Stream Combination: Adaptive IO Scheduling for Streaming Servers*

Bin Liu

School of Computing and Information Sciences

Florida International University
Miami FL 33199
{bliu001,raju}@cis.fiu.edu

Abstract

Cycle-based 1O schedulers use statically configured time-
cycle durations. As a result, they are unable to avoid the
formation of virtual bottlenecks. We term a bottleneck as
virtual when it occurs within a single resource subsystem,
and it is possible to use a secondary under-utilized resource
to thwart the bottleneck. The primary reason for virtual
bottlenecks in streaming servers is static allocation of mem-
ory and disk-bandwidth resources using fixed time-cycle du-
rations. As a result, shifting request workload can cause a
virtual bottleneck either in the memory or disk subsystem.
We present stream combination, an adaptive 10 scheduling
technique that addresses this problem in a comprehensive
fashion. Stream combination predicts the formation of vir-
tual bottlenecks and proactively alters the IO schedule to
avoid them. A simulation study suggests significant perfor-
mance gains compared to the current state-of-the-art fixed
time-cycle 1O scheduler.

1 Introduction

The web-based sharing and distribution of audio and video
content is gaining ground with recent push from industry
(e.g., Apple [1], Google [6]) combined with the widespread
adoption of file-sharing tools (e.g., BitTorrent [3], KaZaa [8]).
Support for streaming digital audio and video content dur-
ing distribution provides flexibility by freeing up disk buffer-
space at the client-side and reducing client wait-time be-
fore playback. In the past, researchers have investigated the
problem of streaming media, mainly addressing the network-
bandwidth bottleneck issue. In this article, we address server-
side requirements such as guaranteed-rate 10 and high 10
throughput when serving multiple client requests.

The design goals of guaranteed-rate 10 and high through-
put within a streaming server requires establishing a trade-
off between memory-use and disk-bandwidth utilization; this

*A preliminary version of this paper appears in the Proceedings
of the 26th IEEE Real-Time Systems Symposium Work in Progress
Session.

fThis work was performed while the author was at the University
of California, Santa Barbara.

Raju Rangaswami

Zoran Dimitrijevié!
Google, Inc.
1600 Amphitheater Pkwy
Mountain View CA 94043

zorand@gmail.com

has been long recognized by designers of streaming multi-
media systems [12, 13]. The underlying mechanism that de-
termines this trade-off is the disk IO scheduling algorithm.
Prior approaches to scheduling in real-time systems can be
classified into two basic categories: deadline-based prior-
ity scheduling [7, 10, 13, 14] and time-cycle-based schedul-
ing [2, 11, 12]. Deadline-based priority scheduling works
excellently for CPU scheduling with provable guarantees for
task completion. However, guaranteeing 1O rate and per-
forming disk admission control under this paradigm requires
constant-overhead resource preemptibility [9], not feasible
for disk-based systems, or at least not completely [5]. As a
result, deadline-based priority scheduling in its current form,
as proposed for CPU resources, cannot support guaranteed-
rate IO delivery or a provably correct admission control
mechanism, critical requirements for streaming servers.
The time-cycle-based 10 scheduling technique, originally
proposed as quality proportional multi-subscriber servicing
(QPMS) by Rangan et al. [12], is a simpler and more pop-
ular model for streaming media servers. This is due to the
fact that it supports guaranteed-rate IO and a provably cor-
rect admission control mechanism [2]. In this model, each
stream is serviced exactly one IO per time-cycle and the
retrieved data is written to a display buffer. The size of
each 10 is such that the display buffer does not underflow
before the completion of the next IO for that stream. In a
multi-bitrate streaming server, the buffer sizes for different
streams could vary significantly, implying that the corre-
sponding IO sizes could also be vastly different. Intuitively,
the disk utilization depends on the average 10 size, since this
metric directly dictates the overhead component. Lesser the
average 10 size, greater the fraction of per-unit time spent
on access overheads, and lower the disk utilization. In the
time-cycle model, the disk utilization therefore depends on
the bitrate of the streams serviced in each time-cycle. If the
average bitrate of streams serviced in a time-cycle is low,
the average 10 size and the achieved disk throughput are
low, potentially resulting in a wvirtual disk-bandwidth bottle-
neck. We call this a virtual bottleneck because this bottle-
neck is a result of a misconfigured time-cycle and may be
avoided. One way to avoid this bottleneck and increase disk
throughput would be to increase the duration of the time-
cycle. However, increasing the time-cycle suddenly would
result in display buffer underflow. Second, the server mem-
ory requirement would also increase as a result, increasing
faster than the achieved disk utilization. Chang et al. ana-
lyze memory requirements in streaming servers extensively
in [2]. A solution which can increase the average request size,
without severely impacting the memory use would eliminate

