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Abstract In general, an event, after passing through hardware, 

is first handled by a real-time kernel (part of an 
operating system layer in Fig. 1) and only then by an 
application task.  A respective sequence of handling 
events, following the layered approach from Fig. 1, has 
been outlined in Fig. 2. 

 
This paper outlines an approach and presents 

preliminary results to describe behavior of real-time 
software architectures using concepts from dynamical 
systems. The basic idea is to change deadlines by 
decreasing them within certain range and take 
measurements on the number of missed deadlines and 
the total time by which the deadlines have been missed.  
A resulting curve, illustrating the dependence between 
the missed deadlines and their decrease, characterizes 
system dynamics.  It can be approximated by a straight 
line or an exponential shape, from which certain 
dynamic parameters can be calculated. 

 
 
 
 
 
 
 
 
  
 1. Concept of Basic Metrics 
  
 This paper addresses the problem of evaluating 

behavioral properties of real-time software architecture. 
When building a real-time application, especially when 
designing its software architecture, the developers need 
to have some way of assessing its performance before 
deployment.  Therefore it is essential to find good 
metrics and measures characterizing behavioral 
properties of software, that is, its dynamics.  In this 
section, we briefly explain the basic concept of our 
approach, as well as present a benchmark, which is a 
starting point to deriving more involved metrics of real-
time architecture performance. 

 
 
 

Fig. 1. Embedded avionics architecture  
(from ARINC 653 [1]). 

 
 
The key point to remember is that before an event 

reaches the application task designed for it, it has to 
pass through several layers of hardware and software.   

 

 

 
1.1 Responsiveness and Timeliness 
 

To deal with performance of real-time software, we 
need to realize first, how such software responds to 
events that it has to handle.  Our model uses a 
representative real-time application, embedded avionics 
architecture, widely accepted by the aviation and 
aerospace industry (Fig. 1 [1]).  It shows the layered 
approach to handling events by a real-time computer. 

Fig. 2. Systematic view of event handling. 
 



All latencies and response times illustrated in Fig. 2 
contribute to the basic real-time system parameter we 
can call responsiveness.  It can be measured as the 
worst-case time that elapses from the occurrence of a 
particular event to the start of its processing by an 
application task, and in absolute terms is equal to the 
interrupt task response time defined in Fig. 2.  This time 
can be determined separately for every real-time kernel 
and underlying hardware platform independently of any 
application, therefore it is not of interest for this work. 

Under the assumption that a real-time application 
demonstrates satisfiable performance if it meets its 
timing constraints (deadlines), we proposed the 
following two metrics for evaluation of timeliness: 

• the number of times the deadlines are missed 
(percentage of missed deadlines), 

• the overall accumulated time by which the 
deadlines are missed. 

They can be evaluated for a particular software module 
on a particular node. 

What we concentrate on in this paper is how to 
evaluate behavior of the application processes (tasks).   
To do this, we have to look at another parameter, which 
can be termed timeliness, that is, the property 
characterized by the worst-case time that is needed for 
processing of an already perceived event by an 
application task.  The question we are trying to address 
below is: How to measure this property? 

To validate the metrics so conceived, we performed 
sample experiments, for various configurations of 
VxWorks real-time kernel and C/Java sockets, and for 
various CORBA implementations of the five-task 
benchmark.  The results reported in [3] validated its 
concept confirming essential facts, such as superiority of 
shared memory communication over sockets or much 
better performance of real-time CORBA/TAO than 
CORBA’s non-real-time versions.    

1.2 Real-Time Software Benchmark At the same time, based on validation experiments, 
several other observations were made, such as:  

For a real-time architectural pattern described in [2], 
composed of all essential elements of a real-time 
application (such as measurement/control, human, 
communications, database, timing, and processing tasks 
and interfaces), we developed a simple benchmark to 
analyze its behavior. For simplicity, we include here 
only a brief description of a five-task data acquisition 
system, which performs the following functions, 
illustrated in Fig. 3 [3]: periodic and aperiodic sensor 
readout (T1 and T2), computational algorithm (T5), 
database access (T4), and user interface (T3).  Each of 
these tasks may run on the same processor or on separate 
nodes communicating with other selected nodes. 

- how much one implementation is better or worse 
than another or 

- at what particular values of deadlines performance 
of the application begins to degrade. 

The benchmark was then applied to two large scale 
applications implemented in CORBA: an air traffic 
control system simulator (ATCS) [3] and a satellite 
ground control station (SGCS) [4].  

