A control theory perspective on configuration

management and cfengine

Mark Burgess
Oslo University College, Norway

Abstract— Cfengine is an autonomous agent for the configuration
of Unix-like operating systems. It works by implementing a hybrid
feedback loop, with both disrcete and continuous elements.

Keywords— Control theory, configuration management.

I. INTRODUCTION

Configuration management is the business of enforcing
predictable patterns of resource deployment and mainte-
nance in computer systems. In the past, configuration
management has often been viewed as a static, one-off task
to be performed at the start of a system’s history. Increas-
ingly however, researchers are coming to realize that the
unpredictable nature of computers in their environments
mandates a dynamical feedback process.

Cfengine is a widely used configuration management tool
and an on-going research project, looking at distributed
configuration management. Since its inception in 1993, the
cfengine software has been adopted by a broad range of
users from small businesses to huge organizations[1]. It is
currently running on an estimated million nodes around the
world. Cfengine may be described as a multi-agent system
for policy-based configuration management.

Cfengine ties observation or monitoring of a system to
corrective operations, in a single repetitive control loop. To
carry out its manifesto, in the environment of an operating
system, it has to mix discrete and continuum approxima-
tions to system state into a unified model. In this paper,
the cfengine agent is described from the viewpoint of con-
trol regulation.

A. Key ideas in this text

e Policy (P) is a description of intended host configuration.
It comprises a partially ordered list of operations or actions.
Cfengine policy is that part of system policy that can be
coded into the host itself.

o Configuration (C) is the current state of the objects de-
scribed by policy.

o Operators (O) or primitive actions are the commands
that carry out maintenance checks and repairs. They are
the basic sentences of a cfengine program. They describe
what is to be constrained and how.

e Classes are a way of quantifying the complex environ-
ment into discrete (‘digital’) regions that can be referred
to by a symbolic identifier. They are constraints on the de-
grees of freedom available in the system parameter space.
They are an integral part of specifying rules. They describe
where something is to be constrained.

o A cfengine state is a point within the total system pa-
rameter space. States have the form:
(object,attribute,value)

We shall elaborate on these ideas below.

B. Cfengine and regulation philosophy

Cfengine assumes that changes of state occur unpre-
dictably at any time, due to external ‘disturbances’. It
must therefore execute a ‘continual’ loop of observation
and maintenance in order to achieve its policy state.

In control theory, systems are thought of as being con-
tinually regulated in order to optimize goals, by regulating
certain state variables, in a cycle directly analogous to the
one mentioned above. The key difference between this and
cfengine is that cfengine employs two related strategies for
implementing its goals.

¢ Deterministic, policy based regulation state.
« Stochastic, policy based regulation of state using average
behaviour.

Both of these strategies can be considered as types of
‘controllers’.

Cfengine holds to a set of principles, referred to as the
immunity model[2], for seeking correctness of configuration.
These embody the following features:

« Centralized policy-based specification, using an operat-
ing system independent language, which conceals imple-
mentation details.

« Distributed agent-based action, in which every host node
is responsible for its own maintenance.

o Convergent semantics encourage every transaction to
bring the system closer to an ‘ideal’ average-state, like a
ball rolling into a potential well (negative feedback).

o Once the system has converged, action by the agent de-
sists, or more usually, does not even start at all, when
convergence was assured on a previous run of the agent.

The last two points are the most important. Most con-
figuration agents either require a human to initiate change
or rewrite the same constant configuration many times. In
an analogous way to the healing of a body from sickness,
cfengine’s configuration approach is to always move the
system closer to a ‘healthy’ state[3], or oppose unhealthy
change: hence the name ‘immunity model’. This idea
shares several features with to the security model proposed
in refs. [4], [5], and with control theory[6].

A ‘healthy state’ is defined by reference to a local policy.
When a system complies with policy, it is healthy; when it

deviates, it is sick. Cfengine makes this process of discrete
‘maintenance’ into an error-correction channel for messages
belonging to a fuzzy alphabet[7], where error-correction is
meant in the sense of Shannon[8].

C. Classes and environment

Cfengine uses the idea of classification to characterize a
distributed environment into overlapping sets for time and
location.