AR~~~ A N A~~~

T T,

T T time

[Legend: = Access Overhead m Datatransfer for Stream A

Datatransfer for Stream B = Datatransfer for Stream C|

Figure 1: The Stream Combination Technique.

this virtual disk-bandwidth bottleneck.

Virtual memory-bottlenecks can occur as a result of a
high average bitrate of streams. Higher the average bitrate,
larger are the display buffer sizes, and consequently, greater
the total memory requirement. In such situations, time-
cycle duration reduction can be used to potentially avoid
this virtual bottleneck. However, this reduction cannot oc-
cur after the bottleneck has been established. Proactive and
dynamic reduction of time-cycle duration has not been ex-
tensively studied before.

In this paper, we propose stream combination, a vari-
ant of the time-cycle-based scheduling algorithm that dy-
namically adapts to changing system bottlenecks brought
upon by shifting workloads. Stream combination provides
guaranteed-rate IO and a provably correct admission con-
trol. Using a technique of combining and splitting IO streams
and a technique for dynamic time-cycle alteration, it ac-
counts for and avoids virtual disk- and memory- subsystem
bottlenecks until these system resources are fully utilized.

The technique of stream combination recognizes that
multi-bitrate streaming servers can encounter bottlenecks in
either the memory or disk subsystem at any time. Stream-
combination uses the time-cycle-based scheduling model as
the underlying framework to allow deterministic admission
control, but allows for variable per-stream time-cycles using
stream combination as well as dynamic time-cycle reduc-
tion. Using these techniques, stream combination dynam-
ically avoids subsystem bottlenecks by trading off memory
use and disk utilization until all system resources are fully
utilized. We make the following contributions in this pa-
per:

1. We introduce the problem of virtual bottlenecks in
multi-bitrate streaming servers.

2. We propose stream combination as a possible solution
to the problem.

3. We evaluate the proposed technique and show that it
can offer significant performance improvement over fixed
time-cycle schedulers.

The rest of this paper is organized as follows. Section 2

describes stream combination, our proposed solution for avoid-

ing virtual bottlenecks in streaming servers. In Section 3,
using simulation, we evaluate the performance of a multi-
bitrate streaming server to determine the effectiveness of
the stream combination technique. Section 4 raises some in-
teresting issues and avenues for future work with the Stream
Combination IO scheduling technique. We make concluding
remarks in Section 5.

2 Stream Combination

Stream combination is a variant of the time-cycle model that
alters the IO schedule dynamically to avoid the formation
of virtual bottlenecks in streaming servers. In this section,
we present the rationale behind stream combination and the
algorithm that drives this technique.

2.1 Rationale

Virtual bottlenecks can occur when servicing a dynamic
streaming workload in either the memory or disk subsys-
tem. Earlier, we noted that for virtual disk-bandwidth bot-
tlenecks, simply increasing the time-cycle duration is not an
acceptable solution. We investigate further to determine the
root cause of disk IO inefficiency. For a stream with bitrate
R serviced in a time-cycle of duration 7', the amount of data
retrieved in each 10 is R x T" and the amount of time spent
to perform this IO is the sum of an (overhead) access time,
Tuccess, and a data retrieval time, gdxisT , where Rg;sk is the
data transfer rate from the disk medium. Therefore, the
efficiency of the IO for the stream is:

RxT

= 1
Rdisk X Taccess + RxT ()

(&

Based on Equation 1, we note that a stream with high bi-
trate may have fair efficiency while a stream with low bitrate
has poor efficiency. This raises the question: Can we com-
bine two or more low bitrate streams to obtain a single higher
bitrate stream and improve 10 efficiency?