In the air traffic control problem, it was found to be 
effective for detecting unusual behavior of software in 
real time, when applied to the evaluation of performance.  
For example, experimental results show quantitatively 
how much degradation in performance of a certain 
component in ATCS (module performing conflict 
detection and resolution) can be expected, if the number 
of aircraft directly involved in computations increases.  
If the number of aircraft is increased five times, the 
performance of the whole system degrades from two 
times for light-load modules (such as a Collision 
Detection module, Fig. 4) to two orders of magnitude for 
heavy-load modules, in terms of the overall time the 
deadlines are missed.  

 
 

 

 
Fig. 3. Five-task benchmark architecture. 

 
Fig. 4. Overall time the deadlines are missed (ms) in 

100 experiments, for Collision Detection module. 



Based on these observations, we can define a new 
parameter as a metric of software performance, called 
software sensitivity [3]: 

In addition, applying the benchmark to the ATCS 
showed quantitatively where the computational 
bottleneck of the entire system was located (it turned out 
to be in the GUI module, where most functions were 
concentrated). 

 
Software sensitivity is a measure of the 
magnitude of a software response to 
changes in the values of deadlines (when 
they are increased or decreased).  

In the SGCS system, the response time was analyzed 
using the percentage of deadlines missed for the satellite 
tracking module in such implementation.  The 
experiments measured the response time in the range of 
3000 to 10000 ms for each client. On increasing the load, 
i.e., the number of clients sending requests, from one to 
three and five, the range of response time also increases 
linearly.  Fig. 5 [4] shows typical deterioration of 
performance measured in terms of missed deadlines. 

 
The interpretation of software sensitivity in this sense 

is that the faster the curves in Fig. 4 and Fig. 5 
ascend/descend the more sensitive respective software 
architecture is.  When software is sensitive, a small 
change of a deadline length causes relatively larger 
changes in the number of deadlines missed. Practically, 
software sensitivity considered as metric shows whether 
performance degradation occurs sharply or gracefully.   

 

It is important to note that quantitatively, it is not just 
the slope of the curve, what we mean by sensitivity, 
therefore it is different from traditional understanding of 
this concept.  Software sensitivity can be represented 
quantitatively by the ratio of the change of response over 
the range of deadline lengths for the changed interval. 
Formally, sensitivity is a parameter that takes into 
account the slope of each curve, in relative terms, 
making curves and respective systems comparable.  

Fig. 5. Percentage of deadlines missed by  Practically, the first step in calculating the value of 
sensitivity, S,  is to linearize the curve in the interesting 
region.  Then, to account for relative differences in 
absolute values of deadlines for different systems, the 
actual value of sensitivity is calculated from the straight 
line fits, according to the following formula, where 
(x1,y1) and (x0,y0) are coordinates of respective points on 
the straight line reflecting the range considered: 

the Tracking Module for 5 clients. 
 
These basic results are used in the next section to 

derive two new measures of performance.  
 
2. Derived Metrics 
 
2.1 Software Sensitivity  
   (y  1 – y  0)/[(y  1 + y  0)/2] 

(x1 – x0)/[(x1 + x0)/2] Analyzing more closely the graphs in Fig. 4 and 5, 
one is tempted to ask a question: How significantly the 
degradation in meeting deadlines progresses, when the 
deadlines are shortened?  For example, some curves 
ascend slowly, as in Fig. 4, which corresponds to slow 
performance degradation, while some other curves may 
ascend very sharply, as in Fig. 5, which would mean a 
relatively rapid degradation of performance.  

 
By including relative values of ranges, the formula 
allows for comparison of different systems, for which 
deadline lengths may significantly differ in absolute 
values, but the system’s speed of response, that is, 
sensitivity, may be equivalent. 

Using this method, we can assess sensitivity of 
various implementations.  For example, as reported in 
[3], for a sophisticated air-traffic control system 
simulator, sensitivity measurements showed that the 
least sensitive implementation is the one with the 
interaction between the Communication component and 
the GUI component, which provided a significant insight 
into the way aircraft hand-offs were handled in software.  
Discovering such dependencies has a positive impact on 
software redesign at the development level, before 
deployment.  Overall, the sensitivity parameter tells 
designers, how fast the system degrades, if the deadlines 
are shortened, that is, how fast it gets saturated. 

Referring to Fig. 4, one can notice that, within the 
range of deadlines studied, the implementation is 
relatively indifferent to the shortening of predefined 
deadlines, since the performance degrades roughly twice 
over the range studied. This means that the system is not 
very sensitive to changes of deadlines within this range.  
However, the same statement is definitely not true for 
the implementation shown in Fig. 5, where the 
degradation of performance progresses significantly 
faster with the deadlines shortened. The performance of 
the Tracking Module under study deteriorates rapidly 
within 20-25% of deadline change in a certain range. 



