory instances are explicitly instantiated
by the programmer which has to decide the amount of
memory that each scoped memory instance has.

As heap memory, objects stored in a scoped
memory instance may be reclaimed but instead of
using a garbage collector mechanism, based in root
scanning, scoped memory instances use an internal
counter. When this counter reaches zero, all objects
allocated in the scoped memory instance are destroyed.

Besides, in order to avoid dangling pointers to
objects allocated in scoped memory, RTSJ imposes
two rules: the assignment rule and the single parent
rule. These rules are verified by virtual machine using
run-time barriers.

Integrating AGCMemory within the RTSJ

The scoped memory is an abstract class that may

not be directly instantiated. The programmer has to use
one of its subclasses: LTMemory or VTMemory. The
integration of AGCMemory in the class hierarchy of

the RTSJ, as shown in figure 1, has been done
extending the scoped memory. AGCMemory is a
subclass of scoped memory; like all scoped memory
subclasses, the AGCMemory is constrained to the
assignment and single parent rule.

HeapMemory

Memory Area

VTMemory LTMemory AGCMemory

Scoped Memory

ImmortalMemory

ImmortalPhysicalMemory

LTPhysicalMemory VTPhysicalMemory

Figure 1: AGCMemory within the class hierarchy of RTSJ

In some sense, AGCMemory combines the
advantages of both LTMemory and VTMemory. On
one hand, the use of LTMemory guarantees that the
allocation time for objects is bounded by a linear
function whereas in VTMemory this is not guaranteed.
And on the other hand, VTMemory may support the
partial de-allocation of objects during the instantiation
of new objects, improving the reusability of memory.
In the AGCMemory, the allocation time is bounded by
a linear function, and it supports the partial de-
allocation of objects after the invocation of Java
methods.

4. Recycling floating garbage with
AGCMemory

Using a simple example, this section shows how
the recycling property of AGCMemory enables the
destruction of the floating garbage created during the
execution of Java methods, reducing the necessity of
nested scopes.

In order to illustrate the problem of floating
garbage, we have chosen a very simple application,
PeriodicCounter. As shown in figure 2,
PeriodicCounter has an infinite loop that increments a
counter and prints out its value.

In the PeriodicCounter constructor (line 11), we
associated an LTMemory instance to the run method
of the thread. This means that all objects created using
new during the execution of the method run will be
allocated in this memory area instance.

01: import javax.realtime.*;
02: public class PeriodicCounter extends RealtimeThread{
03: public PeriodicCounter(){
04: super(null, //Schedulling Parameters
05: new PeriodicParameters(null,
06: new RelativeTime(1000,0),//T
07: new RelativeTime(50,0), //C
08: new RelativeTime(100,0),//D
09: null,null);
10: null,
11: new LTMemory(250,250),
12: null);
13: start(); //starts thread
14: }//@constructor

15: int counter=1;

16: public void run(){
17: do{System.out.println(counter);
18: counter++;}while(waitForNextPeriod());
19: }//@run
20: public static void main(String s[]){
21: new HelloPeriodicCounter();
22: }
23: }

Figure 2: Full code of PeriodicCounter application

However, the application, as it is written, does not

work in all virtual machines. In JTime virtual machine
[9], it will throw an out-of-memory exception. Each
time we print out the counter value, using
System.out.println, the method allocates 88 bytes
within the LTMemory (250,250) instance in order
to convert the int value into a string. During the third
invocation, the lack of free memory will cause an
exception to be thrown.

In RTSJ, the way to eliminate these temporal
objects created during the invocation of a method is to
use nested scopes.

Figure 3 shows how to use nested scopes to
eliminate the temporal objects created during the
invocation of println. The nested scope is lt and it
manages 150 bytes of memory. Impr is a runnable
object and it contains the code, in our case println
method, whose temporal objects we want to eliminate.
The mechanism to bind the memory lt and the logic
impr of run is the enter method. When
lt.enter(impr) is invoked, the virtual machine
performs three actions: it changes the default allocation
context of objects to lt; it executes impr.run(),
allocating the objects in lt; and it destroys objects
allocated in lt memory, restoring the allocation
context.

01: import javax.realtime.*;
02: public class PeriodicCounter extends RealtimeThread{
03: public PeriodicCounter(){
04: super(null, //Schedulling Parameters
05: new PeriodicParameters(null,
06: new RelativeTime(1000,0), //T
07: new RelativeTime(50,0), //C
08: new RelativeTime(100,0), //D
09: null,null);
10: null,
11: new LTMemory(250,250),
12: null);
13: start();
14: }

15: int counter=1;
16: public void run(){
17: do{ lt.enter(impr);
18: counter++;}while(waitForNextPeriod());
19: }

20: LTMemory lt=new LTMemory(150,150);
21: Runnable impr=new Runnable(){
22: public void run(){
23: System.out.println(counter);};
24: public static void main(String s){
25: new HelloPeriodicCounter();
26: }
27: }

Figure 3: Using nested scopes to eliminate floating garbage

Figure 4 shows the memory profile of the two

mechanisms. Whereas the use of a non-nested scope is
not able to recycle the objects created during the
println invocation, crashing during the third
execution of the loop, the nested scope recycles the 88
bytes required to convert the int value into a string.