Figure 1 presents one possible combination technique.
T; denote time-cycle durations along a time axis. Streams
A, B, and C are currently being serviced by the system.
The bitrate of A is relatively high compared to B and C.
In time-cycle T} (prior to combination), the IO scheduler
performs one IO each per time-cycle per stream, retrieving
Sa, Sg, and Sc amount of data respectively. The scheduler
starts the stream combination process in time-cycle T> by
retrieving twice the amount of data for stream B (= 2 x
Sg). In time-cycle T3, the scheduler does not perform IO for
Stream B, but retrieves twice the amount of data for stream
C (=2 x S¢). Starting from time cycle T3, in any given 10
cycle, only one of streams B or C are serviced, reducing the
number of access overheads by one, increasing the average
IO size, and consequently improving disk utilization.

Although such a technique improves disk utilization as
a result, several issues must be considered in a combination
strategy: (i) the state of the system; combination makes
sense only if disk-bandwidth is the bottleneck, (ii) combi-
nation must be proactive and must not allow the system
to reach a bottleneck state before taking effect, (iii) how
many streams must be combined to avoid the virtual bot-
tleneck? (iv) combination increases memory requirement,
and a wrong combination decision may potentially result
in a virtual memory-bottleneck, (v) the combination oper-
ation incurs a transitory data transfer overhead during the
time-cycle in which combination is initiated, and (vi) after
combination, if there is a virtual memory-bottleneck at some
later time due to shift in the workload, is uncombining or
splitting combined streams straightforward?

The second virtual bottleneck is memory consumption.
Assume that the first K out of N streams served by the
system are in the combined state. If R; is the bitrate of
stream ¢ and 1" denotes the time-cycle duration, the total

memory requirement for NV streams is the sum of the display
buffer sizes of all streams and is given by:

N K
M=>"TxRi+Y» TxR (2)
i=1 =1

This equation follows from the observation that combined
streams require buffering for two time-cycle durations as op-
posed to one time-cycle duration for uncombined streams.
When the system approaches a potential virtual memory-
bottleneck, it may be in one of two states: (a) there exist
combined streams in the system, and (b) all streams are
uncombined. In case (a), combined streams can be split
to reclaim memory. In case (b), reducing time-cycle dura-
tion can reduce total memory requirement. However, three
issues must be considered: (i) if several combined streams
exist, which stream must be chosen to split first? (ii) how
many combined streams should be split to avoid the bot-
tleneck? (iii) by how much must the duration of the time-
cycle be reduced to avoid the bottleneck? The answer to the
question of which combined streams should be split first is
straightforward. Splitting should be performed first on the
high bitrate streams because they allow reclaiming the max-
imum amount of memory. However, the other issues need
further investigation.

2.2 Mechanism

The basic idea of stream combination is to thwart virtual
bottlenecks in streaming servers by proactively balancing
memory and disk resource consumption under shifting stream
workload. This balancing act is performed until both mem-
ory and disk resources are fully utilized. To balance these
resources, we use two parameters, the memory utilization
(u-m) and the time-cycle utilization (u-t). Memory utiliza-
tion is the ratio of the utilized memory to the available mem-
ory, while time-cycle utilization is the ratio of the time spent
performing IO during a time-cycle to the time-cycle dura-
tion. These parameters capture the relative availability of
memory and disk-bandwidth resources.

A simplistic stream combination mechanism requires keep-
ing track of u-m and u_t; when u-m < u_t, it combines the
two lowest bitrate un-combined streams; when u_m > u_t, it
un-combines or splits the highest bitrate combined stream.
However, this straightforward strategy has several problems:
(i) when choosing to combine, there may be no uncombined
streams, (ii) when choosing to split, there may be no com-
bined streams, (iii) this simplistic strategy would typically
result in frequent combinations and splits, and (iv) several
combination operations in a short duration can lead to a sig-
nificant transitory disk-bandwidth overhead for transferring
additional data for combined streams.

To avoid these problems, the stream combination 10
scheduler uses four heuristics:

1. When combination is required and no uncombined
streams exist, the scheduler doubles the duration of the
time-cycle, effectively un-combining all streams. Notice
that this increase in time-cycle duration incurs no over-
head.

2. When splitting is required and no combined streams
exist, the scheduler decreases the time-cycle by a UNIT
percentage value, thereby reducing memory requirement.
However, the disk utilization degrades due to a reduced
average 1O size. Here, we trade disk-bandwidth to conserve
memory.

