
Enabling WCET-based composition of service-based real-time applications

Iria Est́evez–Ayres, Marisol Garcı́a–Valls, Pablo Basanta–Val
Telematics Engineering Department
Universidad Carlos III de Madrid

Legańes, Madrid, Spain
{ayres, mvalls, pbasanta}@it.uc3m.es

Abstract

This paper presents an approach towards a framework
that enables the composition of real–time applications from
existing ubiquitous services. This framework allows to an-
nounce services (specifying their QoS requirements in terms
of real–time parameters, such as Worst Case Execution
Time, WCET), to discover services that perform a certain
functionality, and to select the set of those discovered ser-
vices that will be part of the application to be created. Such
service set selection is based on the fulfilment of the QoS
requirements of the application. The framework supports
static composition, i.e., all services required to create an ap-
plication have to be discovered before launching the whole
application. Finally, it is described the composition model
used in the framework.

1. Introduction

Ubiquitous Computing technology has introduced a
great dynamism in application development and in its func-
tionality. Instead of executing monolithic applications, this
model of computation may also be used to create flex-
ible applications dynamically from existing services,
enhancing the reuse of code and decreasing the devel-
opment time. In this case, the integration of the overall
application will rely on the support of an underlying mid-
dleware; the middleware should guarantee that the spec-
ifications for such dynamic integration of services are
met.

Specifications that the application developer needs to
provide in some way are:(1) the characteristics of the de-
sired application and(2) the different sets of services that
are required to compose such application. However, to be
acceptable, real–time applications (and specially hard real–
time ones) must deliver a satisfactory Quality–of–Service
(QoS)[7]. Then, the middleware must be aware of the QoS
characteristics not only of the application itself, but also of

the ubiquitous environment, the composing services, and
the resources required by these services.

One of the most troublesome factors in providing QoS
to real–time applications are [6]:output timeliness require-
ments and distributed and concurrent computing require-
ments associated with the applications. In distributed ubiq-
uitous environments, this problem is emphasized due to the
heterogeneous nature of the services to be run together. A
test will have to be run previously to assure that it is possi-
ble to assign enough resources to a given set of services that
execute simultaneously.

In the current work, we address the problem of achieving
output timeliness in the execution of app–shared services by
introducing a framework that supports appropriate compo-
sition of services. The framework enhances the capabilities
of a real–time communication middleware. This way it al-
lows to specify QoS requirements for services and applica-
tions in terms of: their Worst Case Execution Time (WCET)
and the composition/selection of the appropriate service set
to statically create an application from existing services in
the environment.

The existence of real–time services on remote servers
(acting as service proxies) introduces the necessity of us-
ing fault tolerance techniques in the middleware support.
The usage of service proxies is completely out of the scope
of this paper; we only consider that the appropriate versions
of the services are downloaded in the client node. There-
fore, no communication media is considered after service
discovery and downloading.

A prototype of this framework has been implemented
based on Java technology to show its feasibility. In the Java
world, different technology contributions have been pro-
posed to allow implementation, announcement, and discov-
ery of services of interest. On one hand, the Java communi-
cations middleware, RMI[11], provides remote object com-
munication, and it also has automatic code downloading ca-
pabilities. On the other hand, the Java distributed computing
architecture, Jini[12], contains, among others, service dis-
covery facilities. Also, there are a number of efforts also for

low–level real-time support in Java technologies such as [2]
and real–time RMI such as [13, 1]. They can be integrated
to build real–time support into pervasive environments for
composition of applications with QoS requirements, among
them, timeliness.

Application composition using Java technology has been
addressed by specifying service characteristics in XML
technology[8]. However, such specification focuses only on
functionality.

The prototype has been tested on centralised and on fully
distributed environments using Jini on top of RMI. This pro-
totype implements solely the composition of static appli-
cations with real–time capabilities. Dynamic applications,
that would imply the replacement of services at run–time,
are not considered.

