
Towards Security and QoS Optimization in Real-Time
Embedded Systems

Kyoung-Don Kang
Department of Computer Science

State University of New York at Binghamton
kang@cs.binghamton.edu

Sang H. Son
Department of Computer Science

University of Virginia
son@cs.virginia.edu

ABSTRACT
A number of real-time embedded systems (RTESs) are used
to manage critical infrastructure such as electric grids or C4I
systems. In these systems, it is essential to meet deadlines,
for example, to avoid a power outage or loss of a life. The im-
portance of security support is also increasing, because more
RTESs are being networked. To securely transmit sensitive
data, e.g., a battle field status, across the network, RTESs
need to protect the data via cryptographic techniques. How-
ever, security support may cause deadline misses or unac-
ceptable QoS degradation. As an initial effort to address
this problem, we formulate the security support in RTESs
as a QoS optimization problem. Also, we propose a novel
adaptive approach for security support in which a RTES ini-
tially uses a relatively short cryptographic key to maximize
the QoS, while increasing the key length when the security
risk level is raised. In this way, we can make a possible
cryptanalysis several orders of magnitude harder by requir-
ing the attacker to search a larger key space, while meeting
all deadlines by degrading the QoS in a controlled manner.
To minimize the overhead, we derive the appropriate QoS
levels for several key lengths via an offline polynomial time
algorithm. When the risk level is raised online, a real-time
task can use a longer key and adapt to the corresponding
QoS level (derived offline) in O(1) time.

Keywords
Real-Time Embedded Systems, Security, Deadlines

1. INTRODUCTION
A number of real-time embedded systems (RTESs) are used
to manage critical infrastructure such as electric grids and
C4I (Command, Control, Communications, Computers, and
Intelligence) systems. In these systems, meeting deadlines is
essential, since a deadline miss may cause a catastrophic re-
sult, e.g., a power outage or loss of a life. The importance of
security support is also increasing, since more RTESs, e.g.,
C4I systems, are being networked. Although cryptographic

security and real-time systems have been well studied sepa-

rately, very little work has been done to meet both timing
and cryptographic security requirements.

Simultaneously supporting security and timing constraints is
challenging, since these requirements can compete for com-
putational resources. A simplistic approach, e.g., always
using the longest key, may incur severe QoS degradation
in resource constrained RTESs, often based on cheap, low-
end microprocessors and/or microcontrollers. (It is known
that the time for encryption increases as the key length in-
creases [13].) In addition, sensor and control data have to
be protected for a relatively short time, since they change
frequently. Unless the current risk is high, too hard an ar-
mor could be excessive, wasting precious resources. Thus,
we aim to handle potentially time-varying risks in a cost-
effective manner.

In this paper, we first formulate the security support in RT-
ESs as a QoS optimization problem. In addition, we present
a novel adaptive and risk-aware approach to efficiently satis-
fying security and timing constraints in resource constrained
RTESs. When a network intrusion detection system raises
the level of the security risk, e.g., due to the detection of
attempts for illegal data access, a RTES begins to use a
longer cryptographic key to better protect sensitive data.
As a result, a possible cryptanalysis trying to find the cryp-
tographic key is forced to take several orders of magnitude
longer. At the same time, the RTES may have to degrade
the QoS of certain real-time tasks to avoid potential deadline
misses due to the increased security cost.

To minimize the adaptation overhead, we perform an of-
fline analysis to optimize the QoS for several different key
lengths. In this way, we ensure all deadlines will be met if
the total utilization is smaller than or equal to the schedula-
ble utilization bound, e.g., 1 in EDF, while maximizing the
QoS for given key lengths. Given the current risk level, our
approach can dynamically select the appropriate key length
and QoS levels of real-time tasks from the precomputed set-
tings in O(1) time. Consequently, our approach can support
desirable security and real-time features with minimal over-
heads.

The remainder of the paper is organized as follows. The
scope of the work is described by discussing the basic as-
sumptions and formulating the problem of security and real-
time performance management in Section 2. The crypto-

graphic security support is described in Section 3. Our on-
line and offline algorithms for security and timing assurance
are presented in Section 4. Related work is discussed in Sec-
tion 5. Finally, Section 6 concludes the paper and discusses
the future work.

