
Feedback Fault Tolerance of Real-Time Embedded Systems – Issues and Possible
Solutions

Xue Liu, Hui Ding, Kihwal Lee, Lui Sha, Marco Caccamo
fxueliu, huiding, klee7, lrs, mcaccamog@cs.uiuc.edu

Department of Computer Science, University of Illinois at Urbana-Champaign

Abstract

Fault tolerance is an important aspect in real-time com-
puting. In real-time systems, tasks could be faulty due to
various causes. Faulty tasks may compromise the safety and
performance of the whole system and even cause disastrous
consequences. In this paper, we study the possibilities of
applying feedback control of software execution to real-time
systems for fault tolerance purposes. A new fault tolerance
architecture called ORTGA (On-demand Real-Time GuArd)
is proposed. We argue the advantages and benefits of using
ORTGA for fault tolerance in real-time systems. We also
list research problems faced by ORTGA and point out di-
rections for possible solutions. Throughout the paper, we
use an example of real-time inverted pendulum control to
illustrate ideas, problems and and possible solutions.

1 Introduction

Real-time and embedded systems are now a central part
of our lives. Different from general computer systems, a
real-time system is considered to function correctly only if
it returns the correct result within the system-wide timing
constraints [4]. Reliable functioning of real-time systems
is of paramount concern to the millions of users that de-
pend on these systems everyday. However, faults and fail-
ures can occur in real-time systems. Though failures can be
caused by both hardware (e.g., electromechanical devices)
and software, in this paper we focus on how to tolerate soft-
ware faults in real-time systems.

Feedback is a universal mechanism which exists in many
disciplines. Human uses feedback to correct faults and
progress. Government uses feedback to avoid corruption
and advance. Car cruise control uses feedback control to
meet the targeted speed. Feedback is also commonly used in
software industry: many Web sites (such as Amazon.com)
use client feedbacks to improve their design; software ven-
dors often employ user feedbacks to help select new fea-
tures to be included in future releases; Microsoft uses ap-

plication crash report (a kind of feedback) to improve the
reliability of Windows operating system. In this paper, we
discuss using feedback to achieve software fault tolerance.
Specifically, we introduce ORTGA (On-demand Real-Time
GuArd), a new fault tolerant architecture for real-time con-
trol systems.

Our objective is to identify some cutting-edge research
problems and point out possible solutions on using feedback
for fault tolerance in real-time systems.

The rest of the paper is organized as follows. The
ORTGA architecture is presented in Section 2. To fix the
ideas, a real-time control application (i.e. an inverted pen-
dulum control system) is introduced as a motivating exam-
ple throughput the paper. The research issues of feedback
based software fault tolerance are elaborated in Section 3
within the context of ORTGA. Directions for possible so-
lutions mainly addressing the timing issues of ORTGA are
given in Section 4. We provide related work in Section 5
and conclude our paper in Section 6.

2 ORTGA Software Fault Tolerant Architec-
ture

In this section, we discuss the ORTGA software fault
tolerant architecture. One of the most important aspects of
ORTGA is it usesfeedback control of software execution
to achieve fault tolerance. In order to understand this no-
tion, let’s first look at what are essential elements related to
feedback control to make a general system (such as a social
system – a government) fault tolerant?

Faults abound in any complex system such as a human
government. Some kind of faults can not be easily elim-
inated, such as human operation errors or corruptions. In
stead, these faults/errors are facts to be coped with. The
idea of fault tolerance is to respond gracefully to these faults
and not make them affect the healthy operation of the whole
system. The first step in achieving a fault tolerant system is
to detect the faults. Common ways to detect faults in a gov-
ernment include auditing or collecting employee feedbacks.

1

Mechanical
System (Plant)

Sensor

Controller Actuator _

Reference
Input

(Decision) (Execution)

(Sensing)

Figure 1: A typical feedback control loop

We call this step as(fault) identification step. After a fault
is identified, we need to decide what is a good way to get
rid of the fault, or at least confine the fault from propagating
to other functional units. The result is a correction scheme.
We call this second step asdecision step. The last step is
to make sure the correction scheme is executed in order to
correct the fault occurred. We call the last step asexecution
step.

These three steps correspond to a typical feedback con-
trol loop for a mechanical system, as shown in Figure 1.
The (fault) identification step is similar to sensing (where
the sensor finds state or output errors and feed it back to the
controller). The decision step is similar to control (where
the controller calculates the control values to correct the er-
ror). The execution step is similar to the actuation (where
the actuator puts the control values from the controller into
action).

Following this analogy, we now introduce the architec-
ture of ORTGA. We also discuss how ORTGA employs
feedback to make a real-time control system fault tolerant.
The architecture of ORTGA is shown in Figure 2. Sim-
ilar to the Simplex architecture [7], in ORTGA the soft-
ware component of the plant under protection is divided
into a high-assurance-control (HAC) subsystem and a high-
performance-control (HPC) subsystem. The HAC subsys-
tem is a control software which was proved to be reliable.
HAC’s simple construction let the system designer leverage
the power of formal methods and a rigorous development
process. From the system level, high-assurance OS kernels
such as certifiable runtimes are usually used in the HAC.
From the application level, well-understood classical con-
trollers designed to maximize the controlled plant’s stability
region is also used.

The HPC subsystem complements the conservative HAC
core. From application level, an HPC can use more complex
and advanced control technologies for higher control per-
formance, including those difficult to verify, for example,
neural network control. From system level, COTS real-time
OS and middleware designed to simplify the application de-
velopment can be used in HPC. However, these software
components may not be certifiable and could contain faults.

