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Abstract— The rapidly increasing scale of computing systems
means that it is vitally important to address the scaling challenges
in the control of computing systems. We introduce a framework
for describing the control problems for large scale computing
systems that expand along two dimensions: the scale of the target
system and the scale of the policy. Using this framework, we
present control architectures that span a range from centralized
schemes to distributed solutions. We further identify several
research challenges related to issues such as target systems
latencies and policy decomposition.

I. INTRODUCTION

In the last several years, there have been many examples of
applying control theory to computing systems, including im-
pact on commercial products [1] [2]. A common thread in this
work has been to demonstrate the value of a control theoretic
approach on a relatively small scale. With the rapid growth of
the Internet, peer-to-peer networks, and pervasive computing,
it is vitally important to address scaling considerations in the
control of computing systems.

We illustrate the aspects of scaling through a discussion
of a multitier eCommerce system. Figure 1 displays a three
tier eCommerce system consisting of HTTP, application, and
database servers. Requests arrive at the HTTP servers, some
of which require processing by Application Servers, and a
fraction of those also require processing by Database Servers.
The eCommerce system can be scaled in several ways. It can
be scaled in the vertical direction by adding more servers
in a tier. It can also be scaled in the horizontal direction
by adding more tiers, such as (a) edge servers at the entry
tier to provide load balancing and admission control and (b)
storage servers to provide disk access services for the database
tier. Last, it can be scaled in terms of the ownership structure
for multi-enterprise environments, such as computing utilities
where the requestor is in a different company than the service
provider and the service provider may subcontract to providers
of application, database, and storage services.

Along with the scaling of computing systems, the focus of
control solutions needs to be scaled from single system com-
ponent to large scale systems that involve multiple interacting
system components and objectives. This generally involves a
transformation from owner specified policies to controller en-
forceable reference values, and coordination between multiple
control systems. We refer to this as scaling control. Note that
large scale control systems have been studied by the control
theory community [3], [4], [5]. The goal of this paper is to
initiate a discussion of the control problems and challenges
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Fig. 1. Multitier eCommerce system.

that arise in the context of computing systems. While a control-
theoretic solution may not be appropriate in all cases, viewing
the problem from a control perspective can provide valuable
insights.

The remainder of this paper is organized as follows. Sec-
tion I introduces a framework for characterizing the scale of
control problems in computing systems. Section III presents
several control architectures for large scale computing systems,
and Section IV discusses important research challenges. Our
conclusions are contained in Section V.

II. CONTROL PROBLEMS

This section develops a framework for analyzing the scale
of control problems in computing systems.

We begin with some terminology. Figure 2 depicts a simple
control loop in which there is an objective (or reference
input) that specifies the value to achieve for a metric (or
performance measurement) produced by a target system. The
target system is a set of hardware (e.g., computers, networks)
and software (e.g., application servers, operating systems) that
are being controlled. The target system has one or more
actuators (e.g., concurrency levels, priorities) that affect its
behavior, as indicated by the incoming arrow to the target
system in Figure 2, and one or more sensors that expose
metrics (e.g., response times, utilizations), as indicated by the
outgoing arrow from the target system in Figure 2. The control
objective is expressed in terms of the desired metric value
(e.g., “response time should be 2 seconds”). The controller is
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Fig. 2. Elements in a single feedback loop.

responsible for adjusting actuator settings on the target system
so as to achieve the objective specified.

We believe that the control problems for large scale comput-
ing systems can be grouped along two dimensions: scaling of
the target system resources, and scaling related to policies. In
Table I, we have taken examples of control problems from the
literature and characterized them along these two dimensions.
Most of these references are from examples where feedback
control theory is used in the solution.

The first dimension is the scale of the target system. This is
characterized in terms of the number of actuators and metrics
that need to be considered. In control terminology, target
systems have inputs(I) and outputs(O) whose cardinality is
denoted as single(S) or multiple(M). Common combinations
are single-input single-output (SISO), multiple-input single-
output (MISO), and multiple-input multiple-output (MIMO).
The presence of multiple actuators and the use of multiple
metrics create design challenges because of potential interac-
tions and correlations between them.

SISO target systems are either quite simple (single policy)
or represent embedded components of a larger system. MISO
and MIMO systems are practical representations when there
are multiple actuators being manipulated in a coordinated
way and with an interrelated impact on system performance
(e.g., utilities throttling [1]). In addition to the techniques
and examples of such systems shown in Table I, general
studies found in the control literature include an emphasis
on computational aspects such as model reduction, sparse
matrices, and parallel algorithms [3] [22].