2. SCOPE OF THE WORK

WAN

ER/FW

ER/FW IDS

RTES..........

LAN

RTES

Level

RTES

RTES

...
...

.

Level

RTES
LAN

SC

Level

IDSData

Data

Figure 1: System Model: Example

2.1 Application Scenario and System Model
Figure 1 shows a high level diagram of example RTESs and
a service center (SC) that operate as follows. A RTES mon-
itors and controls, e.g., (part of) an electric grid or a battle
field. A RTES may transmit sensor or control data to a SC
to report, e.g., an overload of a power generator. RTESs in
a specific area are connected via a local area network (LAN)
such as a control area network (CAN), while communicating
with a SC across the wide area network (WAN) through an
edge router (ER) that connects the LAN to the backbone
network.

We assume that each task in a RTES is associated with a
hard deadline; however, the transmission delay between a
RTES and SC does not require a hard guarantee. We also
assume that RTESs are independent of each other to avoid
a deadline miss due to an unpredictable delay for communi-
cation. We assume that the communication medium access,
transmission, and propagation delay in the LAN, e.g., CAN,
is predictable and the delay is included in the schedulabil-
ity analysis to meet all deadlines, similar to [14]. We also
assume a RTES transmits data in asynchronous mode, in
which control is immediately returned to a real-time task
without waiting for the completion of the transmission.

An ER is equipped with a firewall (FW) to filter suspicious
packets and connection requests, e.g., insecure file transfer
protocol (FTP) connection requests. Note that a firewall
does not completely solve the network security problem, be-
cause an adversary, who has access to the wide area net-
work, may eavesdrop or inject packets to the network. For
example, a terrorist may try to find the weakest point of an
electric grid by eavesdropping. Or, he may attempt to send
false data to the SC. Hence, it is necessary to encrypt and
authenticate data to support the confidentiality, integrity,
and authenticity of the network messages.

An intrusion detection system (IDS) monitors incoming and
outgoing packets and periodically broadcasts the current
risk level to the connected RTESs or a SC in a specific area.
(We assume the intrusion detection and broadcast task is
sporadic and can subsequently be mapped as a periodic task.
A thorough investigation is reserved for future work.) A SC
is in charge of a specified set of RTESs. It takes care of,

e.g., long-term plans for energy supply and military tactics,
based on the information received from RTESs (and other
sources, if any). We assume that a SC is also protected via
a firewall and IDS, similar to RTESs.

2.2 Threat Model
We assume that an isolated RTES is trusted. Thus, a RTES
only has to encrypt data before transmitting them across the
network. We also assume that an IDS is not compromised.

We consider a symmetric key system in which a SC and
RTES share a secret key, since the encryption/decryption
in a public key system takes several orders of magnitude
longer than that in a symmetric key system [13]. We sup-
port the confidentiality, integrity, authenticity of a message
via encryption and cryptographic one-way hash function.
Therefore, an adversary cannot eavesdrop, corrupt, or inject
messages without being detected. In addition, we support
semantic security and replay protection.

Each RTES shares a pair of secret keys with a SC to en-
crypt and authenticate a message to support the message
confidentiality, integrity, and authenticity. We use differ-
ent keys for encryption and authentication, since the rule of
thumb is to use separate keys for different applications [13].
Note that only the SC can decrypt and check the integrity
and authenticity of the message transmitted by the RTES
using the shared keys.

Finally, it is assumed that main attacks against a scruti-
nized cryptosystem without known vulnerability, e.g., DES
(Digital Encryption Standard) [13] or AES (Advanced En-
cryption Standard) [12], are brute-force attacks that try to
find the secret key via an exhaustive search in the key space.
Note that this is a common assumption in trusted cryptosys-
tems [13]. (A more detailed discussion of the specific security
support considered in this paper is given in Section 3.)

