
De-Layered Grid Storage Server

H.Shrikumar
Ipsil Inc., Cambridge MA, shri@ipsil.com

Abstract

Networks have become faster and disks have become fatter
at a pace that, despite Moore’s law, CPU developments have
simply not been been able to keep up with. We present a Grid
Storage Server which is capable of scaling up to meet the
”terabit-terabyte” demands of very large scale grid compu-
tation applications with large data sets.

The Grid Storage Server is implemented almost completely
in silicon, whether FPGA or ASIC; the fast-path of this server
does not use a CPU or von Neumann style (instruction/data)
machine. Instead, multiple layers of a protocol stack are com-
piled into a hardware engine that processes all layers concur-
rently on-chip. This ”serverless” design allows it to scale up
to match ”terabit” network speeds and ”terabyte” disk ca-
pacities enabling large scale grid applications.

At a price-point a small percent of that of a server-based
design, the Grid Server incorporates a standards compliant
high-performance TCP stack that can saturate 40Gbps us-
ing a single or multiple TCP connections. The current de-
sign directly attaches to a storage array of 48TB capacity.
The storage array is organized with a fault-tolerant RAID for
performance and reliability; the RAID configuration is adap-
tive and can be tuned to conflicting application needs. As
a bonus, because the control-plane in the silicon-based TCP
engine has very low jitter, the protocol engine has mecha-
nisms for nanosecond precision clock synchronisation across
very large distances, thus, for the first time, enabling trans-
continental real-time and temporal grid computation and
database applications.

1 Introduction

The following two trends in computing are well known –
First, where demand for computational horse-power has out-
stripped Moore’s law, the notion of cluster computing has
provided an answer, by harnessing aggregate CPU power
across many machines[19]. Second, wide-area network links
with bitrates approaching 40Gbps per lambda are now being
deployed; these speeds are comparable to CPU-memory bi-
trates within traditional computer systems. This two trends
have together enabled compute clusters to be geographi-
cally dispersed, which is the notion of Grid Computing.

Figure 1: Storage and Server Cost Trends

Such architectures are applicable to ”Big Science” applica-
tions[19,22] as well as data-hungry distributed commercial
applications such as Decision Support[23].

The comparable trends in storage are more interesting.
While server and disk-drive unit costs have remained almost
stationary, disk density has been growing at 100% CAGR[20]
which is significant because it is even faster than Moore’s
Law (25-43% CAGR). Thus disks with areal densities of
100 Gb/in2 disks are around the corner[21]. At the same
time disk access-times and access-rates have not kept up. To-
gether this means future applications would of necessity de-
mand clusters of disks aggregated into virtual file-systems.

Typically, clustered storage-servers are deployed in a Com-
putation Grid to (1) organize the raw bulk data storage into
usable file-systems, (2) to perform locking and other con-
sistency maintaining and co-ordinating procedures across the
multiple geographically scattered users, and (3) to serve the
data on protocols that are compatible with wide area net-
works, for eg. storage protocols that are layered over the
TCP/IP suite. With currently available implementations,
these protocols require software implementations[2] which
therefore continue to be hosted on servers of traditional von
Neumann architecture. TCP-offload engines (ToEs)[1,25] are
a partial alternative to software TCP stacks; while they help
to augument server capacity, they themselves continue to be
limited by scaling with Moore’s law, which we have observed
is not fast enough.

This can be seen in Figure 1 which compares the cost of
digital storage against traditional paper and film. It can be

1

Figure 2: ”Serverless” Grid Storage Server

seen that with the introduction of small form-factor disks in
1996, the per-megabyte cost of raw digital storage (red line)
has fallen below that of paper. However, the cost of a fully
loaded server with disks continues to be much higher. A few
example price points for a 2TB server, a typical ”Enterprise”
configuration (green-line), show a cost range of 4800 to 175
USD-per-GB (details in Section 5). It can be seen that with
traditional server architectures, the cost of digital storage is
not competitive yet against a 5000 year old medium.

In the work reported in this paper, we present Grid Storage
Server, a distributed disk block- and file-server architecture
well suited for Grid Computing applications that can be im-
plemented at a significantly lower cost (27 USD-per-GB for
2TB, and approaching raw-disk costs for 48TB).