Input: Current Workload (W),
Current Schedule (CS)
Output: New Schedule (NS)

Procedure: CheckSchedule {
Compute {u_m,u_t} from {W,CS} ;
If (((u_m>u_mT || u_t>u_tT) && abs(u_m-u_t)<u_dT)
|| SFLAG) { Call Reschedule ; }
}

Procedure: Reschedule {
SFLAG = false ;
If (u_m>u_t) {
If (combinedStreamsExist) {
Split highest bitrate combined streams ;
Modify schedule to NS ;
} Else { Decrease Time-cycle by UNIT ; }
Recalculate {u_m,u_t} from {W,NS} ;
If (abs(u_m-u_t)>u_dT) { SFLAG = true ; }
return NS ;
Else {
If (uncombinedStreamsExist) {
Combine lowest bitrate uncombined streams ;
Modify schedule to NS ;
} Else { Double Time-cycle duration ; }
Recalculate {u_m,u_t} from {W,NS} ;
If (abs(u_m-u_t)>u_dT) { SFLAG = true ; }
return NS ;

[

Figure 2: Stream Combination Scheduler.

3. It makes provision for three constants, the memory uti-
lization threshold (u-mT), the time-cycle utilization thresh-
old (u_tT), and the difference threshold (u_dT"). The de-
cision to reschedule is made only in case either memory
or time-cycle utilizations exceed their threshold and their
difference is greater than the difference threshold.

4. When a decision to combine or split is made, the sched-
uler spreads out multiple required combine or split opera-
tions, allowing only one operation per time-cycle, thereby
minimizing the transitory disk-bandwidth overhead. This
is achieved using a scheduling flag (SFLAG).
The detailed 10 scheduling algorithm is presented in Figure
2. The procedure CheckSchedule is invoked at the beginning
of each time-cycle, which in turn invokes the Reschedule
procedure if required.

2.3 Extension: N-way Stream Combination

So far, we have proposed combining two streams in each
stream combination operation. Indeed, it is possible, and
even sometimes desirable, to rather combine several streams
at once. Allowing the combination of more than two streams
when appropriate would make this technique more flexible
by allowing for streams to be retrieved only once in n > 2
time-cycle durations. IO for each combined stream in a
group of n combined streams increases n-fold, improving 10
efficiency drastically. This flexibility also allows for signif-
icant reduction in the IO request-size variability, and con-
sequently the IO bandwidth variability, over time. For a
generic n-way stream combination, let us assume that the
streams to be combined are numbered 1,2, --n. In the fi-
nal schedule, exactly one of streams 1 < ¢ < n would be
retrieved in each time-cycle. To transition the system from
the initial state (each stream IO performed in each time-
cycle) to the final schedule, stream combination could occur
as follows. In the first time-cycle of the combination opera-
tion, for each stream i, the IO scheduler would retrieve data
for ¢ time-cycles. This completes the stream combination

time
L5

time

A A T A A T ——————————— A AT A i] oo R -
T T2 T3 time
- — A oo o I
time
T T
Y — YT
im
T7 T9 time

Figure 4: The N-way Pyramid Stream Combination Technique.

operation. In subsequent time-cycles, only one of streams
1 <4 < n are retrieved, starting from stream 1 and increas-
ing sequentially through n. The size of each 10 henceforth
is sufficient to last the stream n time-cycle durations. Of
course, this is only one way of performing the stream com-
bination operation and it essentially minimizes the duration
of the stream combination operation to lead to the final IO
schedule quickly, within one time-cycle. We term this tech-
nique as n-way basic stream combination, depicted in Figure
3. Time-cycle T7 shows the original schedule. Combination
of the four streams occurs during T5.

In the n-way basic stream combination technique de-
scribed above, although the duration of the stream combina-
tion operation is minimized (requires a single time-cycle to
complete the n-way combination), it incurs significant data
transfer overhead during the first time-cycle. This overhead
may lead to deadline misses and make the technique unus-
able. Another generic technique to achieve the same sched-
ule with lesser data transfer overhead could use the basic
technique for combining two streams, and further combin-
ing the combined streams till the final schedule is reached.
We call this the n-way pyramid stream combination tech-
nique. The pyramid technique staggers the data-transfer
overhead of the combination operation over multiple time-
cycles. Both techniques lead to the same final schedule.
However, with the pyramid technique, as depicted in Fig-
ure 4., the stream combination operation takes longer to
complete. The original schedule is shown in 7. Pyramid
combination occurs during time-cycles 15, 713,74, and T5.