2.3 Problem Formulation
In this paper, we assume that a RTES consists of a set of N
periodic tasks < T1, T2, ..., TN >. We assume the deadline of
a task is equal to its period. The (worst case) execution time
of a task Ti is: Ci = Ci,c +Ci,e(l) where Ci,c is the real-time
function execution time and Ci,e(l) is the data encryption
(and transmission) time for the key length l, respectively.
The utilization of a task Ti is: Ui = Ci/Pi where Pi is
the period of Ti. Further, each task is associated with k(≥
1) discrete QoS levels. The QoS monotonically increases
as the QoS level (and the corresponding execution time)
increases, similar to the milestone approach [8]. Ideally, we
aim to optimize the aggregate QoS of the real-time tasks
{T1, T2, ..., TN} defined in terms of both security and real-
time performance, while addressing the current security risk
indicated by an IDS:

Maximize QoS = S(l)

PN

i=1 Q(i)
PN

i=1 max Q(i)
≤ 1 (1)

where Q(i) and max Q(i) are the current and maximum
possible QoS of a task Ti and

S(l) =



1 if S(l) ≥ R(t)
0 otherwise

(2)

where S(l) indicates the strength level of the currently used
cryptosystem, which is determined by the current key length
l measured in number of bits. For example, a security of-
ficer can set S(80) = 1, S(112) = 2, and S(128) = 3 for
the DES algorithm. R(t) in Eq 2 denotes the current risk
level estimated by the IDS, e.g., 1 (low), 2 (medium), and 3
(high). Specifically, we select the key lengths to defend the
cryptosystem against a potential cryptanalysis for a certain
estimated period of time. Also, note that our QoS optimiza-
tion is subject to

N
X

i=1

Ui ≤ UB (3)

where the UB is the utilization bound of an employed real-
time scheduling algorithm such as EDF. When the risk level
R(t) is raised by the IDS, a task Ti has to use a longer
key. As a result, Ci and Ui may increase, and therefore, the
QoS manager should reallocate resources to re-optimize the
QoS. Otherwise, the QoS may become suboptimal, possibly
incurring deadlines misses if Eq 3 cannot be satisfied.

3. CRYPTOGRAPHIC SECURITY SUPPORT
This section describes our cryptographic security scheme fol-
lowed by a discussion of the strength of a symmetric key
system.

3.1 Confidentiality, Integrity, and Message Au-
thentication

E E E

P P P

C C C

i−1 i i+1

i−1 i i+1

IV

Figure 2: Cipher Block Chaining

In our approach, when a RTES wants to send a message
P to a SC, it first encrypts the plaintext P to support the
confidentiality of the message. The encrypted ciphertext
message is:

C = E(P){Ke, Cnt} (4)

where E is the encryption function such as DES or AES, Ke

is the encryption key shared between a RTES and SC, and
Cnt is the current counter value that is incremented after
each message encryption and transmission. As shown in Fig-
ure 2, we use the cipher block chaining (CBC) mode [2, 13]
in which the encrypted previous block is fed into the encryp-
tion of the current block; that is, the input to the encryption
function E using the key Ke is XOR(Ci−1, Pi) where Ci−1 is
the previous ciphertext block and Pi is the current plaintext
block to be encrypted. By using the counter value Cnt as
the initialization vector (IV) in CBC mode, we can support
the desirable security features as follows.

• Semantic security: The notion of semantic security [2,
5] ensures that a view of a ciphertext does not help a
cryptanalyst to find any information about the corre-
sponding plaintext. In our approach, if one message
is encrypted more than once, it will be encrypted dif-
ferently, because the counter, i.e., IV, is incremented
after each encryption. It is known that semantic secu-
rity can be supported when the counter is used as the
IV in CBC mode [13].

• Replay protection: An adversary cannot replay an old
message, since the IV is updated after each message.

Semantic security and replay protection are supported as
long as the counter is not wrapped around yet. Generally, it
is a good practice to distribute new keys before the counter
wraps around.1 By using several keys of different lengths,
we can safely delay the expensive key distribution process in
two ways. First, a separate counter can be associated with
each key of a certain length in a RTES to support seman-
tic security and replay protection. After encrypting (and
transmitting) a message using a specific key, only the cor-
responding counter is incremented. Since we use a constant
number of keys, the related overhead of maintaining the sep-
arate counters for different lengths of keys can be limited.
Furthermore, when the risk level is increased, we reduce the
frequencies of certain control tasks, if necessary, to use a
longer key without missing any deadline. Accordingly, the
frequency of the data transmission between a RTES and SC
is reduced. Thus, the key distribution is safely delayed due
to the corresponding delay of the counter increment.