A class based decision structure is possible because a
cfengine agent observes or senses the environment on ev-
ery host on the network individually. Each host knows its
own name, the type of operating system it is running and
can determine whether it belongs to certain groups or not.
Each host which runs a cfengine agent therefore builds up
a list of its own discretized attributes (called the classes to
which the host belongs). Classes that are meaningful in
the context of a particular host include:

1. The date, time or identity of a machine, including host-
name, address, network, and operating system and archi-
tecture of the host. This is for localization control.

2. An abstract user-defined group to which the host be-
longs for abstraction.

3. The result of any proposition about the system state.
4. Digitized observations of average performance, learned
over time.

5. The logical combination of any of the above, with AND
(.), OR (1), NOT (!) and parentheses.

One can think of this as a projection of the environment
onto a discrete set of abstract classifiers. The classifiers
form a patchwork covering of the environment and each
class becomes a descriminating decision for controllers.

II. POLICY AND ITS INTERPRETATION

In an appropriate sense, policy is a set of grammatically
structured control knobs for altering the average state of
a system. The view of policy taken in ref. [9] is that of a
series of instructions, coded into the computer itself, that
summarizes the expected behaviour. The precise behaviour
is not enforcable, since the system is not deterministic: it
is subject to a number of environmental disturbances.

Policy is a really description about what we wish to be
‘normal’ about a system. A description of normality is
a decision about how we define anomalies. There is thus
an obviously link with anomaly detection[10]. If we can-
not, equate normality with policy then we have not even a
partially predictable system to manage and the concept of
‘management’ would be meaningless.

This is where the split between system and environment
has a fundamental conceptual bearing on our description
of it. There are two kinds of normality that pertain to:

o Robust properties that we feel confident in deciding for
ourselves (permissions of files, processes etc). These are
decided and enforced. Deviations from these ‘digital’ spec-
ifications can be repaired or warned about directly by
Shannon-like error correction.

o Stochastic properties that are determined by the environ-
ment and must hence be learned (number of users logged
in, the level of web requests). These have fluctuating values
but might develop stable averages over time. These cannot
normally be ‘corrected’” but they can be regulated over time
(again this agrees with the maintenance theorem’s view of
average specification over time[9]).

Cfengine deals with these two different realms differently:
the former by direct language specification and the latter
by machine learning and by classifying (digitizing) the ar-
rival process.

I1I. FEEDBACK AND ERROR REGULATION LOOPS

The Shannon communication model of the noisy channel
has been used to provide a simple picture of the mainte-
nance process[7]. Essentially, maintenance is the imple-
mentation of corrective actions, i.e. the analogue of er-
ror correction in the Shannon picture. Maintenance is
rather more complex than Shannon error correction, how-
ever, since it is not immediately clear that there is a simple
digital picture of information for a system policy.

What makes the analogy valid is that Shannon’s con-
clusions are independent of a theory of observation and
measurement that becomes essential for policy. For simple
alphabetic strings, the task of observation and correction is
trivial. However, the conclusions apply even for more com-
plicated models of observation (monitoring) and correction
because the conclusions do not depend on the nature of
these actions.

A necessary and sufficient characterization of digital pol-
icy is provided by the computer science idea of a lan-
guage[11]. A language is just a structured pattern of state
information.

Defining policy in language theoretical terms allows one
to model it as a stream of operational messages. All we
need to do this is to create a one-to-one mapping between
the basic operations of cfengine and a discrete symbol al-
phabet. e.g.

A -> ‘‘file mode=0644""’
B -> ‘‘file mode=0645’"

C -> ‘‘start apache httpd’’

The agent interprets and translates the policy symbols into
actions through operations, also in one to one correspon-
dence.

Cfagent observes : X
Policy says: X — A
Agent invokes :A — Oﬁle(passwd, 0644, root)

Let us suppose that example above evaluates to the al-
phabetic symbol ‘A’. When the agent observes these prop-
erties of the named object it comes up with a symbol value
based upon what it has measured. Suppose now that a user

of the system (who is formally part of the environment) ac-
cidentally changes the permissions of the password file from
mode=0644 to mode=0600. Moreover, we can suppose that
this new value evaluates to the alphabetic character ‘X’.
The corrective controller sends the message X — A.

ABCXBC... — ABCABC... (1)

The message transmission medium in this process is time
itself. We regard the system (as is normal in the physical
sciences) as being propagated from its current location to
exactly the same place, or possibly across a system bus. In
other words, the time development of the system is just the
transmission of the system into the future over no distance
(see fig 1).

policy configuration

Cfagent

Fig. 1. Cfengine policy regulation as a controller. The state of the
system configuration with respect to policy is being regulated given
the disturbances created by users who make accidental or deliberate
changes manually which do not fall within the limits set by policy.