1.1 All-Silicon Grid Storage Server

The Grid Storage Server (Figure 2) is implemented using two
different types of protocol engines, both based on the Flow-
Stack machine described in this paper. It is backed by an ar-
ray of 96 inexpensive disks that are directly attached to the IP
networking infrastructure without any intervening software
servers with traditional von Neumann CPUs. The FlowStack
based disk-network-interface chips are inexpensive enough
to be absorbed into the price of a commodity harddisk. The
Grid Server can be realized in under $57,500 for such a con-
figuration; implementations using conventional server-based
technology which can be as high as $9.5mn for a comparable
48TB system.

This aggregation of disks is orchestrated by a small set
of meta-data servers, which run traditional software imple-
mentation of control algorithms for metadata management,
access-control, locking, logging, recovery and backup, but
since they are not on the fast-path they are realized using in-
expensive and low-performance machines.

Figure 3: FlowStack disk-block server with IDE

1.1.1 TCP-Termination Engine and File Server

The TCP termination engine uses the FlowStack machine to
implement a fully standards-complaint TCP/IP stack, and is
capable of saturating a 40Gbps OC-768 pipe with a single
or multiple TCP stream(s)1. It is implemented completely in
silicon, on a single FPGA board with two 40Gbps interfaces
(not shown).

The TCP-termination engine supports multiple simultane-
ous TCP streams. It maintains one TCP connection per client
on the network side, delivering file-services over RDMA. In
addition it separately maintains one TCP connection per disk-
drive, connecting via a block-server protocol. These two dif-
ferent classes of connections are interconnected to each other
via the file-server application-layer component which is also
resident in the FlowStack silicon (Figure 5).

1.1.2 Disk Block Server:nbd

Figure 3 shows our all-silicon implementation of the disk
block-server component. Each disk server consists primar-
ily of a traditional inexpensive commodity disk directly con-
nected to the IP router by a silicon protocol engine. This pro-
tocol engine implements in FlowStack hardware the equiva-
lent functionality of a TCP/IP stack plusnbd , a disk block-
server upper layer protocol. Thus, while the meta-data is
managed by the CPU-based meta-data servers, the data-
blocks themselves flow directly from the IP attached disks
into the wide-area Grid fabric; scalably bypassing von Neu-
mann and IO-bus bottlenecks.

1.1.3 High Precision and Low-jitter NTP

In addition, the TCP stack, being implemented in silicon,
has very low and predictable jitter; of the order of the baud
time of the interconnect on the ingress channel. With OC-
768 SONET interfaces, this jitter can be globally bounded

1Perhaps it is currently the world’s fastest TCP stack

2

in the nanosecond range. With care, this can be used to au-
gument global time-synchronization protocols, such as NTP,
to improve their precision by 5 or 6 orders of magnitude
compared to a software NTP implementation. Such a pre-
cise NTP service can be used by temporal and real-time
databases and transaction managers implemented on the Grid
Server. This nsec-precision time-synchronisation mechanism
also enables several trans-continental grid-based distributed
scientific computation applications, eVLBI radio astronomy
(extremely-Very Large Baseline Interferometry) being one
example.

2 Grid Workload Characteristics

As grid applications evolve, the next-generation of widely
deployed grid applications are expected to work with data-
sets several orders of magnitude larger than anything so far
encountered. The Large Synoptic Survey Telescope (LSST)
uses a 3-gigapixel camera will produce up to 20 terabytes
of data per night. Weather models commissioned by the In-
tergovernmental Panel on Climate Change (IPCC) produce
7.5TB of data for each 100-year simulation. The Large
Hadron Collider (LHC) will produce close to a petabyte per
second of raw observations, which will be culled down to
1500 GB per day[22]. In the commercial world[23], there
are decision support databases with 29.2 TB, and transaction
system databases with 18.3 TB.

As a specific motivating example, we use the newly
evolving radio-astronomy technique of eVLBI (extremely-
Very Large Baseline Interferometry) which utilizes multi-
ple radio-telescopes in different parts of the globe to si-
multaneously collect signals from the same part of the sky.
In one recent proof-of-concept experiment[5,18], real-time
fringes were detected using the EVN telescopes in Cam-
bridge (UK), Torun (Poland) and Westerbork (Netherlands)
and the 305m Arecibo dish observing ICRF reference source
0528+134. Ideally, a typical one hour observation would
produce a broadband signal sampled at 800Msps with a
32bit resolution, collecting 5.7TB of data per hour per tele-
scope. Raw data accumulated over several days will be
repeatedly accessed as input to different kinds of analysis
and experiments. Additionally, since the application requires
time-synchronized measurement, the silicon supported high-
precision NTP in FlowStack could also be very useful.