It is possible to combine two sets of combined streams
and thereby further extend the stream combination tech-
nique. For instance combining a 3-way combined group and
a 4-way combined group would lead to a 7-way combined
group. Furthermore, note that splitting an n-way combined
group is similar to splitting a 2-way combined group.

3 Experimental Evaluation

To evaluate the performance of the stream combination 10
scheduler, we built a simulator to compare it with a fixed
time-cycle scheduler. The system was configured to have
128MB of total available memory to buffer stream data. The

maximum disk transfer-rate was 50MB/s and the average
disk access time (including seek, rotational, and settle over-
heads) was 10ms. The base-line IO scheduler chosen was
Fixed-Stretch [2], a state-of-the-art fixed time-cycle sched-
uler that balances disk-bandwidth and memory use. We
evaluated the basic 2-way stream combination 10 sched-
uler against the base-line Fixed-Stretch scheduler. Figure 5
tracks the following metrics during a simulation run of 20
minutes for a workload with uniformly distributed stream
bitrates between 128 and 1024 kbps and with uniformly dis-
tributed request inter-arrival times between 2-7 seconds: (a)
memory consumption (in MB), (b) time-cycle consumption
(in milliseconds), (¢) cumulative number of streams admit-
ted over time, and (d) number of streams in service at any
instant. The initial time-cycle duration for the stream com-
bination scheduler was the same as that of the fixed time-
cycle scheduler: 500 milliseconds. Initially, as streams ar-
rive, the two scheduling strategies performed similarly. At
approximately 200 seconds, the fixed time-cycle scheduler
encountered a virtual disk-bandwidth bottleneck due to an
under-estimated time-cycle duration. The stream combi-
nation scheduler detected the future formation of a virtual
disk-bandwidth bottleneck and proactively started combin-
ing streams at approximately 100 seconds. As a result, it
successfully thwarted the bottleneck. Beyond 200 seconds,
the fixed time-cycle scheduler was unable to increase the
number of streams in a time-cycle. Our scheduler was able
to continue servicing greater number of streams in each time-
cycle, delivering as much as 55% more throughput than the
fixed time-cycle scheduler. The time consumption graph
shows an increase beyond 500ms for stream combination be-
cause the time-cycle effectively doubles each time all streams
in service have been combined. In this particular experi-
ment, the time-cycle doubled twice to reach a maximum of
2000 milliseconds.

Figure 6 demonstrates the case where the initial time-
cycle duration for both schedulers was set to 5 seconds. The
generated workload was the same as for the previous ex-
periment. At around 200 seconds into the simulation, the
fixed time-cycle scheduler encountered a virtual memory-
bottleneck that limited its throughput. Our scheduler proac-
tively started reducing the duration of the time-cycle (and

120 7 1800 160 60
Without Stream Combination ~ + § Without Stream Combination ~ + Without Stream Without Streggn Combination ~ +
Withtrﬁmb\nation x 2 1600 thS:ﬁmbination x 140 With Strea@Combination With Str ombination ~ x
@ 100 o 50
2 9 1400 °
= o 3 f 1 g 1w 8
§ w0 ! o 1200 § £ s 4
g x £ 5 100 H
£ ¥ 1] F 1000 % < b
3 60) £ F % E w0 £ 3
s H : 5 800 % g £
0 X g !) g
> 4 £ 600 % = g 20
5 B Y 5 g ")
5 = g 40 = P2
s 5 8 2 10
iy g
0 . . . £ 0 n 0 0
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Time (secs) Time (secs) Time (secs) Time (secs)
Figure 5: Comparison for time-cycle=500ms.
140 T T T T ? 1600 AR T T 160 T T 60 T T
Without Stream Combination ~ + § W it 9 gwiue mbination ~ + Without Stream am Combination +
R Gombination 2 1400 b th Stre; mbination x 140 With StreamCombination fy Combination x
g lop TR ° ! By 50 %
s ¥ - 4 o I 5 EY o
T ow0f o o0r F 1 § . j
S . X o N ¥ H $ w
8 4 ’?g‘ i E 1000} ; 3 ¥ 3 100 ————— g
g gl o % E ! 5 < M/ & T
3 : Jﬂif % S oawf g * E g £ % |
5 60l § F Y < « % § £ it i&
9 :f 1 2 600} ; “'x% @ 60 5 kY
. H E . - g] %
g Oy 3 a0ff B g w kt
g H 5 H mi'z 10 -
2% O 200 . 20 L.
: oy g H %
N R S . o N B ‘
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Time (secs) Time (secs) Time (secs) Time (secs)

