

From Software Sensitivity to Software Dynamics:
Performance Metrics for Real-Time Software Architectures

Janusz Zalewski

Computer Science Department
Florida Gulf Coast University

Ft. Myers, FL 33965-6565, USA
zalewski@fgcu.edu

Abstract In general, an event, after passing through hardware,

is first handled by a real-time kernel (part of an
operating system layer in Fig. 1) and only then by an
application task. A respective sequence of handling
events, following the layered approach from Fig. 1, has
been outlined in Fig. 2.

This paper outlines an approach and presents

preliminary results to describe behavior of real-time
software architectures using concepts from dynamical
systems. The basic idea is to change deadlines by
decreasing them within certain range and take
measurements on the number of missed deadlines and
the total time by which the deadlines have been missed.
A resulting curve, illustrating the dependence between
the missed deadlines and their decrease, characterizes
system dynamics. It can be approximated by a straight
line or an exponential shape, from which certain
dynamic parameters can be calculated.

 1. Concept of Basic Metrics

 This paper addresses the problem of evaluating

behavioral properties of real-time software architecture.
When building a real-time application, especially when
designing its software architecture, the developers need
to have some way of assessing its performance before
deployment. Therefore it is essential to find good
metrics and measures characterizing behavioral
properties of software, that is, its dynamics. In this
section, we briefly explain the basic concept of our
approach, as well as present a benchmark, which is a
starting point to deriving more involved metrics of real-
time architecture performance.

Fig. 1. Embedded avionics architecture
(from ARINC 653 [1]).

The key point to remember is that before an event

reaches the application task designed for it, it has to
pass through several layers of hardware and software.

1.1 Responsiveness and Timeliness

To deal with performance of real-time software, we
need to realize first, how such software responds to
events that it has to handle. Our model uses a
representative real-time application, embedded avionics
architecture, widely accepted by the aviation and
aerospace industry (Fig. 1 [1]). It shows the layered
approach to handling events by a real-time computer.

Fig. 2. Systematic view of event handling.

All latencies and response times illustrated in Fig. 2
contribute to the basic real-time system parameter we
can call responsiveness. It can be measured as the
worst-case time that elapses from the occurrence of a
particular event to the start of its processing by an
application task, and in absolute terms is equal to the
interrupt task response time defined in Fig. 2. This time
can be determined separately for every real-time kernel
and underlying hardware platform independently of any
application, therefore it is not of interest for this work.

Under the assumption that a real-time application
demonstrates satisfiable performance if it meets its
timing constraints (deadlines), we proposed the
following two metrics for evaluation of timeliness:

• the number of times the deadlines are missed
(percentage of missed deadlines),

• the overall accumulated time by which the
deadlines are missed.

They can be evaluated for a particular software module
on a particular node.

What we concentrate on in this paper is how to
evaluate behavior of the application processes (tasks).
To do this, we have to look at another parameter, which
can be termed timeliness, that is, the property
characterized by the worst-case time that is needed for
processing of an already perceived event by an
application task. The question we are trying to address
below is: How to measure this property?

To validate the metrics so conceived, we performed
sample experiments, for various configurations of
VxWorks real-time kernel and C/Java sockets, and for
various CORBA implementations of the five-task
benchmark. The results reported in [3] validated its
concept confirming essential facts, such as superiority of
shared memory communication over sockets or much
better performance of real-time CORBA/TAO than
CORBA’s non-real-time versions.

1.2 Real-Time Software Benchmark At the same time, based on validation experiments,
several other observations were made, such as:

For a real-time architectural pattern described in [2],
composed of all essential elements of a real-time
application (such as measurement/control, human,
communications, database, timing, and processing tasks
and interfaces), we developed a simple benchmark to
analyze its behavior. For simplicity, we include here
only a brief description of a five-task data acquisition
system, which performs the following functions,
illustrated in Fig. 3 [3]: periodic and aperiodic sensor
readout (T1 and T2), computational algorithm (T5),
database access (T4), and user interface (T3). Each of
these tasks may run on the same processor or on separate
nodes communicating with other selected nodes.