The alphabet, as described, might appear infinite on
casual reflection, in the sense that data objects that pa-
rameterize operations tie basic operations to a relativistic
scheme of change — not to a fixed system. However cfengine
is used in a single real system where all policies are actu-
ally finite. In other words, although the space of all possible
policies is potentially very very large (though never truly
infininte due to finite memory etc), only a small fraction of
the possibilities is ever realized on a real system and this
problem is not a limitation.

IV. STOCHASTIC AND DETERMINISTIC SCHEDULING

Many policy based systems use the Event-Condition-
Action (ECA) model to regulate system state[13]. This
is like a ‘just in time’ inventory model[14]. An alternative
to this is to use a batch process of deterministic inventory
scheduling, in which one plans maintenance checks at reg-
ular intervals, processing the backlog of events that have
arrived (see fig. 2). The latter approach has greater time-
uncertainty than an immediate triggered response, but it
can perform all the same functions as the ECA model.

Cfengine uses both strategies, in order to cope with both
determinism and non-determinism in its change processes.
The probability of change in discrete system state is small,
so a batch processing schedule has low uncertainty. The
dynamical state of the system has a high rate of change,
on the other hand, so a combination of event processing
and batch processing is a more rational solution.

The aim of any controller’s scheduling method is to limit
the uncertainty in system state to a predictable interval of
time. If state cannot be corrected in time, it is possible
that the state will run away monotonically.

Inventory
q |
T t
time
Fig. 2. A basic inventory model viewpoint with continuous cyclic

operation shows how the maintenance ‘stock’ is realized ‘suddenly’
and depleted at a constant rate until it is exhausted.

V. CONFIGURATION MANAGEMENT AND CONVERGENCE

Stability and convergence of discrete alphabetic states
requires there to be ‘absorbing states’, i.e. for operations
to behave like semi-groups[15], [12]. This is the analogue
of stable negative feedback.

Another way of implementing this is through convergent
operations. Cfengine uses the idea of convergence to an
ideal state. This means that, no matter how many times
cfengine is run, its state will only get closer to the ideal con-
figuration. This is a stronger condition than idempotence
as in Couch’s interpretation[15], [16].

Note that the point of convergence is that multiple or-
thogonal, convergent operations will always lead to the cor-
rect configuration, no matter which part of the configura-
tion is incorrect, or in what order things occur. Complex
operations might not complete within a single scheduled it-
eration, if external factors intervene in an untimely manner;
but they will always converge eventually. This is proven in

ref. [2].

Property 1: Regardless of how long it takes, or of the
scheduling order, a configuration will be implemented with-
out requiring procedural logic. Operations are thus self-
ordering, as long as all of the operations are convergent
and orthogonal. This provides a notion of atomicity, and
transactional security.

If two control operations are orthogonal, it means that
they can be applied independently of order, without af-
fecting the final state of the system. Using a linear rep-
resentation of vectors and matrix valued operators, this is
equivalent to requiring their commutativity.

VI. ANOMALY RESEARCH

There is no system available in the world today which can
claim to fully detect and classify the functioning state of a
computer system. Cfengine does not attempt to provide a
“product” solution to this problem; rather it incorporates
a framework, based on the current state of knowledge, for
continuing research into this issue.

In cfengine, an extra daemon (cfenvd) is used to collect
statistical data about the recent history of each host (ap-
proximately the past two months), and classify it in a way

that can be utilized by the cfengine agent. Data are are
gradually aged so that older values count less[17], [10]. In
this way, cfengine can learn over time the normal state of
a computer system in a dynamical environment. Observa-
tions can be made of any measureable scalar value.

30

5 ,,
L 7 & 3

N
o
T
L

Samba connections

[y
o
T
L

! |

i I

il [T
minit

0 Il Il Il Il Il
0 24 48 72 96 120

time (hrs)

144 168 192

Fig. 3. Data learned about past behaviour (with standard deviation
error bars) of incoming web request events as learned by cfenvd. We
see a periodic pattern with peaks for Monday, Tuesday, etc, i.e. for
each day of the week.