The remaining of this paper is structured as follows:
Section 2 briefly introduces the background of this work;
Section 3 describes how to specify QoS for services and
our task model for services and applications; Section 4 de-
scribes our proposed framework; Section 5 presents the
whole process of composing an application; and, finally,
Section 6 outlines the main conclusions.

2. Related Work

In the real–time world, component–based software de-
velopment (CBSD) [5, 3] is an emerging development
paradigm that enables the transition from monolithic to
open and flexible systems. This allows systems to be as-
sembled from a pre–defined set of components explic-
itly developed for multiple usages. However, none of
these approaches can be applied to dynamic composi-
tion of real–time components (or more generally, ap-
plications) in a ubiquitous environment since they are
focused on the design phase rather than on the execu-
tion phase.

In the field of QoS, the work described in[7] (for devel-
oping a generic middleware) shows that using an applica-
tion component model, it is possible to provide end–to–
end application QoS via QoS–aware middleware systems.
But this proposed middleware is not suitable for compos-
ing real–time applications since the QoS specified does not
account for the underlying hardware and the scheduling ne-
cessities of the whole system.

Integration of QoS characteristics into component tech-
nology has also been studied in [4]. However, these ap-
proaches aim at a rather static composition environment
and enterprise applications based on components and not
strictly on services.

3. Modelling services

In our framework, services are entities developed by ser-
vice programmers that have real–time characteristics. Each
servicei has n methods each onemj() with an associ-
atedweight wcetij . It is responsibility of the programmer
to make the association of theweightwith all the exposed
methods for the different underlying hardware platforms.

We assume that there exists a simple additive rule as in-
cluded in [9] to compute the WCET bound of sequences of
instructions/statements (or methods) from the WCET infor-
mation about single instructions.

When the framework needs a servicei for composing an
application, the framework downloads the appropriate ver-
sion of the service for the specific hardware platform.

Applying the approach exposed in [10] for simple in-
structions and extending it for methods, we can define each
method invoked by an application as an edge of a T–graph
G = (V, E). Each edgeei

j will be an invocation to the
methodmj() of servicei. So, each execution of an appli-
cation will be a sequence ofm invocations to methods of a
single service or several services,

Pk = ((ei
j)

k
1 , (ei

j)
k
2 , . . . , (ei

j)
k
m)

As the execution time of a pathτ(Pk) is the sum of the ex-
ecution times of its edges

τ(Pk) =
m∑

r=1

τ((ei
j)

k
r)

it is also possible to compute the maximum of these times,
which is the worst case execution time of this path:

WCET k =
m∑

r=1

(wcetij)
k
r

4. Composition Framework

The framework proposed allows the custom composition
of applications with QoS requirements based on ubiquitous
services. QoS requirements are mainly concerned with the
resource requirements and timeliness of applications. The
framework allows to:

• Specify time requirements and, in general, QoS re-
quirements of services,

• Announce services with QoS requirements,

• Discover services that match a specific functionality,

• Apply WCET–aware composing algorithms for select-
ing service sets that match the required functionality
and QoS requirements.

In the framework, we can distinguish the following main
entities (as showed in figure 1):

Lookup Service

Lookup Service

Lookup Service

Search Entity

implementations

Application

Composed

Framework

Services
required

found

Information about
each service implementation

Comp. Criteria
Deadline

Service
implementations
Service

required

Info

Core

information
about
selected
services

Graph with

From application
developer

s1
s3

s2

s1
s5

s4
s1

s4

s3

s5

Translater

Composer

Final Application

Composer

Deadline app=5u
Comp. Criterion=least weighted
Begin{
 s1.m1()
 if (condition){
 s2.m1()
 s1.m2()

 }
 else

}

 s2.m2()
 s3.m1()

 s4.m1()

X

X

X X

Figure 1. Overview of the framework

• Services. These are ubiquitous entities that perform
certain functionality. They are created by service pro-
grammers. When they are announced, our framework
supports the statement of their functionality and QoS
requirements.