In the context of scaling, we further subdivide the MIMO
category into centralized (MIMO-C) and distributed (MIMO-
D) target systems. In a MIMO-C system, all the resources
are physically co-located (such as CPU and memory within a
server [12]). In MIMO-D, there are multiple resources that are
physically distributed, and this distributed structure can result
in communication delays and hence dead times for actuators
and sensors. Both MIMO-C and MIMO-D can benefit from de-
composing the overall MIMO system into lower degree target
systems that simplify control design. Additional challenges in
MIMO-D over MIMO-C systems are to decompose the control
design complying to resource distribution and to consider the
effect of communication delays.

The second dimension in Table I is the scale of the policy.
We view policy scale arising from two attributes: the number
of objectives and the number of owners. Here, owners refers to
the owners of the controlled resources – the target system(s).
Each of these two attributes can be either singular (one) or
many.

+

− C

T1

TN

−

Fig. 3. Centralized control of multiple target systems using a single MIMO
controller.

Multiple objectives arise naturally when there are different
kinds of requests to be processed. An example of a single-
owner, multi-objective system is the problem of providing
differentiated service in a website [9], [10] or e-Commerce
site [17], [23] with multiple classes of work. An eCommerce
system such as Figure 1 may process browse requests and buy
requests, but there may be different response time objectives
for these two classes of requests. These systems are MIMO
by necessity. For controllability, the target system must have
multiple inputs (actuators), otherwise we cannot achieve multi-
ple objectives. Moreover, the target system must have multiple
outputs, otherwise we cannot measure the objectives we are
trying to achieve. A multi-objective problem is more complex
than a single-objective case since there may be trade-offs
involved in satisfying the multiple objectives. However, having
a single owner means that there is (implicitly or explicitly) a
global objective that guides the decisions about tradeoffs.

Multiple owners arise as a result of specialization in the
information economy, so that a particular end-user service may
internally require resources from multiple other providers such
as a credit card company, a shipping company, and web and
database/storage providers. Multiple owners naturally lead to
the existence of multiple objectives. Because of the differences
in the business focus of each owner, it is very likely that they
will have different objectives for their IT services as well. In
such a situation, conflicts between objectives may not be easily
resolved and it can be a significant challenge to translate the
business-level objectives into IT-level objectives.

As we move to systems with multiple objectives and owners,
the policy complexity increases. From Table I, it is evident
that policy complexity goes hand in hand with target system
complexity.

Before concluding this section, we observe that in the early
literature on applying control theory to computing systems, the
focus was on SISO target systems. Only in the last couple of
years have MIMO target systems been addressed using control
techniques.

III. CONTROL ARCHITECTURES

Since our focus is scaling, in this section we concentrate
on the five non-SISO cells in Table I. We present three
control architectures: centralized control, distributed control,
and hierarchical control. For each one, we discuss some
key properties that can help in choosing which architecture



Target System Policy
1 Objective, 1 Owner Many Objectives, 1 Owner Many Objectives, Many Owners

SISO Lotus Notes admission control [6]
TCP RED congestion control [7]
Dynamic Voltage scaling [8]

MISO DB2 utilities throttling [1]
MIMO-C (Centralized) DB2 self-tuning memory [2] Web server QoS [9], [10], [11]

Web server CPU/MEM [12]
MIMO-D (Distributed) EUCON [13], D-EUCON [14]

Cluster performance [15]
zOS WLM [16]
Multi-tier performance [17]

Storage systems [18]
Utility & Grid computing [19], [20]
Networks [21]
Peer-to-peer systems

TABLE I
SOME CONTROL PROBLEMS IN COMPUTING SYSTEMS
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Fig. 4. Distributed control of multiple target systems in which target systems
are controlled independently. The Policy Authority (PA) is responsible for
decomposing the overall objective into separate objectives for each target
system.
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Fig. 5. Hierarchical control of target systems. There are multiple levels of
Policy Authority that are used to decompose higher level objectives into lower
level objectives.

is applied to a particular problem. Research challenges are
detailed in Section IV.

One control architecture, depicted in Figure 3, is to treat
the system like a centralized MIMO control problem. Thus,
there is a single, centralized MIMO controller. Although it
is also applicable for MIMO-D systems, such an approach
makes the most sense when there are no communication
delays between the controller and the target system (i.e., like a
MIMO-C system). Examples of MIMO-D systems that satisfy
this include cases where the target systems are connected by
a high speed network (e.g., a cluster of compute servers) or
where the target systems are composed of multiple resource
layers within a server. The presence of a single centralized
controller allows us to use well understood MIMO control
techniques, as seen in [12], [13]. This approach fully models

interactions between the actuators and metrics, and the scaling
is limited only by the capacity to manipulate large matrices
and matrix singularity issues [3], [22].