Cfengine has two definitions of abnormal or anomalous:
an intermediate definition based entirley on previous obser-
vation, and a policy defined definition which is an expres-
sion of user wishes. Initially, cfengine calculates a smart
‘running average’ of every observable[10] and compares it
to a geometric series of previous observations. It can then
compute a measure of the variance of the data. The square
root of the variance provides a base length-scale by which
to classify the current value relative to the current aver-
age. Thus cfengine decides whether a current value is, for
instance, more than two standard deviations above average
for the current time of day. It is then up to the user to de-
termine using a policy expression (see below) whether the
actual deviation is to be considered sufficiently anomalous
or not to warrant a response.

The current definition of normal is automatically
adapted to the changing conditions, using a form of unsu-
pervised learning, which has a built-in inertia to prevent
anomalous signals from being given too much credence.
Persistent changes will gradually change the ‘normal state’
of the host over an interval of a few weeks. Unlike some
systems, cfengine’s training period never ends. It regards
normal behaviour as a relative concept, which has more to
do with local stability than global constancy.

Cfenvd links the average behavioural world with the dis-
crete control-knob world by setting classes which describe
a digitized view of the current average state of the host in
relation to its recent history. The classes describe whether
a parameter is above or below its average value, and how
far from the average the current value is, in units of the
standard-deviation[10]. This information could be utilized

to arrange for particularly resource-intensive maintenance
to be delayed until the expected activity was low.

For instance, a practical policy for data copying could
be to avoid times at which server load is especially high.
Since significant server activity could place a difficult load
on a host one could explicitly avoid times of high activity.

copy:

'www_in_high_dev3:: # def anomaly

/www-user-database dest=/www-backup

The example here suggests that this rule should not be ex-
ecuted if incoming World Wide Web activity is three stan-
dard deviations or more above the norm. Measures like
the standard deviation are rather one dimensional how-
ever. We might rather be interested in using the shape of a
histogram of sample data as a control switch. For example,
consider the two (sideways) histograms of IP addresses ex-
tracted from a network data sample. The significances of
the sharp left distribution or the blunt right distribution are
quite different. In an the case of high load, the sharp (low
entropy) distrbution could be viewed as an attack, while
thigh high entropy right distribution simply unfortunate.
The Shannon entropy of the distribution of originating IP

IP 1: * *kok
IP 2: %k *k
IP 3: %k *kok
IP 4: stk ok ok sk sk ok ok ok ok ok ok ok sk k ok *okok
IP 5: %k s$okokok ok
IP 6: * *k
IP 7: * %ok
IP 8: * *%
IP 9: * K%k

addresses has been used to predicate anomalies based on
sample statistics[10]:

icmp_in_high_anomaly
& 'entropy_icmp_in_low::

ShowState (incoming.icmp)

One way of understanding cfengine’s behaviour in relation
to environment and policy is as a Markov fluctuation model
of change[18], seeking an equilibrium configuration.

The advantage of Markov process regulation is that it
requires no controller memory (or perhaps just a short
memory). On the other hand, not all processes can be
understood in this way. A controller which is to handle in-
homogeneous patterns of change must be able to record at
least some information about the past pattern of change.

Cfengine uses a small memory, short history Markov ap-
proximation, so that is can use what is known about weekly
periodic system patterns[19] to optimize[10]. It maintains
only a ‘shadow of the past’, not a detailed time-series record

(Long memory)

(Short memory)

Fig. 4. A strategy of co-stimulation is used to sequentially filter
information. First, long term (low grade) memory decides whether
an event seems statistically significant and assess the likelihood of
danger. If significant, short term (high grade) memory is used to
recognize the source of the anomaly.

(see ref. [10] for details). Use of iterative updating al-
lows one to build up a repository of long term and short
term knowledge of the state of the system, with a minimum
memory budget. The two can then be used in concert to
classify system events i relation to policy. In other words,
one can use qualifiers based on long and short term mem-
ory (see fig. 4) to decide when to respond to the classified
anomaly. We call this co-stimulation.

The anomaly measurement scale is the standard devia-
tion, based on collected data around the learned trend; but
a single standard deviation is sometimes not even resolv-
able on a lightly used host, i.e. it could be less than the
discrete counting scale of the events (half a process, ofr in-
stance); the appearance of a single new event might trigger
a standard deviation from the norm. This indicates the ne-
cessity of having a policy specification for what abnormal
means in each case. On more heavily loaded hosts, with
persistent loading, more reliable measures of normality can
be obtained.