• Search entity. This is the entity in charge of the config-
uration of the discovery options and of the discovery
itself based on the functionality expressed in the appli-
cation developer requirements.

• Core control flow part. It performs all the functional-
ity described above. It translates the information given
by the application developer into a graph–based data
structure; with this information and the information
obtained by thesearch entity, it selects the best set of
services that will compose the application; and, finally,
it orders thesearch entityto download the chosen ser-
vices that will be part of the final application.

The framework provides the possibility to the applica-
tion developer of selecting the composing criterion between
a set of composition algorithms predefined.

The current prototype of this framework, implemented
based on Java technology (Jini and RMI), consists of differ-

ent computational and graphic tools that contain the func-
tionality that has been presented in the previous sections.

The computational part implements the creation, an-
nouncement, discovery, and composition of the ubiquitous
services. On the other hand, a graphic tool has been devel-
oped to interact with the computational part in a friendly
way. Several experiments with service creation and an-
nouncement have been carried out.

5. Composition process

In the process of composing the final application, we can
distinguish four different phases:

1. Announcement Phase, in which services are an-
nounced on lookup services of the network.

2. Application Development Phase, where the application
programmer specifies an application description and
its QoS requirements, as well as the desired compo-
sition criteria.

3. Discovery Phase, where all possible implementations
of each needed service are found.

4. Composition Phase, where the framework choose the
most suitable services to create the application, follow-

ing the instructions given by the application program-
mer.

Announcement Phase. The services implemented by ser-
vice programmers are announced on lookup services of the
network. Service discovery will be based on the functional-
ity of the application that has to be created. Therefore, the
discovery phase requires that services be announced with a
tag stating their functionality.

Our proposed method of composition works with the
WCET of the methods that will compose an application,
so each service has to be announced with the information
about all the exposed methods for different underlying hard-
ware platforms.

Therefore the service will be announced with a tag stat-
ing its functionally and a set of parameters corresponding to
its methods for different hardware platforms. So, each im-
plementation of servicei for a specific platform will con-
tain the information showed in figure 2

m () wcetn n

m () wcet2 2

m () wcet1 1

Functionality:
Hardware Platform: ...
WCET:

m ()2

m ()1

m ()n

Information:

Service i

Methods

Figure 2. Information contained in service i

During theApplication Development Phase, the applica-
tion developer providesQoS specificationof the desired ap-
plication. She must specify an application description, i.e.
the set of ordered services (or application components) that
will compose the application, the methods invoked in each
one and the deadline that has to be met by the whole appli-
cation. Additionally, she can specify the composition crite-
rion that has to be followed (for instance, to select the first
set of services implementations that meets the requirements
or to select the least weighted path attending to the WCET).
Otherwise, the composition criterion will be to select the
least weighted path. Our framework translates this informa-
tion into a graph, without service intra–information as it can
be seen in figure 3. This data structure will be used to store
the information about the different implementations of the
services that has to be managed in the composition phase.

Composition phase. The framework must select the most
suitable services to create the application. For each applica-

Figure 3. Translating application information
into a graph

tion component there will be several implementations of the
service with different parameters. It must download only the
information (the previous set of parameters) about all the
possible implementations and construct the whole applica-
tion graph. To select the most suitable one, it has to explore
the graph adding the WCET of each method until it reaches
the total deadline of the application. In this case, this path
of the graph will be discarded.

An example of the composition phase is shown in fig-
ure 4. Each edge,ej is a method invocation with a weight
equal to the WCET of the method,wcetj . In this phase,
the framework finds out all the possible combinations of
the found services (in the example, it found two imple-
mentations of each service, so the combinations will be
(sA

1 , sA
2), (sA

1 , sB
2), (sB

1 , sA
2) and (sB

1 , sB
2)). And it con-

structs the graph as explained above. In the example, as the
figure shows, only the tuple of services(sA

1 , sB
2) meet the

requirements of the application. In the example, we make
the whole exploration in the graph because the composi-
tion criteria was to select the least weighted path, but it is
also possible to specify that the criterion must be to select
the first path that meets the requirements.