In contrast to the centralized approach, Figure 4 depicts
an architecture that uses distributed control in which there is
a SISO controller for each target system. This makes sense
when there is little interaction between the target systems
and the overall system objective can be decomposed into
independent sub-objectives for each target system. The Policy
Authority (PA) in Figure 4 provides this decomposition of
objectives. As an example of policy decomposition, consider
the eCommerce system in Figure 1 with an end-to-end re-
sponse time objective. In a distributed solution, the end-to-
end response time objective can be decomposed into response
time objectives for each tier, so that a separate controller for
each tier can be used. Thus, if each of the tier objectives is
met, the end-to-end objective is met. We note that there are
disadvantages to this solution if resource bottlenecks change
over time: some tiers may be unable to meet their objectives
whereas other tiers could easily reduce their response times
further. Thus, it may be necessary have an additional control
mechanism that adjusts tier objectives in response to such
changes. Another example of a distributed approach is seen in
[14], where distributed control simplifies the controller design.
The distributed architecture is also adequate for MIMO-D
systems with communication delays.

Figure 5 depicts a solution that is a combination of the
centralized and distributed approaches. This figure depicts a
hierarchical structure in which higher level controllers (those
more to the left) set the objectives for lower level controllers.
The result is a tree of controllers in which the leaves of the
tree (those more to the right) are either SISO controllers or
centralized MIMO controllers as in Figure 3. Note that along
with a hierarchy of controllers there is also a hierarchy of
Policy Authorities that are responsible for decomposing the
objectives provided to the next level of controller. An example
of this is that the high level controllers admit the service
requests to fulfil service differentiation objectives, but treat
the server cluster as a single virtual server for simplicity of
decision making; on the other hand, the low level controllers
perform the load balancing to actually route service requests
to different servers [15].
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Fig. 6. Multiple owner eCommerce System in which ownership is structured
by tier (as indicated by the dotted lines).
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Fig. 7. Multiple owner eCommerce System in which ownership is structured
by type of request (as indicated by the dotted lines).

The manner in which ownership is structured also impacts
the choice of the control architecture. For example, Figure 6
displays an ownership structure for the eCommerce System
in Figure 1 which is organized by tier. Achieving end-to-end
response time objectives requires agreements among multiple
owners, something that most likely results in a very complex
structure of Policy Authorities. In contrast, Figure 7 displays
an ownership structure in which responsibility is partitioned
by request type. Owners work independently to ensure that
objectives are met for the requests that they serve. Here, we
can use the solution in Figure 4 by having (a) the target
systems be separate eCommerce systems (one for each owner)
and (b) the Policy Authority route requests to the appropriate
eCommerce system.

Let us briefly discuss some examples considering all three
aspects: system, policy and ownership. For a localized problem
like QoS management in a single server, a MIMO-C structure
is appropriate. This allows us to take into account the per-class
control knobs as well as per-class policy objectives. The server

is generally owned by a single user, so ownership structure
does not arise. When we employ vertical scaling (adding
more servers to the tier), a more MIMO-D approach may be
necessary, since it would be desirable for the replicated servers
to operate fairly independently. Finally, moving to a multi-tier
scenario, the ownership structure also influences the control
architecture. Assume a per-tier ownership structure (Figure 6).
In this case, we may employ a hierarchical approach (Fig-
ure 5). A higher-level Policy Authority computes a per-tier
objective per class. These objectives may, in fact, have been
determined a-priori between the tier owners, independent of
the agreements with the actual end-users of the service. Within
each tier, a distributed control computation may be used by
combining per-node MIMO-C controllers to achieve the per-
tier objectives.

IV. RESEARCH CHALLENGES

In addition to the control architecture, and intertwined with
it, there are some fundamental challenges that arise when
addressing larger-scale systems. In parallel to the problem
structure of Table I, we discuss these challenges as arising
from the scaling of policies or the target system resources.
We also discuss challenges that are not unique to large-scale
systems but become more severe due to scaling.

