
Prevention of Failures due to Assumptions made by Software

Components in Real-Time Systems∗

Ajay Tirumala, Tanya Crenshaw, Lui Sha, Girish Baliga,

Sumant Kowshik, Craig Robinson†, Weerasak Witthawaskul

Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, IL 61801

{tirumala,tcrensha,lrs,gibaliga,kowshik,clrobnsn,witthawa}@uiuc.edu

Abstract

Large scale real-time systems consist of hun-
dreds of commercial off-the-shelf (COTS) and cus-
tom software components. Mismatched assump-
tions between software components are a prime
source of failures in these systems. Further, com-
ponent assumptions are often implicit due to the
limitations of current software interfaces. In this
work, we introduce a framework to explicitly ex-
pose assumptions in software components, and au-
tomatically verify these assumptions during sys-
tem integration. We manage the propagation and
composition of these assumptions in the presence
of changes and upgrades to individual components.

1 Introduction

Multi-million dollar real-time systems are typ-
ically built from COTS and custom components
developed by different developer teams. These
components usually expose functional interfaces,
which we call software interfaces, to exchange data
beween interacting modules. These interfaces rep-
resent the format for data exchange as seen in
traditional C libraries and Java interfaces. How-
ever, components in a real-time systems make ad-

∗This research is supported in part by MURI grant
N00014-01-0576, NSF grants ANI 02-21357, CCR 02-37884,
CCR 03-25716 and CCR 02-09202

†Coordinated Science Lab, UIUC

ditional assumptions that cannot be represented in
such an interface. Examples of such assumptions
are units of measurement, value ranges, environ-
mental assumptions and domain-specific implicit
attributes.

Several catastrophic failures in large-scale real-
time systems can be attributed to the inadequacy
of existing interfaces and the inability to track im-
plicit assumptions of components. The Ariane 5
disaster [2] was caused by the reuse of an Ariane 4
component. An implicit assumption made by the
component that a variable would never overflow
16 bits was violated in Ariane 5. This assumption,
though documented, was not validated in the new
system.

A survey we conducted [12] indicates that al-
gorithmic defects in software occur less frequently
than the defects that are related to integration is-
sues. In real-time systems, integration defects are
caused by assumption mismatches between soft-
ware components and environmental assumptions
which may be invalid. We conjecture that the rel-
atively lower percentage of algorithmic defects is
due to mature unit-testing and formal verification
of individual components (where the algorithms
are embedded). These approaches, however, do
not scale to integrated systems due to their com-
plexity and larger state spaces.

In this paper, we present a framework to track
assumptions during system integration by specify-
ing propery interfaces of components. To motivate
this, an example real-time system is described in

Section 2. Our framework is then presented in Sec-
tion 3. Section 4 discusses the capabilities of our
framework. We then present related work in this
field in Section 5, which is followed by conclusions
and future work.

2 Example: Real-time Control System

 Actuator Sensor

Controller

Interface between modules that interact directly

Plant(proxy)

Modules do not interact
but assumptions are made about the non−interacting components.

Figure 1. Software interfaces and compo-
nents in the inverted pendulum control sys-
tem

To illustrate the significance of this problem,
consider a feedback control system for an in-
verted pendulum, consisting of four major compo-
nents: controller, actuator, sensor and pendulum
proxy1. The components communicate through
traditional software interfaces (solid arrows in Fig-
ure 1). However, many component assumptions
are not captured by these interfaces. For instance,
the sensor-controller software interface does not
specify that the controller assumes that the sensor
reports the angle between the pendulum and the
track in ‘degrees’. Also, the controller assumes a
length and mass of the pendulum, which is an ex-
ample of an implicit assumption of the controller
regarding a component with which it does not in-
teract (dotted line in Figure 1). In our study, we
found that this simple four-component system had
over forty assumptions, that are not a part of the
software interfaces. This problem is magnified in
real-world software – the ground-based command
system for NASA’s Hubble Space Telescope con-
sists of 30 COTS components [11].