3 Protocol Engine Component

3.1 Traditional NPU v/s ASIC dichotomy

We would like to compare and contrast FlowStack with the
two competing existing approaches for the implementation of
protocol offload engines[1], both of which have their serious

Figure 4: FlowStack machine architecture

limitations. One approach implements the protocol engines
directly in silicon, while the other uses a set of special pur-
pose RISC CPU cores on a single chip.

The first type of implementation uses custom state-
machines implemented in VLSI ASICs to implement various
elements of a protocol stack. This approach is exemplified by
the iReady TCP Offload processor, EthernetMAX[2] or the
Univ of Oulu WebChip [3]. Manually translating complex
protocol specifications into Verilog gate structures for imple-
mentation in silicon is expensive and inflexible; investments
in the range of $50-70mn have been reported[4].

The second approach to implementing protocol offload is
in the form of a pipeline of RISC processors on a system-on-
a-chip (SoC). This class of implementation is also known as
NPU (Network Processing Units); a number of NPUs have
been benchmarked in[1]. The current crop of NPU devices
scale upto 4 to 10 Gigabits per second and cost around $200-
500, or in the range of $1000-3000 for a complete network
interface card containing the chip. While the RISC CPU ap-
proach is certainly more flexible and programnmable, it is
not inexpensive and does not scale very well. The technolog-
ical future of this architecture is forever tied to the limitations
of Moore’s law, which for our purposes is simply not fast
enough.

3.2 The FlowStack Architecture

The FlowStack architecture avoids this conundrum by fol-
lowing a design approach which strikes a new balance be-
tween ease of programming and the speed of silicon imple-
mentation.

The principal components of the FlowStack protocol en-
gine are depicted in Figure 3. The engine consists of a rather
thin scaffolding or ECA harness of hand-coded ran-
dom logic which supports the operation of the ECA Table, a
rather large AND-OR plane of logic which is implemented
using semi-automated means. This latter logic plane is called
theECA-table , or Event-Condition-Action table.

The FlowStack Scaffolding contains a collection

3

Figure 5: Slices - De-layered Programming Model

of primitive functional units, including counters, registers
and other protocol-specific functional units which are used
by the ECA table. For instance, there are several different
types of counters, some of them are upcounting while other
down-count, and some saturate at the top-count while oth-
ers are designed to roll-over. Other functional elements in-
clude barrel-shifters, ones-complement adders and LFSR im-
plementations of CRC32 and CRC16. These counters and
functional units dont have anya-priori assignment; the ECA
table can use any of these structures for any purpose from
time to time. However, each such facility is ideally suited to
perform a class of tasks that are commonly expected in pro-
tocol processing.

The ECA-table orchestrates the operation of all the
counters and other functional units in the scaffolding. As
the data arrives into the device, it flows past the ECA table
structure at full wire-speed. The ECA table contains all the
boolean logic terms to parse the packets and to save relavant
information into various machine registers. These registers
are saved in aContext Memory at the end of a packet,
and restored upon the arrival of the next packet in the same
flow.

In a sense, the FlowStack machine can been visualized as a
giant ALU with one single instruction2 and the context mem-
ory is akin to a register file. Conceptually the machine takes
an entire packet as its input word for each beat of its opera-
tion. It indexes into and reads the current status of the context
memory pertaining to the connection and after completing the
computation of all the protocol layers for this packet, it writes
the new status words back to the context memory.

3.3 Layers v/s Slices

The ECA-table is implemented by composting a collection
of slices that are individually implemented and tested. How-

2Is it a most complex CISC or a most reduced RISC?

ever, unlike horizontal layers in traditional protocol imple-
mentations, each slice represents a vertical section through
the protocol stack, which follows the life of a packet from the
network interface all the way up the protocol stack to the ap-
plication layer and back down the stack to the egress port on
the network. This vertical orientation of the slices allows the
programmer a first opportunity for cross-layer optimizations.

Each slice is programmed in a language that is syntacti-
cally a simple subset ofCand Verilog, and is as easy to code
as traditional software. The statements are of the form –
if (network event) // event
at (context == boolean) // condition
{ context = new values } // action .
While the final compiled ECA-table is monolithic hardware,
the steps that lead to its implementation are modular, with
striking resemblence to software development.