A. Policy Challenges

1) Decomposing the Policy Objectives: Policy objectives
are generally defined at a system level. However, the design
of feedback controllers often requires explicit reference values
for each feedback loop. Therefore, there exists potential for
an objective mismatch so that certain policy decomposition
or objective transformation is required. For example, in the
database memory management problem discussed in [2], the
objective is to minimize the data access time (especially disk
access time) by properly allocating memory to different buffer
pools; however, if we want to design the controller, we need
to know the desired data access time for each buffer pool. In a
multi-tier web application, the objective is usually specified in
terms of end-to-end response time; however, since the service
is provided by each tier, if we want to have per-tier controllers,
we need to decompose the end-to-end objective into per-tier
objectives [17]. A similar example also exists when the request
is serviced by different resources [16].

2) Handling Actuator Mismatch: In a MISO system, there
are more actuators than sensors. This implies the existence
of non-unique control solutions, but additional considerations
are required for having a better actuator settings [1]. On the
other hand, the actuator settings may be constrained since they
all compete for the same resource, so that certain projection
algorithms are required to meet the constraints [9].

3) Optimizing with Multiple Owners: Having multiple own-
ers makes it difficult to achieve a globally optimal solution
since owners may have different objectives. Sometimes, there
are simple approaches that work well in practice without
consideration for the details of the objectives of owners. An
example is the analysis of TCP/IP networks in which the state



of the art is limited to mostly local solutions and the use of
stability analysis [24]. In general, we assume that for multi-
owner environments there are explicit contracts called service
level agreements with penalties for violating objectives set
in these agreements (e.g., [25]). Thus, owners must balance
the cost of service level penalties with the cost of allocating
more resources in order to avoid these penalties. In this
way, owners operate independently to maximize their profits.
However, it is inevitable that conflicts arise whereby one
owner takes an action to increase his profits that causes the
profits of another owner to decrease. One approach to handling
conflicts between owners is to translate the objectives of each
owner into common units such as “utilities”, and then perform
optimizations on these translated objectives with appropriate
constraints to ensure fairness. However, doing so requires
prior agreement among the owners, which may be difficult
to achieve in practice. Another approach is to adopt ideas
from Game Theory (e.g., [26]) to design policies that achieve
equilibrium solutions in which no owner can benefit from a
unilateral action such as reducing resource allocations.

4) Dealing with the Mismatch Between Policy Metrics and
Sensor Metrics: It is often the case that policy metrics are
expressed in terms of key performance indicators (KPIs) based
on business processes. An example of this is a “buy” business
process in which the KPI is the response time to complete a
buy transaction. Unfortunately, many KPI metrics are either
not produced target systems or are very expensive to collect.
Thus, it there is often a requirement to translate from sensor
metrics that are easily obtained into KPI metrics used for
control objectives. For example, queue lengths are often easy
to obtain, and, under steady-state assumptions, queue lengths
can be translated into response times using Little’s Result.
While the problem of a mismatch between policy and sensor
metrics is not specifically a scaling problem, it tends to arise
more frequently as systems scale since there is increasing
interest in connect IT with business processes.

B. Target System Challenges

1) Decomposing the Target Systems with Interactive Flow
Effects: In distributed systems, work (in the form of requests)
flows from one system to another. Actuators in one system
affect the processing of work in that system, which can
in turn impact the systems which are both upstream and
downstream. These flow effects also introduce a source of
dependency and delay. Further, the flows may depend on the
nature of the request so may be unpredictable. The general
approach of modeling system workloads as a disturbance
generally ignores such effects, which can cause problems.
Two strategies exist for addressing scaling issues. One is to
rely on matrix-algebraic MIMO control techniques. Another
strategy is to decompose the target system into smaller,
(relatively) independent subsystems. The choice among the
three control architectures, as discussed in Section III, depends
on the considerations on the complexity of MIMO modeling,
the strength of cross-resource interactions, and the trade-off
between performance requirement and design simplicity.

2) Coping with Multiple Time Constants: In a system of
heterogenous components, the different components operate
at different timescales. In the discrete-time control framework,
one approach to managing different time scales is to pick a
large enough control interval that encompasses the slowest
system. However, this may lead to an overall slow response,
and it also ignores the dynamics of the target systems. Another
approach is to use continuous-time techniques. However, the
fundamentally discrete nature of computing systems can make
the continuous time analysis difficult. Finally, time constants
need to be taken into account when translating the business
policies into control objectives. It does not make sense to
define goals in terms of an averaging interval of 1sec if the
system operates at scales of 10’s of sec.

3) Adjusting for Delays Induced by Distributed Systems: If
the target system is distributed, then there may be delays intro-
duced in effecting control actions and obtaining metric values.
It is well known in control theory that such delays can degrade
control performance, possibly causing instabilities (e.g., [27]).
If these delays are predictable, then they can be incorporated
into the controller design. Handling unpredictable delays is
an inherently difficult problem that involves considerations of
control intervals and control architecture.