0

50
100

150

200

250

300

350

400

16 17 18 17 18 17 18 Line number

al
lo

ca
te

d
by

te
s

Using LTmemory
Using nested scopes (or AGCMemory)

o ut o f memo ry
⇓

Figure 4: Allocated memory profile in PeriodicCounter

However, the use of an auxiliary scope comes

with several problems. Firstly, the use of runnable
objects difficult the maintenance of programs. These
new objects do not come as a result of a requirement in
the modeling of applications but as an aspect of
memory management. Secondly, we have to analyze
which methods of the API create objects during its
invocation. This may be complex because depending

on the implementation, a method may create temporal
objects during its invocation or not. Eventually, we
have to dimension (e.g. 150 bytes) the size of each
scope. Once again, this is complex because the number
of objects allocated during the execution of a method
may depend on the platform and on the invocation
parameters.

The AGCMemory was designed to mitigate these
problems; it hides some of these complexities to the
programmer. The AGCMemory is able to collect
floating objects created during the invocation of Java
methods after its execution.

In the PeriodicCounter example, we are able to
eliminate the temporal objects created during the
invocation of println without requiring the use of a
nested scope. The only requirement is that instead of
using an LTMemory, we use and AGCMemory region.
Therefore, the code of figure 2 only requires one
change in line 11: the replacement of new
LTMemory(250, 250) statement with new
AGCMemory (250,250). Once changed, the memory
profile of the application will be same that we obtained
for the nested scopes, shown in figure 4.

Eventually, the example is simple helping us to
understand the benefits of AGCMemory; however, it
does not give us information about the importance of
the problem of floating garbage in Java. In Java, this is
a relevant problem. In current J2SE library classes,
more than 50% of the class methods may create objects
during their invocation [8].

5. Supporting AGCMemory

In the previous section we have illustrated how
AGCMemory may reduce the number of manual
adaptations on code; however, we have not dealt with
the implementation details. In this section we will
explore the utilization of a non-shared and imprecise
algorithm for such purpose. Similarly to [4] and [5],
the algorithm has been supported using run-time
barriers.

Algorithm features

In order to simply the AGCMemory support, two
main restrictions are introduced by our algorithm.

The first has been placed in the AGCMemory
shareability. An AGCMemory may not be concurrently
used by several threads; only one thread may allocate
objects on it. Consequently, when a thread enters (e.g.
using enter(Runnable r)) an already entered
AGCMemory instance, it gets a memory in use
exception.

The second limitation is in the garbage detection.
For garbage collector detection and elimination, the
proposed algorithm treats all objects created during
method execution as if they were a single object. That
is, the algorithm eliminates all objects created during
the method invocation or neither of them; partial object
elimination is not supported.

Memory model and data structure

As shown in Figure 5, each AGCMemory has a
chunk of physical memory. This physical memory is
addressed as linear memory space. The objects are
allocated in it in increasing addresses number. The free
memory pointer, free_mem_ptr, points to the
position where the next object will be allocated.

Besides, the AGCMemory contains a
complementary structure, the agc_stack. This
structure is related to the memory management
algorithm; it contains the information that will allow
the partial recycling of objects. Each entry of the
agc_stack contains two elements: the method
pointer, method_ptr, and the escape pointer,
scape_ptr. The method pointer keeps information
about the set of objects that are created during the
invocation of a method. The escape pointer decides
whether the objects created during the execution of a
method may be recycled or not.

agc_stack

top
top-1

0

.

.

.

top-2

method_ptr scape_ptr

0xAC00

0x0C00

free_mem_ptr

physical memory

Figure 5: Internals of the AGCMemory

Run-time barriers

As said before, automatic memory management of
the AGCMemory is based on run-time barriers. In our
case, the barriers are executed before and after each
Java method and in each reference assignment. The
execution of these run-time barriers combined with the
information of the agc_stack destroys the temporal
objects created during the execution of the Java
methods.

pre_invocation_barrier

The pre-invocation barrier is executed just before
the invocation of a Java method. It pushes a new entry
in the agc_stack.