- how much one implementation is better or worse
than another or

- at what particular values of deadlines performance
of the application begins to degrade.

The benchmark was then applied to two large scale
applications implemented in CORBA: an air traffic
control system simulator (ATCS) [3] and a satellite
ground control station (SGCS) [4].

In the air traffic control problem, it was found to be
effective for detecting unusual behavior of software in
real time, when applied to the evaluation of performance.
For example, experimental results show quantitatively
how much degradation in performance of a certain
component in ATCS (module performing conflict
detection and resolution) can be expected, if the number
of aircraft directly involved in computations increases.
If the number of aircraft is increased five times, the
performance of the whole system degrades from two
times for light-load modules (such as a Collision
Detection module, Fig. 4) to two orders of magnitude for
heavy-load modules, in terms of the overall time the
deadlines are missed.

Fig. 3. Five-task benchmark architecture.

Fig. 4. Overall time the deadlines are missed (ms) in

100 experiments, for Collision Detection module.

Based on these observations, we can define a new
parameter as a metric of software performance, called
software sensitivity [3]:

In addition, applying the benchmark to the ATCS
showed quantitatively where the computational
bottleneck of the entire system was located (it turned out
to be in the GUI module, where most functions were
concentrated).

Software sensitivity is a measure of the
magnitude of a software response to
changes in the values of deadlines (when
they are increased or decreased).

In the SGCS system, the response time was analyzed
using the percentage of deadlines missed for the satellite
tracking module in such implementation. The
experiments measured the response time in the range of
3000 to 10000 ms for each client. On increasing the load,
i.e., the number of clients sending requests, from one to
three and five, the range of response time also increases
linearly. Fig. 5 [4] shows typical deterioration of
performance measured in terms of missed deadlines.

The interpretation of software sensitivity in this sense

is that the faster the curves in Fig. 4 and Fig. 5
ascend/descend the more sensitive respective software
architecture is. When software is sensitive, a small
change of a deadline length causes relatively larger
changes in the number of deadlines missed. Practically,
software sensitivity considered as metric shows whether
performance degradation occurs sharply or gracefully.

It is important to note that quantitatively, it is not just
the slope of the curve, what we mean by sensitivity,
therefore it is different from traditional understanding of
this concept. Software sensitivity can be represented
quantitatively by the ratio of the change of response over
the range of deadline lengths for the changed interval.
Formally, sensitivity is a parameter that takes into
account the slope of each curve, in relative terms,
making curves and respective systems comparable.

Fig. 5. Percentage of deadlines missed by Practically, the first step in calculating the value of
sensitivity, S, is to linearize the curve in the interesting
region. Then, to account for relative differences in
absolute values of deadlines for different systems, the
actual value of sensitivity is calculated from the straight
line fits, according to the following formula, where
(x1,y1) and (x0,y0) are coordinates of respective points on
the straight line reflecting the range considered:

the Tracking Module for 5 clients.

These basic results are used in the next section to

derive two new measures of performance.

2. Derived Metrics

2.1 Software Sensitivity
 (y 1 – y 0)/[(y 1 + y 0)/2]

(x1 – x0)/[(x1 + x0)/2] Analyzing more closely the graphs in Fig. 4 and 5,
one is tempted to ask a question: How significantly the
degradation in meeting deadlines progresses, when the
deadlines are shortened? For example, some curves
ascend slowly, as in Fig. 4, which corresponds to slow
performance degradation, while some other curves may
ascend very sharply, as in Fig. 5, which would mean a
relatively rapid degradation of performance.

By including relative values of ranges, the formula
allows for comparison of different systems, for which
deadline lengths may significantly differ in absolute
values, but the system’s speed of response, that is,
sensitivity, may be equivalent.