To check the integrity of the message and authenticate the
claimed sender, a message authentication code (MAC) is
computed over the encrypted message C:

MAC = H(C|Cnt)Km
(5)

where H is a key-based one way hash function, C|Cnt is the
concatenation of the ciphertext (Eq 4) and the counter value,
and Km is the message authentication key shared between
a RTES and SC.2 Using a key-based one way hash function,
one can support the following desirable security features [10,
13].

• Data Integrity: A one way hash function works in one
direction; that is, computing the hash value from the
pre-image, i.e., C|Cnt in Eq 5, is easy. However, gen-
erating a pre-image that hashes to a specific value is
hard. Also, a good one way hash function avoids a
collision;that is, it ensures different messages hash to
different values. Thus, it is very hard for an adversary
to modify or fabricate a message that hashes to the
original MAC value. Upon the reception of the mes-
sage, the receiver computes the MAC of the C|Cnt
using the hash function (Eq 5) to check its integrity.

1A detailed discussion of key distribution is beyond the
scope of this paper. A thorough investigation is reserved
for future work.
2In fact, the MAC is computed over the entire message in-
cluding the source and destination address. We intentionally
omit these parts for the clarity of presentation.

If the message body including the C|Cnt has not been
altered during the transition, the computed MAC will
be equal to the received one.

• Message Authentication: Unfortunately, a one way hash
function itself cannot authenticate a message. For ex-
ample, an adversary can generate a false message and
hash the message. The message will be verified suc-
cessfully by the receiver. A key-based hash function
using a secret authentication key (Km in Eq 5) can
handle this problem. Only the sender with the authen-
tication key can generate a valid hash value that can
only be verified by the receiver sharing the key with
the sender [13]. Thus, the receiver can verify whether
or not the message is sent from the claimed sender by
checking the MAC. Once the integrity and authentic-
ity of the message is verified, the receiver decrypts the
ciphertext. Otherwise, it drops the message.

To implement a secure one way hash function for message
authentication, we use the block cipher in CBC mode shown
in Figure 2. The final encryption output Cn (where n is the
number of data blocks to be authenticated) is the hash value.
We take this approach, since it is a very efficient method to
implement a secure one way hash function [13]. Further, the
CBC MAC is provably secure [3].

A message sent by a RTES A to SC B (or vice versa) includes
the encrypted message and MAC in addition to other infor-
mation such as source and destination address (not shown
here):

A → B : C, Cnt, MAC (6)

where the ciphertext C supports the confidentiality of the
original plaintext and MAC supports the integrity and au-
thenticity of the message. In addition, we can support se-
mantic security and replay protection by using the IV in
CBC mode, while safely delaying the key (re)distribution
procedure when the risk is raised as discussed before.

3.2 Strength of Defense
The strength of a scrutinized symmetric key system, which
has no known shortcut to break it, is often estimated by the
difficulty of finding the key via brute-force attacks [13, 19].
The speed of a brute-force attack, in which an adversary
tests all possible keys, is mainly determined by the number
of possible key values to be tested. Wiener [19] designed a
specialized parallel hardware to estimate the average time
for a brute-force attack to break the DES algorithm. Note
that this approach is not limited to the DES, but gener-
ally applicable to other encryption algorithms such as AES
[13]. Table 1 shows the average time estimates for hardware
brute-force attacks in 2005. (These estimates extrapolate
the previous results [13, 19] according to Moore’s law.)