Figure 6: Comparison for

the memory consumption as a result) at around 100 seconds
(See Figure 6(b)) to successfully thwart the virtual bottle-
neck. More time-cycle reductions occurred beyond 200 sec-
onds, dynamically adapting to the increased workload and
delivering as much as 100% more throughput than the fixed
time-cycle scheduler.

The above experiments demonstrated the inadequacy of
a statically chosen time-cycle duration. We now determine
how the throughput of the streaming server (in terms of
the maximum number of streams admitted) depends on the
time-cycle duration. Figure 7(a) compares against a fixed
time-cycle scheduler with different time-cycle durations in
each experiment, shown along the X-axis. The workload
used was the same as for the previous experiments. As the
initial time-cycle duration is changed, the fixed-time cycle
scheduler admitted different number of streams, achieving
its maximum for a time-cycle duration of 1.5 seconds. With
stream combination, regardless of the initial time-cycle du-
ration, the scheduler dynamically altered both its schedule
as well as time-cycle duration to always provide the max-
imum throughput. It is important to note that, in case
of the fixed time-cycle scheduler, determining the optimal
time-cycle duration requires prior knowledge of the work-
load. Second, for real-world streaming servers, the natural
shift in the workload over time precludes the existence of an
optimal time-cycle duration. In such real-world scenarios,
the stream combination scheduler dynamically adapts to
deliver the maximum possible throughput.

Our final experimental result, depicted in Figure 7(b),
compares the relative performance for six different work-
loads. These workloads were generated by varying both
the distribution of stream bitrates as well as the arrival
rates. Workloads #1-3 used stream bitrates generated from

time-cycle=5000ms.

300

1000 1500 2000 2500 3000 3500 4000 1 2 3 4 5 6
Work load

Time Cycle Duration

(a) Varying time-cycle duration. (b) Varying workload.

Figure 7: Throughput comparison.

a uniform distribution. The time-cycle scheduler picked the
time-cycle duration based on the average duration (assum-
ing prior knowledge) and performed within 8% of the stream
combination scheduler. Workloads #4-5 used a non-uniform
distribution for stream bitrates; #4 favored high bitrates
and #5 favored low bitrates. With workload #4, the pri-
mary bottleneck is memory and for #35, it is disk-bandwidth,
with no virtual bottlenecks formed during these simulations.
Even so, the stream combination scheduler was able to fine-
tune the time-cycle duration to deliver as much as 15% more
throughput for workload #5. Finally workload #6 varied
the distribution over time to initially favor low bitrates and
then high bitrates. The fixed time-cycle scheduler did not
have a clear choice for the time-cycle duration and used
the average bitrate as the basis. The stream combination
scheduler dynamically varied the time-cycle duration over

time to better match the request traffic and delivered as
much as 30% more throughput. It is important to note
that real-world streaming workloads behave relatively more
like workload #6 (probably with greater variations) than
like workloads #1-5, underscoring the importance of stream
combination.

4 Discussion

As demonstrated in our simulation-based evaluation, stream
combination is a generic and powerful IO scheduling tech-
nique that dynamically avoids virtual bottlenecks. To recap,
to avoid a virtual memory-bottleneck, the stream combina-
tion technique may employ time-cycle reduction. However,
a future request workload with a low average bitrate may
move the bottleneck to disk. In such a case, combination
is employed. Using the basic 2-way combination technique,
after all streams have been combined, the time-cycle is dou-
bled. This increase in time-cycle comes at absolutely no cost.
This completes a scheduling cycle that dynamically adapted
to changing request workload, successfully avoiding virtual
memory- and disk-bandwidth- bottlenecks.