Using this method, we can assess sensitivity of
various implementations. For example, as reported in
[3], for a sophisticated air-traffic control system
simulator, sensitivity measurements showed that the
least sensitive implementation is the one with the
interaction between the Communication component and
the GUI component, which provided a significant insight
into the way aircraft hand-offs were handled in software.
Discovering such dependencies has a positive impact on
software redesign at the development level, before
deployment. Overall, the sensitivity parameter tells
designers, how fast the system degrades, if the deadlines
are shortened, that is, how fast it gets saturated.

Referring to Fig. 4, one can notice that, within the
range of deadlines studied, the implementation is
relatively indifferent to the shortening of predefined
deadlines, since the performance degrades roughly twice
over the range studied. This means that the system is not
very sensitive to changes of deadlines within this range.
However, the same statement is definitely not true for
the implementation shown in Fig. 5, where the
degradation of performance progresses significantly
faster with the deadlines shortened. The performance of
the Tracking Module under study deteriorates rapidly
within 20-25% of deadline change in a certain range.

3. Experiments 2.2 Software Dynamics

Software sensitivity, although used for assessing the
timing behavior of software, is essentially a steady-state
parameter, because it does not depend on dynamic
properties. One would, however, be tempted to
characterize software behavior using true dynamic terms.

To verify the concepts of software sensitivity and
software dynamics we conducted a series of experiments
for a satellite ground control station being built at
Florida Space Institute, in Orlando and Kennedy Space
Center [4]. In a testbed performing the basic functions
of the satellite ground control station, the following
software modules were implemented: telemetry, GPS
and database components connected to CORBA with
GUI, running on a variety of heterogeneous platforms, as
illustrated in Fig. 6.

Looking closely at the respective performance curves
presented in Fig. 4 and 5, one may ask a question: How
linear is the curve in its descending region and would
another type of approximation describe it better? Trying
exponential approximation, under the assumption that
the descending part of the curve is not a straight line but
an exponential curve, we can characterize it by a new
notion called software dynamics, capturing the dynamic
response to changes in software behavior under varying
load. The initial physical interpretation of the
exponential curve is that the software performance is
gradually descending when the load increases.

Quantitatively, for an exponential curve of the form
y=K*exp(-x/τ), representing the behavior of software, to
characterize it one can use the following transfer
function representing it as a first-order dynamic system:

G(s) = y(s)/x(s) = K / (τ*s + 1)

where its gain K=1, τ is a time constant, and s is a
complex variable. Time constant τ characterizes system
dynamics and is a measure of the speed of system’s
response to changes in load. Following the practice of
control engineering it can be calculated as 25% of a
settling time. Settling time, in turn, is the point where
the descending curve reaches 2%-4% of its maximum.

With this formula, the dynamics of software
architecture can be represented by a dynamic equation
using a Laplace transform. This approach to software is
completely unique in a sense that there are no available
records in scientific literature of attempts to study the
concept of software dynamics as a continuous property
of software, which is by its nature discrete. A review of
computing literature for the last two decades indicated
that there were only two papers dealing with software
dynamics at all, but in a different sense than ours.

Fig. 6. Satellite ground control station
– partial implementation of a testbed.

To measure the response time to GUI commands

directed to telemetry, GPS and database components,
experiments were conducted in the above configuration.
Figures 7 and 8 present the results for a telemetry
component, to evaluate its sensitivity and dynamics,
respectively. Results for the GPS component have been
published elsewhere [7]. The combined results for all
components are presented in Table 1. The software
dynamics is measured as a time constant of the first
order system, as explained in Section 2.2. The results
show consistency with the intuitively perceived relative
speed of respective modules.

First, Motus, in 1985 [5], used the term software
dynamics but in a different meaning, at a specification
not the execution level, to study “the set of time
constraints that a software system has to satisfy”.
Bernstein, in 1996 [6] used this term in a meaning
similar to ours, postulating the use dynamic measures to
evaluate software quality. However, Bernstein’s idea is
consistent with the concept of software rejuvenation,
which refers to software’s long-term execution. In
contrast to that, we are postulating to analyze software
behavior in short term, by studying software in real time,
under changing load.