1We use the plant proxy to represent the controlled de-
vice, which itself can be changed/upgraded

3 Property Interfaces

We address the problem of representing and
validating assumptions made by different com-
ponents using the notion of a property interface
between components. This is orthogonal to the
software interface between communicating com-
ponents. Property interfaces are used to propa-
gate implicit component assumptions that are not
a part of the software interface. They can exist be-
tween interacting (e.g. sensor and controller) and
non-interacting modules (e.g. controller and plant
proxy). Between any two components connected
by a property interface, each component publishes
its assumptions and its guarantees. The assump-
tions of each component are verified against the
guarantees provided by the other component. The
assumptions and guarantees, typically, consist of
global component properties, implicit properties
of exchanged data elements (if any), and environ-
mental properties (all of these are not a part of
the software interface).

3.1 Classification of Properties

The properties of a component in a real-time
system can be classified on the basis of their fre-
quency of change. This classification determines
the validation methodology of a property in the
presence of component changes and upgrades.

System configuration properties: These
properties do not change during a mission (series
of executions) of the real-time system. E.g. ‘Mass
of the pendulum’ is a system configuration prop-
erty since it does not change over a mission. When
a different pendulum is used in a different run, this
property will change for that run.

Static properties: These properties never
change during the lifetime of the software. E.g.
The controller may assume certain default values,
such as the value of the ‘Gravitional constant on
the surface of the earth’, as part of its operating
conditions.

Dynamic properties: These properties are
those which change during the mission, but at a
significantly lower rate than real-time data flow
between the modules. E.g. The wear of the motor

2

gear may require it to be replaced after running
for 1000 hours. In this case, the property ‘max
motor torque’ is a dynamic property.

4 Framework

Our framework manages property interfaces of
software components as assumptions and guaran-
tees. It enables a component developer to ex-
press non-functional properties and validates com-
ponent assumptions against the guarantees offered
by other components. The validation technique is
based on the classification of a property from the
previous section.

We have developed a tool with an XML
back-end to encode the assumptions and effi-
ciently check these assumptions with guarantees.
Assumptions are stored as XML schema and
guarantees as XML documents which match
XML schema documents2. Our tool uses an
automatically generated GUI as a front-end for
increased usability. It performs the following
functions:

Check and flag inconsistent assumptions:

Given the assumptions and guarantees for a set of
components, the tool automatically verifies that
all component assumptions are matched by com-
ponent guarantees. Thus, the assumptions made
on the interfaces are machine checkable. E.g. If
the units of sensing delay expected by the con-
troller is in milliseconds and the sensor specifies
it in seconds, an assumption mismatch will be
flagged.

Verify safety of upgrades: The tool will en-
force that a component’s assumptions are com-
patible with the guarantees of other components
in the presence of software or hardware upgrade.
E.g. If the pendulum is changed and the mass of
the new pendulum does not match the controller’s
assumption, the tool will flag an assumption mis-
match due to the upgrade.

2XML Schema specify the structure of XML documents
and restrictions on the values that the elements in the XML
documents can take. They are analogous to the meta-data
for a database. For official specification, tools and develop-
ments, the reader is referred to [?].

Compose properties: The tool has provisions
for inserting the functions to compose the proper-
ties. We define composition of a set of properties
P1, P2, . . . , Pn with the function f as the result of
the function f(P1, P2, . . . , Pn). For example, if all
the software components in the pendulum example
are executed on the same processor, the users can
insert a function which calculates the control loop
delay using the measured processing and commu-
nication times for different components.

Compose modules: The tool provides a
mechanism to compose modules. The system in-
tegrator can combine several modules and view
them as a sub-system with a well-defined soft-
ware and property interface. A compose and de-
compose function on a sub-system of components
only exposes the component assumptions that are
relevant outside the sub-system. All internally
matched assumptions are hidden from the external
components. This feature increases the manage-
ability of the system without compromising the
assumption mismatch detection capability. For
example, in the figure 2, if the guarantee G31 sat-
isfies requirement/assumption R31 and the guar-
antee G32 satisfies requirement/assumption R32,
the property interfaces for subsystem enclosed by
the dotted box will not include G31, G32, R31, or
R32.