Each such hand-optimzed slice is then combined, or
composited , along with all the other slices into the final
ECA-table. The scripts that accomplish this compositing per-
form some consistency and coding style checks and can de-
tect and report conflicts between slices that may have been
inadvertently coded. Any conflicts that are detected are re-
solved as follows:

1. Protocol Functional Verification stage: A conflicting
case is a packet that is claimed by two or more ECA
slices. The semantics is formally disambiguated by
specifying a unique priority order during compositing
of the slices. This resolution of a conflicting case can
be analyzed for formal correctness using reachability
and bisimulation[16] against a traditional software im-
plementation. Thus, the formal equivalence and hence
correctness of this silicon implementation can be com-
pared against a known-good, albeit slower, traditional
software reference implementation.

2. Compositing Time: The ECA slice compositing tool can
identify and flag all the overlap cases. These overlap
cases can be verified against the list of overlaps that have
been explicitly analyzed during the protocol functional
verification stage. Any errors introduced after the Pro-
tocol Verification Stage will thus be flagged during au-
tomated compositing.

3. Synthesis time: During logic synthesis, the silicon
compiler or synthesis is instructed via thefullcase
pragma to identify and flag any cases that overlap in
their enabling conditions. Barring bugs in the composit-
ing tool, such cases are not possible; this checking stage
thus acts as a security against implementation errors in
the Compositing Tool.

4. At Runtime: The remaining logical conflicts between
cases in the ECA table slices have now been separated

4

Figure 6: De-layering and Compositing

by explicit prioritization of the choices. Each such con-
flict case gets reduced into priority encoder by the syn-
thesis tool in the final ECA table logic. Again, func-
tional correctness is assured. The slight speed reduction
contributed by each such priority encoder is an inherent
cost in that protocol stack; this cost can be mitigated by
redesigning the protocols themselves or by tuning their
constants to avoid overlap cases. Again, searching in
the critical path of the synthesized logic for priority en-
coder structures will give a strong hint about the higher
level protocol elements whose conflict contributes to the
slow-down. Having obtained such a hint from the syn-
thesized logic, it is easy to reflect the knowledge back
to the high level ECA slices and re-iterate the design.
Unlike in the case of hand-crafted custom ASIC im-
plementation of protocol engines, it is not necessary to
hand-craft the logic solution to the speed bottleneck at
the low-level of random logic.

Upon compositing, all the slices of the ECA table are re-
duced to form a single large register-free plane of boolean
logic. This structure is itself not intended to be manually
edited. Instead it is passed on to synthesis tools (silicon com-
pilers) which then reduce the ECA table into actual gates in
the final target silicon device.

All transitions irrespective of the layer find themselves res-
ident in the ECA table, and anything that is a state variable
goes into the context memory (Figure 6). The synthesis tool
is able to automatically identify homomorphic subsets of the
gate structures in the ECA table, even if they be from concep-
tually unrelated layers or slices, and is able to further combine
them together to reduce the logic and to improve both clock
speed as well as area and power consumption. This is the
second opportunity for optimization which is not available in
either the NPU or custom ASIC approach described earlier.

Figure 7: Bitwise RAID - write operation

3.4 FlowStack Advantages

As a result of benefiting from the cross-layer optimization op-
portunities, both those arising during manual implementation
the vertical protocol slices as well as those arising during the
automated synthesis of the composite ECA table, the Flow-
Stack engine produces a silicon core that is simultaneously
very compact, high performance and easy to program.

For instance, a complete implementation of TCP/IP along
with support the the fast path components of RDMA (Re-
mote Direct Memory Access) and nbd (network block dae-
mon) protocols is only about 25,000 gates. This occupies
only about 30% of an inexpensive FPGA device, such as the
Xilinx Spartan. Alternatively, it can be commercially imple-
mented in custom silicon for even further savings.

Arising from a combination of the fact that the FlowStack
design already has very few gates complexity to begin with,
and the fact that most real-life protocols, especially when
carefully optimized, have a fairly regular structure, the re-
sulting FlowStack core is both very small and capable of
very high speed operation. In a Xilinx Virtex-II FPGA,
the FlowStack engine can be clocked in excess of 125Mhz
clock-speeds, at which speed it is capable of handling several
100Gbps of network traffic.