Table 1. Results of evaluating sensitivity & dynamics.

Component Sensitivity Dynamics [ms]
Database -- 165.0
Telemetry 1.00 87.5
GPS 1.64 15.0

Software sensitivity is similar in technical meaning to
the concept of elasticity used in economics. Software
dynamics goes further and involves a concept of a first-
order dynamic system by associating dynamic properties
with software. Thus, software can be described by
notions from the theory of dynamical systems and its
characteristics can be included in computational models
involving Laplace transforms and time constants.

Sensitivity - Telemetry

0

20

40

60

80

100

120

0 50 100 150 200
Deadline Set (msec)

%
 D

ea
dl

in
es

 M
is

se
d

Original

Least
Square

Experiments conducted for the telemetry module in a
satellite ground control station testbed have initially
confirmed the usefulness of both concepts, software
sensitivity and software dynamics. They characterize
steady-state and dynamic properties of software,
respectively, and can be used to evaluate software
architectures both for implementation properties and at
the design phase.

Fig. 7. Illustration of the sensitivity measurement for the
telemetry component of the satellite ground station.

% Deadlines Missed (TDA)

0

20

40

60

80

100

120

0 100 200 300 400 500

Deadline Set (msec)

%
 D

ea
dl

in
es

 M
is

se
d

Time Constant
Original

References

[1] ARINC Inc., Avionics Application Software Standard

Interface, ARINC Specification 653, Baltimore, MD, 1997
[2] Sanz R., J. Zalewski, Pattern-Based Control Systems

Engineering, IEEE Control Systems, Vol. 23, No. 3, pp. 43-
60, July 2003

[3] Guo D., J. van Katwijk, J. Zalewski, A New Benchmark for
Distributed Real-Time Systems: Some Experimental
Results, Proc. 27th IFAC/IFIP/IEEE Workshop on Real-
Time Programming, Łagów, Poland, May 14-17, 2003, pp.
141-146

Fig. 8. Illustration of the software dynamics evaluation
for the telemetry component of the ground station.

 [4] Bhatia M., R. Johnson, J. Zalewski, Evaluating

Performance of Real-Time Software Components: Satellite
Ground Control Station Case Study. Proc. SEA2003, 7th

IASTED Int’l Conf. on Software Engineering and
Applications, Marina del Rey, Calif., November 3-5, 2003,
pp. 781-786.

4. Conclusion

The objective of this work was to introduce a new
metric to characterize dynamic properties of real-time
software architectures. Using a benchmark built on the
concept of changing deadlines to see impact on the
number of times (percentage) the deadlines are missed,
and the overall time the deadlines are missed, we
introduced two composite measures:

[5] Motus L., A. Lomp, Distributed Computer Control
System’s Software Dynamics Specification, Proc. 9th IFAC
Congress, Pergamon, Oxford, UK, 1985, Vol. 5, pp. 2657-
2661

[6] Bernstein L., Better Software Through Operational
Dynamics, IEEE Software, Vol. 13, No. 2, pp. 107-109,
1996

- software sensitivity, that characterizes the
magnitude of software response to changes in
deadlines, and [7] Zalewski J., Software Dynamics: A New Measure of

Performance for Real-Time Software, Proc. SEW-28 28th
NASA Goddard Software Engineering Workshop,
Greenbelt, MD, December 3-4, 2003, pp. 120-126

- software dynamics, which leads to using a time
constant as a characteristic of dynamic properties of
software.

	Abstract
	1. Concept of Basic Metrics
	1.2 Real-Time Software Benchmark
	2. Derived Metrics
	2.1 Software Sensitivity
	2.2 Software Dynamics
	3. Experiments
	4. Conclusion
	References