Since a RTES mainly deals with time-varying sensor and
control data, using a short, e.g., 80 bit, key might be ac-
ceptable. However, a malicious third party could attack a
cryptosystem with less budget as the hardware technology
develops fast. As a result, today’s safe key length may not
be safe tomorrow. This is an important observation, since
RTESs can be used for a long time after the deployment, for

Table 1: Estimated Average Times for Parallel

Brute-Force Attacks

Length of Keys
Hardware Cost 80 bits 112 bits 128 bits

$10K 7000 years 1013 years 1018 years
$100K 700 years 1012 years 1017 years
$1M 70 years 1011 years 1016 years
$10M 7 years 1010 years 1015 years
$100M 245 days 109 years 1014 years

example, to continuously monitor and control critical infras-
tructure. Our approach is also useful in this case; a RTES
can simply switch to a longer key, while dropping a short
key that is not considered safe anymore due to the advance
of the hardware technologies decreasing the time and cost
for brute-force attacks.

4. SECURITY AND TIMELINESS ASSUR-
ANCE

Our online security and QoS adaptation algorithm is sum-
marized in the following.

1. Periodically receive the current risk level R(t) at time t
from the IDS.

2. If the current strength of defense S(l) < R(t), use a new
key that is l′ bits long where S(l′) = R(t) and l′ > l.

3. Degrade the QoS of certain real-time tasks, if necessary,
to meet all deadlines.

Our offline precomputation algorithm for a specific key length
is summarized and discussed as follows.

1. Input: Key length l and QoS function gi : ui → qi

for each task Ti where 1 ≤ i ≤ N (#tasks in the system)
and ui and qi are the utilization and corresponding QoS,
respectively.

2. Output: Q List[l][i]

3. for (i = 1; i ≤ N ; i + +)
For a task Ti, derive the convex hull Hi = {< ui1, qi1 >

, ..., < uij , qij >} where j ≤ L (#max QoS levels).

4. /* Merge sort in nondecreasing order of utilization */
H List = Merge(H1−{< u11, q11 >}, H2−{< u21, q21 >

}, ..., HN − {< uN1, qN1 >})

5. Q List[l] = ø (empty set)

6. Ua = UB

7. /* Support at least the minimum QoS */
for (i = 1; i ≤ N ; i + +)
{

a. if (Ua < ui1)
b. print(“Error: Cannot Support Key Length l”)

c. exit(-1)
d. Q List[l][i] = qi1

e. Ua = Ua − ui1

}

8. /* Initial resource allocation */
for (i = 1; i ≤ N ; i + +) U [i] = ui1

9. /* QoS optimization */
for (i = 1; i ≤ |H List|; i + +)
{

a. id = H List[i].id
b. δU = H List[i].u − U [id]
c. if (δU > Ua) exit(0)
d. Q List[l][id] = H List[i].q
e. Ua = Ua − δU
f. U [id] = H List[i].u

}

In our approach, we assume a RTES stores the secret keys
in an array key[1..|R|] where |R| is the number of risk lev-
els considered by the IDS. For each key length, as shown in
Steps 1 and 2, we precompute the near optimal QoS levels
of the real-time tasks offline to minimize the overhead for
online security and QoS adaptation, if necessary. For a spe-
cific key length l, task Ti can simply switch to the QoS level
stored in Q List[l][i] when the system needs to use a key of
length l to ensure that the level of defense is higher than or
equal to the risk level.

In Step 3, as shown in Figure 3, we remove suboptimal dis-
crete QoS levels by deriving the convex hull for each task
Ti(1 ≤ i ≤ N), similar to [7]. In this way, a list of near
optimal < utilization, QoS > pairs, i.e., {< ui1, qi1 >, <
ui2, qi2 >, ..., < uij , qij >}, can be derived for each task Ti

in increasing order of utilization where uij is the utilization
required to support task Ti’s QoS level j.

In Steps 4 − 7, we initialize Q List[l] to support at least
the minimum required QoS when the key is l bits long. In
Step 4, all the < utilization, QoS > pairs of all tasks except
< ui1, qi1 > are merged in nondecreasing order of utiliza-
tion. If two pairs have the same utilization, the one with
the higher QoS is added to the list first. A tie, in which
two pairs have the same utilization and QoS, is broken in a
random manner. In Step 6, the available utilization Ua is
initialized. In Steps 7.a−7.c, we check whether Ua is enough
to support the deadline and the minimum QoS of Ti. If this
test fails, the RTES cannot support the specific key length l
and the algorithm terminates with an error. If the required
utilization ui1 to support the minimum QoS of Ti is avail-
able, we set Q List[l][i] = qi1 and subtract ui1 from Ua in
Steps 7.d and 7.e. The procedure is repeated for the next
task Ti+1, if any.