4) Exposing Sufficient Metrics and Actuators: In software
systems, unlike most physical systems, it is possible in theory
to expose almost any system metrics and place any controls.
In practice, however, desired sensors and actuators are of-
ten not available due to a variety of factors. For example,
software engineering practice (encapsulation, abstraction, etc)
and intellectual property requirements generally means that
software providers may not expose the internal state of their
systems. In distributed systems the amount of information
available “at a distance” is often limited so as to reduce
communication overheads. Open source systems provide some
mitigating factors since in theory the source code could be
modified by control designers to expose internal state. The lack
of good/complete metrics often leads to observability issues
– complicating the system modeling task. For solutions that
rely on online modeling especially, such observability issues
require the introduction of safeguards and heuristics to prevent
the controller from making incorrect decisions. While this
problem is not specifically a scaling problem, it tends to arise
more frequently as systems scale.

V. CONCLUSION

The rapidly increasing scale of computing systems means
that it is vitally important to address scaling the control of
computing systems.

To this end, we have introduced a framework for describing
the scale of control problems in computing systems. Our
framework has two dimensions: the scale of the target system
and the scale of the policy. The former is expressed in terms of
the number of inputs (actuators) and outputs (sensor metrics)
in the target system being controlled. The latter is structured
in terms of the number of objectives and owners. We observe
that there is a trend towards multiple-input, multiple-output



target systems because of policies with multiple objectives.
The advent of multiple owner target systems (e.g., eCommerce
systems with multiple service providers) further complicates
matters because of the potential for conflicting objectives.

We discuss how the framework can guide decisions of
how to decompose a large-scale system into smaller more
manageable ones. The decomposition strategies span a range
from centralized schemes that work well when latencies are
low between the controller and the target systems to distributed
solutions that are effective if overall objectives can be decom-
posed into independent sub-objectives. In practice, there are
cases of longer latencies in which it is difficult to decompose
overall objectives. Hence, we propose a third solution that
employs hierarchical control.

We present several research challenges that arise when
scaling control systems. Among these are coping with delays
and timescales induced by distributed systems, modeling and
managing dependencies introduced by flow of work, chal-
lenges raised by multiple owners and some general control
issues that are exacerbated in large-scale systems. These are
formidable challenges that point to an exciting research agenda
ahead, which will require an inter-disciplinary approach with
advanced techniques from the control community and also
the best distributed systems design and implementation tech-
niques. Moreover, note that not all the problems are best
formulated as control theory problems; this may require further
multi-disciplinary studies with other systems management
approaches such as queueing theory methods.
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based management of a computing utility,” in IM 2001: Proceedings
of the 7th IFIP/IEEE International Symposium on Integrated Network
Management, (Seattle, WA, USA), May 2001.

[20] J. Rolia, X. Zhu, and M. Arlitt, “Resource access management for
a utility hosting enterprise applications,” in Proceedings of the 8th
IFIP/IEEE International Symposium on Integrated Network Manage-
ment, (Colorado Springs, CO, USA), pp. 549–562.

[21] P. Narvaez and K.-Y. Siu, “Optimal feedback control for ABR service in
ATM,” in Proceedings of the 1997 International Conference on Network
Protocols (ICNP ’97), (Atlanta, GA, USA), pp. 32–41, Oct. 28–31 1997.

[22] G. Schmidt, ed., Real Time Control of Large Scale Systems (Lecture
Notes in Control & Information Sciences Vol 67). Springer, 1985.

[23] D. A. Menasce, D. Barbara, and R. Dodge, “Preserving QoS of e-
commerce sites through self-tuning: A performance model approach,”
in Proceedings of the 3rd ACM Conference on Electronic Commerce
(EC’01), (Tampa, FL, USA), pp. 224–234, ACM, ACM Press, Oct. 14–
17 2001.

[24] S. H. Low, “A duality model of TCP and queue management algorithms,”
IEEE/ACM Transactions on Networking, vol. 11, no. 4, pp. 525–536,
2003.

[25] J. L. Hellerstein, K. Katircioglu, and M. Surendra, “An on-line, business-
oriented optimization of performance and availability for utility-based
computing,” Journal on Selected Areas of Communications, vol. 23,
no. 10, 2005.

[26] R. B. Myerson, Game Theory. Harvard University Press, 1991.
[27] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback

Control of Computing Systems. Wiley-Interscience, 2004.