Both entry values are initialized with the same
value: free_mem_ptr. That is:

top→scape_ptr=free_mem_ptr;
top→method_ptr=free_mem_ptr;

The purpose of the barrier is to be able to detect
which objects are created during the execution of a
method.

post_invocation_barrier

The post-invocation barrier is executed just after
the invocation of a Java method. This barrier performs
two actions. First, it pops an entry from the
agc_stack. After, it decides whether or not to recycle
objects allocated during the method execution.

The test performed to detect whether the objects
may be destroyed consists of the verification of the
following condition:

top→scape_ptr ≥ top→method_ptr

When the condition is true, all objects allocated in
the range [top→method_ptr, free_mem_ptr] are
destroyed and the value of free_mem_ptr is set to
top→method_ptr.

When this condition is not fulfilled, the
responsibility of the destruction of the objects is
propagated to the parent method performing this
assignment top-1→scape_ptr = min{top-
1→scape_ptr, top→scape_ptr}

assignment_barrier

Additionally, there is a barrier that updates the
value of top→scape_pointer. This barrier is
executed before reference assignments.

The purpose of the barrier is to detect whether the
objects created during the execution of the method can
be destroyed when the method ends.

Given a reference attribute of an object, attrib,
trying to refer to another object, ref, the assignment
attrib=ref executes the following barrier:

if(memArea(attrib)==memArea(ref))
&& (memArea(attrib) instance of AGCMemory)&&
(ref≥attrib))

top→scape_ptr=min{top→scape_ptr, attrib}

Besides, the assignment barrier is executed each
time a method returns a reference. In this case, the
executed barrier is the following:

top→scape_ptr=min{top→scape_ptr,top→method_p
tr-1}

As main conclusion we may say that introduced

restrictions have enabled the implementation of a
lightweight approach. Proposed solution provides us
two main advantages: the first is that the memory
structure used to detect dead objects may be a stack-
based one and the second is that run-time barriers
checks complexity may be bounded by a constant time
function.

6. Conclusions

Current types of regions in the RTSJ force us to
choice between a bounded time allocation, using
LTMemory instances, or an efficient memory
management, using VTMemory. The combination of
both features is not directly supported. The predictable
elimination of the floating garbage requires
collaboration from the programmer who has to insert
nested scopes in application code.

In order to provide a more portable region model
we have defined a new type of region, AGCMemory.
This new type offers an alternative mechanism where
the detection and the floating garbage elimination have
been hidden to the programmer. As consequence of
this, the necessity of having nested scopes and manual
configuration has been reduced. This functionality is
now supported by the virtual machine.

References

[1] RTJEG. "The Real Time Specification for Java",
Addison Wesley, 2000. Available at http://www.rtj.org
[2] J-Consortium Inc. "Core Real Time Extensions
for the Java Platform" September 2000 Available at
http://www.j-consortium.org
[3] Deters, M. "Dynamic Assignment of Scoped
Memory to Regions in Translation of Java to Real-

Time Java" M.S Thesis. Washington University.
Department of Computer Science, May 2003
[4] Corsaro, A; Cytron, R. K. "Efficient Memory
Reference checks for real-time java" In proceedings of
the ACM Conference on Languages, Compilers and
Tools for Embedded Systems (LCTES03). San Diego,
California June 2003. pp 51-58
[5] Higuera-Toledano, M.T. et al.; Memory
Management for Real-Time Java: An Efficient Solution
using Hardware support. Real-Time Systems 26(1): 63-
87 (2004).
[6] Bacon, David F.; Cheng, P.; Rajan, V.T.
"Metronome: A Simpler Approach to Garbage
Collection in Real Time Systems". First Workshop on
Java Technologies for Real-Time and Embedded
Systems (JTRES03). Catania, Sicily, November 2003.
LNCS vol. 2889, pp. 166-178
[7] Sharp, D.C.; Pla, E.; Lueke, K.R. "Evaluating
mission critical large-scale embedded systems
performance in Real-time Java." In proc. of 24th IEEE
Real Time Systems Symposium (RTSS03). December
2003. pp. 362-365
[8] Dibble, P. "Non-Allocating Methods" Draft 1 for
discussion, September 2004. Available at
http://www.rtsj.org
[9] Timesys Corp. "JTime virtual machine".
Available for downloading at http://www.timesys.com
[10] Basanta-Val, P.; García-Valls, M.; Estevez-
Ayres, I. "Towards the Integration of Scoped Memory
in Distributed Real-Time Java" In proceedings of the
8th IEEE International Symposium on Object-oriented
Real-time distributed Computing (ISORC05). Seattle,
Washington. May 2005.
[11] Toefte, M.; Birkedal, L.; Elsman, M.; Hallenberg,
N. "A Retrospective on Region-Based Memory
Management" Higher-Order and Symbolic
Computation Journal, volume 17, number 3. September
2004 pp. 245-265