4 File System Component

4.1 RAID5 Operation

Unlike a software stack where generally entire packets are as-
sembled into linear buffers before processing, a silicon proto-
col engine allows (and generally requires) all processing to be
be done deterministically, in a fixed number of clock cycles
and at wire-speed. This means that, in the FlowStack engine,
it is almost as inexpensive to do byte-level (or even bit-level)
manipulations on files as it is to do block level operations;
there is no large fixed-cost of an invocation, context-switch

5

or interrupt-request that has to be amortised across the num-
ber of bytes, and thus requring a large buffer.

Secondly, due to the de-layering enabled by the program-
ming of the FlowStack ECA core in units of vertical slices,
knowledge about the fate of the packet at as high as the ap-
plication layer is available even to the physical and network
layer behaviours. In other words, this is a form of interlayer
processing[26] in which it is possible to determine the dis-
position fate of practically every octet in a packet almost at
wire-time, as they arrive.

Together, the above two features enable a unique form of
RAID5 implementation. Let us consider that, as a packet ar-
rives, at wire-time, its headers are parsed and it is determined
that the packet is carrying a data write to a file. As shown in
Figure 7, each octet is split into 8-bits, and a parity bit is com-
puted. These 9-bits are then accumulated into buffers which
are written into bit-wise and read out byte-wise. Thus a sin-
gle 8-Kbyte write PDU from the network is broken into nine
1-Kbyte data blocks which are then sent to the respective disk
drives. The parity scheme can be generalized to any number
of bits or be replaced by a more efficient ECC mechanism.

A unique advantage of this RAID-5 is that it does not suffer
from the short-write problem[8,9] that plagues all software
RAID implementations; from a storage network viewpoint of
computing the parity, writing a single octet is almost as inex-
pensive as writing an entire disk block. Writes shorter than
512 bytes sectors are implemented as a read-modify-write op-
eration by the FlowStack core in the disk block servers, but
this is a fast operation as it operates out of on-disk buffers and
over a dedicated IDE/SATA interface with spare capacity.

4.2 File System Metadata

The Grid Server uses a filesystem whose Fast Path is imple-
mented in the FlowStack engines in silicon. The meta-data
of the file-sytems, along with all policy and permission con-
trol, is not accelerated, but implemented in traditional soft-
ware file-server machines.

A network PDU carrying a file-open() operation is
parsed by the TCP-termination engine and the parameters are
passed on to the meta-data servers. After appropriate access
control, the meta-data servers communicate back to the TCP-
termination engine a block-allocation control-block which
identifies a (possibly pseudo-random)algorithm to map
octets (file-pointer or equivalently TCP-sequence number) to
blocks to disk-drives, and analgoseed which offsets the
start within this block-allocation sequence. This information
is saved along with the TCB (TCP control block) and allows
the TCP-engine to perform all RAID and nbd computations
autonomously, at wire-time.

The RAID controller embodied within the FlowStack en-
gine can be programmed to support most known RAID
mechanism[8,9,10,11,13,14,15], such as RAID5, RAID10 or

ROWB. Also, this choice can be made independantly for each
file in the data store, or even each generation of a file. A
write to a file that advances its generation count can be con-
currently supported while a read of the previous generation
is still in progress by bifurcating the file into extents; oper-
ations on file-offsets within the two extents are governed by
differentcontrol-blocks whose parameters have no col-
lisions on physical disk-blocks.

5 Cost Comparisons

In the following section, we compare the price point achieved
by the prototype Grid Storage Server against a traditional
storage server built out of off-the-shelf components config-
ured for a similar aggregate capacity and performance. Along
each separate dimension, the Grid Storage Server produces
cost savings of an order of magnitude or more.

5.1 RAID Controller Costs

In a traditional storage server, the RAID functionality is im-
plemented using commercial RAID controllers for high per-
formance. These RAID controllers add significantly to the
cost of the system. As a point of comparison, a typical RAID
controller bank for a traditional PCI-architecture server (In-
tel SRCU42L, each rated at 320MB/s thus needing 16 units
to aggregate to 40Gbps), has a street-price of approximately
$7787.

In the Grid Storage Server, the RAID functionality is im-
plemented within the same FlowStack protocol engine, along
with the TCP/IP Offload and the block server upper layer pro-
tocol, and therefore has zero incremental cost.