R 11

R 1n

R 21

R 2n

G11

G1n

G21

G2n

R
31

G31

R 32

G32

G41

G
4n

Decompose
Module

G11

G
1n

G21

G2n

Compose
Module (f)

f(G 41 ,.. ,G4n)

Figure 2. Combining a set of modules with
decompose and compose modules

5 Related work

Real-time CORBA by Schmidt et.al. [9] pro-
vides middleware solutions for real-time systems.
Based on this work, there have been effective so-

3

lutions to manage the QoS properties of the sys-
tem adaptively and at run-time [5]. Composition
of real-time systems has been addressed in [10].
In comparison, our work is more general since
it tracks all kinds of assumptions and guarantees
made on software interfaces. Also, our notion of
property interfaces captures assumptions between
modules that do not interact with each other.
MetaH [13] provides a framework for designing
real-time systems and allows system dependencies
to be encoded. The work, however, is strongly
tied to fixed priority scheduling. CORBA [3],
COM [1] and DCOM [4] have facilities for com-
position, but their focus is on reusability rather
than tracking implicit assumptions with guaran-
tees of the software components. Contracts [7] and
Rely/Guarantee [8] can be used to validate the in-
put and output parameters in software interfaces.
However, they cannot handle assumptions which
are not represented as code (physical representa-
tion). The work most closely related to our work
is [6]. In comparison, our framework is based on
an open standard, making it extensible. Also, we
handle composition of assumptions and software
modules, which is critical for larger systems.

6 Conclusions and future work

In this paper, we described a framework for
capturing implicit assumptions in the environ-
ment and software and hardware components
of a real-time system. We introduced the no-
tion of property interfaces, which capture im-
plicit assumptions between interacting and non-
interacting components. Automatically tracking
and verifying these assumptions will reduce test-
ing time and reduce the number of end-product
defects. Motivated by a simple inverted pendu-
lum controller, whose components itself contains
a large number of implicit assumptions, our frame-
work is implemented using an XML-based engine
and also supports composition of software mod-
ules and assumptions on the modules elegantly.
As future work, we plan to automatically track as-
sumptions in larger real-time systems with tens to
hundreds of software modules. We plan to deter-
mine the percentage of end-product defects which

can be averted, and the reduction in testing effort.

References

[1] Microsoft Corporation and Digital Equipment
Corporation. The Component Object Model Spec-
ification. 1995.

[2] Ariane 5 Failure - Full Report.
http://sunnyday.mit.edu/accidents/ Ari-
ane5accidentreport.html. July 1996.

[3] Object Management Group. The Common Ob-
ject Request Broker: Architecture and Specifica-
tion, Revision 2.0, formal document 97-02-25.
http://www.omg.org. 1997.

[4] Microsoft Corporation and Digital Equipment
Corporation. The Distributed Component Object
Model Specification. 1998.

[5] Y. Krishnamurthy, I. Pyarali, C. Gill, L. Mgeta,
Y. Zhang, Torn, and D. Schmidt. The design and
implementation of Real-Time CORBA 2.0: dy-
namic scheduling in TAO. In Proceedings of Real-
Time and Embedded Technology and Applications
Symposium, May 2004.

[6] J. Li and P. Feiler. Impact analysis in real-time
control systems. In Proceedings of International
Conference on Software Maintenance, 1999.

[7] B. Meyer. Applying “Design by Contract”. IEEE
Computer, 25(10):40–51, 1992.

[8] P.Collette and C. Jones. Enhancing the Tractabil-
ity of Rely/Guarantee Specifications in the De-
velopment of Interfering Operations. Proof, Lan-
guage and Interaction, pages 277–307, 2000.

[9] D. Schmidt. Real-time CORBA
http://www.cs.wustl.edu/̃schmidt/RT-ORB-
std-new.pdf.gz. may 1999.

[10] J. Stankovic, R. Zhu, R. Poornalingam, C. Lu,
Z. Yu, M. Humphrey, and B. Ellis. VEST: An
Aspect-Based Composition Tool for Real-Time
Systems. In Proceedings of Real-Time and Em-
bedded Technology and Applications Symposium,
May 2003.

[11] J. R. T. Pfarr. The Integration of COTS/GOTS
Within NASA’s HST Command and Control Sys-
tem. In Proceedings of the First International
Conference on COTS-Based Software Systems.,
Februrary 2002.

[12] A. Tirumala. analysis of cause of de-
fects in open source real-time software
- a case study of TinyOS. http://www-
rtsl.cs.uiuc.edu/defect analysis.html. Dec
2004.

[13] S. Vestal. MetaH Support for Real-Time Multi-
Processor Avionics. In Proceedings of Real-Time
Systems Symposium, Dec 1997.

4