In Step 8, the required minimum utilization of each task
Ti (1 ≤ i ≤ N) needed to support at least Ti’s minimum
QoS is initialized. In Step 9.a, we remove the first task
in the H List, i.e., Tid, which requires the smallest utiliza-
tion. δU , i.e., the extra utilization needed to improve the
QoS of Tid, is computed in Step 9.b. If δU > Ua, the al-
gorithm terminates normally in Step 9.c. (We can allocate
remaining resources in a greedy manner; however, we do

�
�
�
� �

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Convex Hull
QoS

Utilization

Suboptimal

Figure 3: Example QoS Function

not take the greedy approach to reduce possibly excessive
QoS fluctuations when the risk level changes.) Otherwise,
the QoS of Tid is raised to the next higher level in Step
9.d. In Steps 9.e and 9.f, the available utilization Ua and
the utilization allocated to Tid are updated, respectively.
The whole procedure is repeated for every key length used
by a RTES. Consequently, the algorithm generates a table
Q List[1..#keys][1..#tasks] that can be used by our online
algorithm to select an appropriate key length and QoS levels
considering the current risk level in O(1) time. Finally, the
time complexity of our offline algorithm is O(KLNlogLN),
which becomes O(NlogN) when the number of keys (K)
and QoS levels (L) are constant.

5. RELATED WORK
Cryptographic security support has rarely been studied in
the context of real-time systems. Lee et al. [7] propose to
consider security as a QoS dimension and select an appro-
priate encryption key length based on the importance of an
application and its resource requirements. However, they
do not discuss these security vs. performance issues in de-
tail. They neither discuss the important security features
and implications discussed in this paper. Further, the selec-
tion of an encryption key length and QoS levels only occurs
at the start of an application, e.g, a video conference, un-
like our approach. Son et al. [16] developed an adaptive
security manager in a real-time database. When the real-
time database is overloaded, a weaker encryption algorithm
is used to improve the deadline miss ratio. However, their
approach does not consider potential security risks to make
the decision for adaptation. Their work neither deals with
hard deadlines.

The notion of Quality of Protection has been introduced in
[9] to integrate the security and QoS support. Although the
concept has existed more than a decade, it is not clearly
known yet how to measure the quality of general security
service. Spyropoulou et al. [17] have proposed the notion
of QoSS (Quality of Security Service). Ideally, a system ad-
ministrator and a security officer can select an appropriate
security scheme to optimize the cost-benefit relation, when
a quantitative model showing the computational cost and
benefit of a security service is given. However, they give no
specific model that can be used for the cost-benefit analysis.
Also, they do not consider real-time constraints. In gen-
eral, the cost-benefit analysis of security services is an open
problem. We have taken a first step to solving this problem
focused on cryptographic security support in real-time em-
bedded systems.

Miyoshi et al. [11] have developed a novel access control
scheme using the resource control lists to protect time mul-
tiplexed resources such as the CPU and network bandwidth
against some DoS (Denial of Service) attacks. Their work
is complementary to our work. For example, we can use the
resource control lists to protect real-time systems against
some DoS attacks, while supporting timing, stability, and
cryptographic security requirements. In general, real-time
system security is a challenging open problem with many
remaining issues to study. We discuss a specific instance of
the problem in this paper.

The access control problem in the multilevel security model
has been studied in the real-time database literature [1, 15,
16, 4, 6]. A majority of these work [1, 15, 16] temporarily
allow a covert channel, which can be used by an adversary to
enable an illegal information flow between different security
levels, to improve the timeliness under overload conditions.
George et al. [4] propose a secure real-time concurrency
control protocol to avoid a covert channel. Similarly, Kang
et al. [6] use a secure concurrency protocol to eliminate
a covert channel, while supporting the desired average and
transient deadline miss ratio via feedback control. Teo et al.
[18] have developed a dynamic access control scheme based
on the quantified levels of security risk received from an in-
trusion detection system, similar to our approach. However,
they consider neither cryptographic security nor real-time
constraints. Generally, our work is different from these work
in that we focus on supporting cryptographic security and
hard deadlines.