5.2 Server System Costs

In terms of storage costs, the Grid Storage Server approaches
the ideal ofData Bricks proposed by Jim Grey[7]. The
incremental cost of the silicon for the FlowStack protocol en-
gine per network-attached disk is in the region of $25 (Xil-
inx Sparatan). The cost of the FPGA used to implement the
TCP termination engine at the 40Gbps network attachment
is in the $500 range. Adding the cost of the I/O transcivers
($3000 for the SFI-5 optics to connect to the OC-768 links,
plus $4000 for 96 instances of gigabit copper PHYs), the total
cost of the server subsystem is in the $9500 range. The cost
of the bank of 96 inexpensive commodity IDE disks will add
another $48,000 to the price, bringing the total system cost of
the server subsystem to about $57,500 for a storage server.

In comparison, the recent demonstration of 100Gbps of ag-
gregate TCP transmission at SC2004[17] used 10Gbps TCP
offload engines costing approximately $2000 each, hosted on
servers that cost in the order of $10,000 each. The cost of the
server infrastructure comes up to approximately $188,000;

6

however even this pales in comparison to the cost of a fully
configured disk storage array.

The raw storage costs dominate the application; a 48TB
Fibre Channel or SCSI array (eg. NetApp FAS960c or Sun
StorEdge 3310) would add $3.12 to 9.5 million. SATA based
storage would be lower in cost; an EqualLogic PeerStore PS-
series block server built out of SATA disk arrays would cost
only about $685K for the same 48TB capacity. A 48TB
BladeStore array from StorageTek, built out of ATA disks
would only cost $160K. These are for raw storage, with no
application and transport protocol termination.

6 Conclusions

The Grid Storage Server, built using the silicon-implemented
protocol engine based on the FlowStack architecture demon-
strates that the storage subsystem costs of a Computational
Grid can be brought down by an order of magnitude or more.
A server for a 48TB disk array can be configured for a price
that is two orders of magnitude less than that of conventional
server architectures.

In addition, the Grid Storage Server can saturate a 40Gbps
pipe with a single or multiple TCP connection(s); the tradi-
tional server implementations can do so only using multiple
parallel TCP connections. The silicon implementation of pro-
tocol engines in the Grid Storage Server is significantly more
faster and deterministic. This allows FlowStack augmented
NTP to provide nanosec time-synchronisaton.

The Grid Server described in this paper is currently being
assembled in prototype form. The components that make up
the system have been succesfully implemented and quantified
either on a lab bench or in simulation.

References

[1] Memik et al., ”Evaluating Network Processors using Netbench,
ACM Trans. on Embedded Computing System (2002)”
[2] Nikos Kontorinis, Dustin McIntire, Zero Copy TCP/IP,
http://www.ee.ucla.edu/˜ingrid/Courses/
ee201aS03/lectures/Zero-CopyTCP.ppt
[3] Riihijarvi, P.Mahonen, M.J.Saaranen, J.Roivainen, J.-
P.Soininen, ”Providing network connectivity for small appliances:
a functionally minimized embedded Web server”, IEEE Com-
munications Magazine, Oct 2001, pp74-79, Volume 39, Issue
10
[4] ”iReady to Go”, Byte and Switch, April 14, 2004
http://www.byteandswitch.com/document.asp?
doc.id=51001
[5] eVLBI fringes to Arecibo http://www.evlbi.org/
evlbi/te024/te024.html
[6] H.-I. Hsiao and D. J. DeWitt. ”Chained Declustering: A New
Availability Strategy for Multiprocessor Database Machines.”, Pro-
ceedings of the 6th Intl Conference on Data Engineering, pages 456–
465, 1990.