If a set of implementations meets the requirements, the
Search entitywill download them to compose the final ap-
plication that will be offered to theapplication developer.

6. Conclusions and Future Work

This paper has presented a framework to compose static
real–time applications from existing services in an ubiq-
uitous environment. The approach presented here allows
reusability of code and represents, as far as we know, the
first approach to compose applications with real–time re-
quirements in an ubiquitous environment, setting the basis
of a framework that allows application composition. The
next step in our research, is to extend the framework to

Deadline app=9u
Begin{
s1.m1()
s2.m1()
s2.m2()
}

s1.m1B
8

s1.m1A
5

s2.m1A
5

s2.m1B
2

XDeadline
not met

s2.m2A
3

XDeadline
not met

s2.m2B
1

X
Deadline
not met

s2.m1A
5

X
Deadline
not met

s2.m1B
2

After discovery phase

Figure 4. Applying the algorithm to select the most suitable services

be aware of the execution requirements, i.e. scheduling and
resources such as memory, to allow dynamic composition
of applications. To achieve this goal, we are enhancing the
middleware support based on real–time–Java technology.

References

[1] P. Basanta-Val, M. Garcı́a-Valls, and I. Est́evez-Ayres. No
heap remote objects: Leaving out garbage collection at the
server side. In R. Meersman, Z. Tari, and A. Corsaro, editors,
OTM Workshops, volume 3292 ofLecture Notes in Computer
Science, pages 359–370. Springer, 2004.

[2] G. Bollela et al. The Real-Time Specification for Java, ver-
sion 1.1, 2004. Avaliable on http://www.rtsj.org.

[3] I. Crnkovic and M. Larsson. A case study: Demands on
Component–based Development. InProc. of 22nd Int. Conf.
of Software Engineering, Limerick (Ireland), June 2000.

[4] M. A. de Miguel, J. Ruiz, and M. Garcı́a-Valls. QoS–Aware
Component Frameworks. InProc. of the International Work-
shop on Quality of Service, May 2002.

[5] D. Isovic and C. . Norstr̈om. Components in Real–time Sys-
tems. InProc. of the 8th Conf. on Real–Time Computing Sys-
tems and Applications, Tokyo, 2002.

[6] K. H. Kim. Toward QoS Certification of Real–Time Dis-
tributed Computing Systems. InProc. 7th IEEE Interna-
tional Symposium on High–Assurance Systems Engineering
(HASE 2002), 23-25 October 2002, Tokyo, Japan, pages
177–188. IEEE Computer Society, 2002.

[7] K. . Nahrstedt, D. Xu, D. Wichadakul, and B. Li. QoS–
Aware Middleware for Ubiquitous and Heterogeneous Envi-
ronments.IEEE Communications Magazine, 39(2):140–148,
Nov. 2001.

[8] S. Paal, R. Kamm̈uller, and B. Freisleben. Customizable De-
ployment, Composition, and Hosting of Distributed Java Ap-
plications. InProc. of the Fourth International Simposium on
Distributed Objects and Application, Newport Beach (Cali-
fornia), May 2002.

[9] P. Puschner and C. Koza. Calculating the Maximum Exe-
cution Time of Real–Time Programs.Real–Time Systems,
1(2):159–176, Sep. 1989.

[10] P. Puschner and A. Schedl. Computing Maximum Task Ex-
ecution Times – A Graph–Based Approach.Real–Time Sys-
tems, 13(1):67–91, 1997.

[11] Sun Microsystems.Java RMI Remote Method Invocation.
Available on http://java.sun.com.

[12] Sun Microsystems.Jini Specification, version 2.0. Available
on http://sun.com.

[13] A. Wellings, R. Clark, D. Jensen, and D. Wells. A Frame-
work for Integrating the Real–Time Specification for Java
and Java’s Remote Method Invocation. InProc. Fifth IEEE
International Symposium on Object Oriented RealTime Dis-
tributed Computing, 2002.