6. CONCLUSIONS AND FUTURE WORK
A number of real-time embedded systems are used to man-
age critical infrastructure, e.g., electric grids or C4I systems.
In these systems, it is essential to meet deadlines, while sup-
porting the confidentiality, integrity, and authenticity of net-
work messages. Despite the importance, security support in
RTESs has rarely been supported. To address this problem,
we formulate the problem as a QoS optimization problem
and propose offline and online algorithms for security and
QoS adaptation to address dynamic security risks, while op-
timizing the QoS. In this way, our approach efficiently sup-
ports essential cryptographic security features in resource
constrained RTESs. In the future, we will further investi-
gate efficient cryptographic support in RTESs considering
different task models such as sporadic or aperiodic mod-
els. Further, we will investigate other security issues closely
related to RTESs, e.g., detection of (distributed) denial of
service attacks.

7. REFERENCES
[1] Q. Ahmed and S. Vrbsky. Maintaining Security in

Firm Real-Time Database Systems. In 14th Annual

Computer Security Applications Conference, 1998.

[2] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A
Concrete Security Treatment of Symmetric
Encryption. In 38th IEEE Annual Symposium on

Foundations of Computer Science, 1997.

[3] M. Bellare, J. Kilian, and P. Rogaway. The Security of
the Cipher Block Chaining Message Authentication

Code. Journal of Computer and System Sciences,
61(3):362–399, Dec. 2000.

[4] B. George and J. R. Haritsa. Secure Concurrency
Control in Firm Real-Time Databases. Distributed and

Parallel Databases, 5:275–320, 1997.

[5] S. Goldwasser and S. Micali. Probabilistic Encryption.
Journal of Computer and System Sciences,
28:270–299, 1984.

[6] K. D. Kang, S. H. Son, and J. A. Stankovic. STAR:
Secure Real-Time Transaction Processing with
Timeliness Guarantees. In The 23rd IEEE

International Real-Time Systems Symposium, Dec.
2002.

[7] C. Lee, J. Lehoczky, R. Rajkumar, and D. Siewiorek.
On Quality of Service Optimization with Discrete QoS
Options. In the 4th IEEE Real-Time Technology and

Applications Symposium, 1998.

[8] K. J. Lin, S. Natarajan, and J. W. S. Liu. Imprecise
Results: Utilizing Partial Computations in Real-Time
Systems. In Real-Time System Symposium, December
1987.

[9] J. Linn. Generic Security Service Application Program
Interface. IETF Request for Comments: 1508, 1993.

[10] W. Mao. Modern Cryptography. Prentice Hall, 2004.

[11] A. Miyoshi and R. Rajkumar. Protecting Resources
with Resource Control Lists. In IEEE Real Time

Technology and Applications Symposium, 2001.

[12] National Institute of Standards and Technology,
Federal Information Processing Standards Publication
197: Announcing the Advanced Encryption Standard,
Nov. 2001.

[13] B. Schneier. Applied Cryptography. Wiley, 2nd edition,
1996.

[14] J. W. S.Liu. Real-Time Systems. Prentice Hall, 2000.

[15] S. H. Son, R. Mukkamala, and R. David. Integrating
Security and Real-Time Requirements using Covert
Channel Capacity. IEEE Transactions on Knowledge

and Data Engineering, 12(6), Dec 2000.

[16] S. H. Son, R. Zimmerman, and J. Hansson. An
Adaptable Security Manager for Real-Time
Transactions. In Euromicro Conference on Real-Time

Systems, pages 63–70, Stockholm, Sweden, June 2000.

[17] E. Spyropoulou, T. Levin, and C. Irvine. Calculating
Costs for Quality of Security Service. In 15th

Computer Security Applications Conference, 2000.

[18] L. Teo, G.-J. Ahn, and Y. Zheng. Dynamic and
Risk-Aware Network Access Management. In ACM

Symposium on Access Control Models and

Technologies, 2003.

[19] M. J. Wiener. Efficient DES Key Search. Technical
Report TR-244, Carleton University, May 1994.