[7] Tom Barclay, Wyman Chong, Jim Gray ”A Quick Look at
SATA Disk Performance”, Microsoft Research, 455 Market St.,
Suite 1690, San Francisco, CA 94105
[8] Pei Cao, Swee B. Lim, Shivakumar Venkataraman, and John
Wilkes, ”The TickerTAIP parallel RAID architecture”, Proceedings
of the 20th Annual International Symposium of Computer Architec-
ture, May 1993, 52-63.
[9] M. Stonebraker and G. A. Schloss. ”Distributed RAID - A New
Multiple Copy Algorithm”, Sixth Int’l. Conf on Data Engineering,
pages 430–437, 1990.
[10] J. Ousterhout. ”Why aren’t operating systems getting faster as
fast as hardware?” In Proc. of the Summer USENIX Conference,
pages 247–256, June 1990.
[11] J. Gray, B. Horst, and M. Walker. ”Parity striping of disc arrays:
Low-cost reliable storage with acceptable throughput”. In Proceed-
ings of the Int. Conf. on Very Large Data Bases, pages 148–161,
Washington DC., Aug. 1990.
[12] Lee, E.K., ”Highly-Available, Scalable Network Storage”,
1995 Spring COMPCON, Mar. 1995.
[13] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. ”The HP Au-
toRAID Hierarchical Storage System”, In Proc. of the 15th Symp.
on Operating Systems Principles, Dec 1995.
[14] B. R. Montague, ”The Swift/RAID distributed transaction
driver,” Tech. Rep. UCSC– CRL–93–03, Computer and Informa-
tion Sciences Board, UCSC., 1993.
[15] K. Hwang, H. Jin, and R. Ho, ”RAID-x: A New Distributed
Disk Array for I/O-Centric Cluster Computing”, Proceedings of 9th
IEEE International Symposium on High Performance Distributed
Computing (HPDC-9), August 1-4, 2000, Pittsburgh, Pennsylvania,
USA, pp.279-286.
[16] R. Milner, J. Parrow, D. Walker : ”A Calculus of Mobile Pro-
cesses - Part I” – LFCS Report 89-85. University of Edinburgh June
1989.
[17] Fifth Annual HPC Bandwidth Challenge,http://www.
sc-conference.org/sc2004/bandwidth.html
[18] C.Salter, T.Ghosh, Arecibo observatory eVLBI experimental
setup, personal communication, Dec 2004.
[19] Christian Tanasescu, SGIInc., ”From Top500 to
Top20Auto Survey of HPC Installations in the Automo-
tive Industry”, SC-2003 Conference, Phoenix, November
18,2003. http://www.top500.org/lists/2003/11/
Top20Auto_Top500V2.pdf
[20] Alan Dix, Janet Finlay, Gregory Abowd and Russell Beale,
”Human Computer Interaction”, Prentice Hall Europe.
[21] E. Grochowski, R.D. Halem, ”Technological impact of mag-
netic hard disk drives on storage systems”, IBM Systems Journal,
July, 2003.
[22] Richard Mount et al, ”The Office of Science Data-Management
Challenge”, Report from the DOE Office of Science Data-
Management Workshops, MarchMay 2004
[24] Winter Consulting’s 2003 survey of Largest DBs,
http://mxtest.wintercorp.com/vldb/2003_
TopTen_Survey/TopTenWinners.asp
[25] Jeffrey C. Mogul, TCP offload is a dumb idea whose time has
come, Proceedings of HotOS IX: The 9th Workshop on Hot Topics
in Operating Systems, May 18-21, 2003, Lihue, Hawaii, USA.
[26] D. D. Clark, D. L. Tennenhouse, ”Architectural Considerations
for a New Generation of Protocols”, Proc. ACM SIGCOMM’90.

7

http://www.ee.ucla.edu/~ingrid/Courses/ee201aS03/lectures/Zero-CopyTCP.ppt
http://www.ee.ucla.edu/~ingrid/Courses/ee201aS03/lectures/Zero-CopyTCP.ppt
http://www.byteandswitch.com/document.asp?doc.id=51001
http://www.byteandswitch.com/document.asp?doc.id=51001
http://www.evlbi.org/evlbi/te024/te024.html
http://www.evlbi.org/evlbi/te024/te024.html
http://www.sc-conference.org/sc2004/bandwidth.html
http://www.sc-conference.org/sc2004/bandwidth.html
http://www.top500.org/lists/2003/11/Top20Auto_Top500V2.pdf
http://www.top500.org/lists/2003/11/Top20Auto_Top500V2.pdf
http://mxtest.wintercorp.com/vldb/2003_TopTen_Survey/TopTenWinners.asp
http://mxtest.wintercorp.com/vldb/2003_TopTen_Survey/TopTenWinners.asp

	Introduction
	All-Silicon Grid Storage Server
	TCP-Termination Engine and File Server
	Disk Block Server: nbd
	High Precision and Low-jitter NTP

	Grid Workload Characteristics
	Protocol Engine Component
	Traditional NPU v/s ASIC dichotomy
	The FlowStack Architecture
	Layers v/s Slices
	FlowStack Advantages

	File System Component
	RAID5 Operation
	File System Metadata

	Cost Comparisons
	RAID Controller Costs
	Server System Costs

	Conclusions