4.1 Choosing Initial Time-cycle Duration

The stream combination technique requires choosing a time-
cycle duration to begin with. With fixed time-cycle sched-
ulers, the choice of this initial time-cycle duration is critical,
since it statically determines the memory disk-bandwidth
trade-off point. Stream combination, on the other hand,
dynamically adapts the time-cycle duration to best match
request workload. As a result, it is not necessary to choose
the initial value of the time-cycle perfectly. In fact, as we
have discussed earlier, for real-world workloads, there may
not exist an ideal static time-cycle duration. Although this
is subject to further study, we believe that for the stream
combination scheduler, a time-cycle duration chosen based
on the average bitrate of the streams stored at the server
should work well.

4.2 Stream Combination and Deadline Scheduling

We have only investigated the stream combination tech-
nique for the family of cycle-based real-time IO schedulers.
It would be interesting to investigate the appropriateness
of stream combination, or the ideas contained therein, to
the family of deadline-based real-time schedulers. How-
ever, we must first investigate the appropriateness of the
deadline-scheduling family for real-time disk IO. Develop-
ing a deadline-scheduling theory for disk systems under the
assumptions of non-preemptive tasks with large and non-
uniform task-switching and task-preemption overheads is an
interesting direction for future work.

5 Conclusion

We have presented stream combination, an IO scheduling

technique that avoids virtual bottlenecks in streaming servers.

This technique predicts subsystem bottlenecks and proac-
tively alters the IO schedule to successfully thwart them
until all system resources are fully utilized. Stream combina-
tion achieves its goal using the dynamic techniques of com-
bining low-bitrate streams, splitting high-bitrate combined
streams, and changing the time-cycle duration, as required.
A simulation study suggests that this technique can offer
significant performance improvement over fixed time-cycle

schedulers. An implementation of the stream combination
technique is currently being incorporated into Xtream [4], a
real-time streaming multimedia system.

References

[1] Apple, Inc. Quicktime Streaming Server.
http://www. apple.com/quicktime/streamingserver/.

[2] Edward Chang and Hector Garcia-Molina. Effective
Memory Use in a Media Server. Proceedings of the 23rd
VLDB Conference, pages 496-505, August 1997.

[3] B. Cohen. Incentives Build Robustness in Bittorrent.
Proceedings of the Workshop on Economics of Peer-to-
Peer Systems, May 2003.

[4] Zoran Dimitrijevic, Raju Rangaswami, and Edward
Chang. The Xtream Multimedia System. Proceedings of
the IEEE Conference on Multimedia and Expo, August
2002.

[6] Zoran Dimitrijevic, Raju Rangaswami, and Ed-
ward Chang. Design and Implementation of Semi-
preemptible 10. Proceeding of the Second Usenix FAST,
March 2003.

[6] Google, Inc.
http://video.google.com/.

Google Video Search.

[7] Kevin Jeffay, Donald F. Stanat, and Charles U. Mar-
tel. On Non-Preemptive Scheduling of Periodic and
Sporadic Tasks. Proceedings of the Twelfth IEEE Real-
Time Systems Symposium, December 1991.

[8] Nathaniel Leibowitz, Matei Ripeanu, and Adam
Wierzbicki. Deconstructing the Kazaa Network . Pro-
ceedings of The Third IEEE Workshop on Internet Ap-
plications, page 112, June 2003.

[9] C Liu and J Layland. Scheduling Algorithms for Multi-
programming in a Hard Real-Time Environment. ACM
Journal, January 1973.

[10] A. Molano, K. Juvva, and R. Rajkumar. Guaranteeing
Timing Constraints for Disk Accesses in RT-Mach. Pro-
ceedings of the IEEE Real Time Systems Symposium,
1997.

[11] B. Ozden, A. Biliris, R. Rastogi, and A. Silberschatz.
A Low-cost Storage Server for Movie On Demand
Databases. Proc. VLDB, September 1994.

[12] P. Venkat Rangan, Harrick M. Vin, and Srinivas Ra-
manathan. Designing and On-Demand Multimedia Ser-
vice. IEEE Communications Magazine, 30(7):56-65,
July 1992.

[13] A L Reddy and J Wyllie. Disk Scheduling in a Multi-
media I/O System. Proceedings of the ACM Conference
on Multimedia, pages 225-233, 1993.

[14] Joel C. Wu and Scott A. Brandt. Storage Access Sup-
port for Soft Real-Time Applications. Proceedings of the
10th IEEFE Real-Time and Embedded Technology and
Applications Symposium, pages 164-173, May 2004.