How can one avoid a deluge of ‘false positives’ in anomaly
detection? We must invoke an anomaly policy to further
classify events as interesting or uninteresting, using the
information content of the events. As part of policy, we
can combine the symbolic and numerical classifications of
events with co-stimulation once again.

VII. CONCLUSION

Cfengine is a reactive agent which behaves like a dis-
crete classical controller in a number of ways. It measures
or samples a time-series at its input and is able to affect
the output correspondingly, with parametric controls set
by a policy specification. Cfengine is specifically geared to-
wards an information theoretic interpretation of ‘negative
feedback’, based on languages of the Chomsky hierarchy.
The current cfengine works on data in scalar states and reg-
ular languages. Future versions will be able to understand
context free languages also.

REFERENCES

[1] M. Burgess, “Evaluation of cfengine’s immunity model of sys-
tem maintenance,” Proceedings of the 2nd international system
administration and networking conference (SANE2000), 2000.

(8]

(10]

(11]

(12]

13]

14]

[15]

[16]

(17]

(18]

(19]

M. Burgess, “Cfengine’s immunity model of evolving configura-
tion management,” Science of Computer Programming, vol. 51,
pp. 197, 2004.

M. Burgess, “Computer immunology,” Proceedings of the Twelth
Systems Administration Conference (LISA XII) (USENIX As-
sociation: Berkeley, CA), p. 283, 1998.

P.D’haeseleer, S. Forrest, and P. Helman., “An immunological
approach to change detection: algorithms, analysis, and impli-
cations,” In Proceedings of the 1996 IEEE Symposium on Com-
puter Security and Privacy (1996).

A. Somayaji, S. Hofmeyr, and S. Forrest., “Principles of a com-
puter immune system,” New Security Paradigms Workshop,
ACM, vol. September 1997, pp. 75-82.

J.L. Hellerstein, Y. Diao, S. Parekh, and D.M. Tilbury, Feedback
Control of Computing Systems, IEEE Press/Wiley Interscience,
2004.

M. Burgess, “System administration as communication over a
noisy channel,” Proceedings of the 3nd international system
administration and networking conference (SANE2002), p. 36,
2002.

C.E. Shannon and W. Weaver, The mathematical theory of com-
munication, University of Illinois Press, Urbana, 1949.

M. Burgess, “On the theory of system administration,” Science
of Computer Programming, vol. 49, pp. 1, 2003.

M. Burgess, “Probabilistic anomaly detection in distributed
computer networks,” Science of Computer Programming, p. (To
appear), 2005.

H. Lewis and C. Papadimitriou, Elements of the Theory of Com-
putation, Second edition, Prentice Hall, New York, 1997.

M. Burgess, Analytical Network and System Administration —
Managing Human-Computer Systems, J. Wiley & Sons, Chich-
ester, 2004.

N. Damiannnou, A.K. Bandara, M. Sloman, and E.C. Lupu,
Handbook of Network and System Administration, chapter A
Survey of Policy Specification Approaches, Elsevier, 2007 (to
appear).

H.L. Lee and S. Nahmias, Logistics of Production and Inven-
tory, vol. 4 of Handbooks in Operations Research and Manage-
ment Science, chapter Single Product, Single Location Models,
Elsevier, 1993.

A. Couch and Y. Sun, “On the algebraic structure of conver-
gence,” LNCS, Proc. 14th IFIP/IEEE International Workshop
on Distributed Systems: Operations and Management, Heidel-
berg, Germany, pp. 28-40, 2003.

A. Couch and Y. Sun, “On observed reproducibility in net-
work configuration management,” Science of Computer Pro-
grammaing, vol. 53, pp. 215-253, 2004.

M. Burgess, “Two dimensional time-series for anomaly detec-
tion and regulation in adaptive systems,” IFIP/IEEE 13th In-
ternational Workshop on Distributed Systems: Operations and
Management (DSOM 2002), vol. LNCS 2506, pp. 169, 2002.
G.R. Grimmett and D.R. Stirzaker, Probability and random
processes (8rd edition), Oxford scientific publications, Oxford,
2001.

M. Burgess, H. Haugerud, T. Reitan, and S. Straumsnes, “Mea-
suring host normality,” ACM Transactions on Computing Sys-
tems, vol. 20, pp. 125-160, 2001.