3. Experiments 2.2 Software Dynamics 
  

Software sensitivity, although used for assessing the 
timing behavior of software, is essentially a steady-state 
parameter, because it does not depend on dynamic 
properties.  One would, however, be tempted to 
characterize software behavior using true dynamic terms. 

To verify the concepts of software sensitivity and 
software dynamics we conducted a series of experiments 
for a satellite ground control station being built at 
Florida Space Institute, in Orlando and Kennedy Space 
Center [4].  In a testbed performing the basic functions 
of the satellite ground control station, the following 
software modules were implemented: telemetry, GPS 
and database components connected to CORBA with 
GUI, running on a variety of heterogeneous platforms, as 
illustrated in Fig. 6. 

Looking closely at the respective performance curves 
presented in Fig. 4 and 5, one may ask a question: How 
linear is the curve in its descending region and would 
another type of approximation describe it better?  Trying 
exponential approximation, under the assumption that 
the descending part of the curve is not a straight line but 
an exponential curve, we can characterize it by a new 
notion called software dynamics, capturing the dynamic 
response to changes in software behavior under varying 
load.  The initial physical interpretation of the 
exponential curve is that the software performance is 
gradually descending when the load increases. 

 

Quantitatively, for an exponential curve of the form 
y=K*exp(-x/τ), representing the behavior of software, to 
characterize it one can use the following transfer 
function representing it as a first-order dynamic system: 
 

G(s) = y(s)/x(s) = K / (τ*s + 1) 
 
where its gain K=1, τ is a time constant, and s is a 
complex variable.  Time constant τ characterizes system 
dynamics and is a measure of the speed of system’s 
response to changes in load.  Following the practice of 
control engineering it can be calculated as 25% of a 
settling time.   Settling time, in turn, is the point where 
the descending curve reaches 2%-4% of its maximum. 

With this formula, the dynamics of software 
architecture can be represented by a dynamic equation 
using a Laplace transform.  This approach to software is 
completely unique in a sense that there are no available 
records in scientific literature of attempts to study the 
concept of software dynamics as a continuous property 
of software, which is by its nature discrete.  A review of 
computing literature for the last two decades indicated 
that there were only two papers dealing with software 
dynamics at all, but in a different sense than ours. 

Fig. 6. Satellite ground control station  
– partial implementation of a testbed. 

 
To measure the response time to GUI commands 

directed to telemetry, GPS and database components, 
experiments were conducted in the above configuration.  
Figures 7 and 8 present the results for a telemetry 
component, to evaluate its sensitivity and dynamics, 
respectively.  Results for the GPS component have been 
published elsewhere [7]. The combined results for all 
components are presented in Table 1. The software 
dynamics is measured as a time constant of the first 
order system, as explained in Section 2.2. The results 
show consistency with the intuitively perceived relative 
speed of respective modules.  

First, Motus, in 1985 [5], used the term software 
dynamics but in a different meaning, at a specification 
not the execution level, to study “the set of time 
constraints that a software system has to satisfy”.  
Bernstein, in 1996 [6] used this term in a meaning 
similar to ours, postulating the use dynamic measures to 
evaluate software quality.  However, Bernstein’s idea is 
consistent with the concept of software rejuvenation, 
which refers to software’s long-term execution.  In 
contrast to that, we are postulating to analyze software 
behavior in short term, by studying software in real time, 
under changing load. 

 
Table 1. Results of evaluating sensitivity & dynamics. 

Component Sensitivity Dynamics [ms] 
Database -- 165.0 
Telemetry 1.00 87.5 
GPS 1.64 15.0 

  



Software sensitivity is similar in technical meaning to 
the concept of elasticity used in economics.  Software 
dynamics goes further and involves a concept of a first-
order dynamic system by associating dynamic properties 
with software.  Thus, software can be described by 
notions from the theory of dynamical systems and its 
characteristics can be included in computational models 
involving Laplace transforms and time constants. 
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Experiments conducted for the telemetry module in a 
satellite ground control station testbed have initially 
confirmed the usefulness of both concepts, software 
sensitivity and software dynamics. They characterize 
steady-state and dynamic properties of software, 
respectively, and can be used to evaluate software 
architectures both for implementation properties and at 
the design phase. 

Fig. 7. Illustration of the sensitivity measurement for the 
telemetry component of the satellite ground station. 
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