Unlike Simplex, in ORTGA the HAC and HPC subsys-
tems do not run in parallel. At any time, there isonly onein-
stance of either HAC or HPC is running. Normally, the HPC

Simple high assurance
control subsystem
(HAC)

Complex high
performance
control subsystem (HPC)

 Data Flow Block Diagram

 Plant

Decision

Sensing (feedback)->Decision (control/error correction) -> Execution (actuation)

Figure 2: Feedback Control of Software Execution

controls the plant. However, the decision logic in the deci-
sion module ensures that the plant state under the HPC stays
within an HAC-established stability region (to be discussed
in Section 4). If this is violated, the HAC will be kicked in
and takes over the system. However, there are two major
drawbacks of the original Simplex architecture. First, Sim-
plex requires parallelly running the two controllers HAC
and HPC for each plant. This “trade system resource for
safety” approach makes the whole system inefficient, hence
limits its application only in extremely safety-critical appli-
cations where cost and resource usage is not a major con-
cern. Most of the industrial applications are cost-sensitive.
In these applications, it will be ideal to have a fault tolerance
approach which both minimizes the resource usage, at the
same time achieve high fault coverage. Second, In Simplex,
the design of maximum stability region of a system under a
controller is based on continuous design. Since controllers
are implemented digitally, its maximum stability region will
be affected by its sensing-control loop period. How to deter-
mine the maximum stability region of a system under digital
controller remains unanswered.

As we can see from Figure 2, ORTGA achieves fault tol-
erance by usingfeedback control of software execution. At
every decision time, the decision module gets the state feed-
back from the plant and determines if the current state is
still within the HAC-established stability region. If it is, the
HPC still controls the plant; otherwise, the HAC is activated
and it takes over the control of the plant. The decision mod-
ule determines which output should be used for the plant.
Then the plant will execute the control output values ac-
cordingly. TheseSensing(feedback)! Decision(control)
! Execution(actuation)steps constitute the feedback con-
trol of software execution (cf. Figure 1). By using the HAC
to guard against possible faults in the HPC in real-time,
ORTGA achieves fault tolerance.

2

3 Research Issues in Feedback Based Real-
Time Fault Tolerance

In this section, we discuss the research issues in feed-
back based real-time fault tolerance, concentrating on the
ORTGA architecture. To this end, we first show a real-time
control system and use it as a motivating example to illus-
trate the following discussions.

3.1 A Real-Time Control System

We consider a real-time inverted pendulum control sys-
tem. Suppose there areN inverted pendulums running.
Each inverted pendulumi is protected by an ORTGA in-
stanceOi. Each ORTGA instance is responsible for fault
tolerance in the corresponding pendulum (plant). Within
each ORTGA instance, there is a high performance con-
troller task (HPCi) and a high assurance controller task
(HACi). In this paper, we discuss a simple scenario where
the two controller tasks for each pendulum have the same
period and the same worst case execution time. Extensions
to this model are left for future research. In ORTGA, at any
time, for any pendulumi, eitherHPCi or HACi is running
but not both, so the controller tasks can be represented as a
single real-time task¿i. We useTi to denote the sensing-
control loop period andCi to denote the worst case execu-
tion time of task¿i. For control systems, the task deadline
is usually the same as the task period, i.e.Di = Ti. Fig-
ure 3 shows such a system with two pendulums (N = 2).
Each ORTGA instanceOi, (i = 1; 2) is controlling one in-
verted pendulum. Each ORTGA instance corresponds to a
real-time task¿i; (i = 1; 2) running on the same CPU.

In real-time operating systems (RTOS), tasks are sched-
uled using some predetermined scheduling algorithms.
There are two major types of priority-based scheduling al-
gorithms, fixed priority scheduling algorithms and dynamic
priority scheduling algorithms [4]. A typical example of
fixed priority scheduling algorithms is Rate Monotonic
(RM) scheduling; while a typical example of dynami-
cal scheduling algorithms is Earliest Deadline First (EDF)
scheduling.

Figure 4(a) shows the schedule of two real-time tasks
under RM scheduling. Task¿1’s timing parameters (in mil-
liseconds) are(C1; T1)=(1; 2), and task¿2’s timing para-
meters are(C2; T2)=(1; 8). Under RM, tasks with smaller
periods (i.e. higher rates) have higher priorities. So in this
example,¿1 has higher priority than¿2. From the figure,
we can see that under RM scheduling, all jobs (instances of
each control task) are schedulable, i.e., able to meet their
deadlines.

HPCs may contain faults. Faulty controller thread will
cause controller task to miss deadlines or even fail, lead to
undesirable consequences such as instability, data losses, or

Figure 3: Double inverted pendulums running on a machine

performance degradation. In ORTGA, if a fault in the HPC
is identified, the HPC needs to be killed and the new con-
troller thread (HAC) will be created to substitute it to main-
tain system safety.

3.2 Research Issues in ORTGA

The first design issue faced by ORTGA is what mech-
anism to use for online fault detection. Software faults in
real-time systems can be categorized into two classes: logi-
cal domain faults, and execution domain faults. The former
are usually caused by the logic of the underlying algorithm
itself, which defines the computational logic. The latter are
caused by various faults within the software other than al-
gorithm logic, such as memory leakage, segmentation fault,
divide by zero, spin in an infinite loop, deadlock, and live
lock etc. The approaches to deal with logical domain faults
are more of an algorithm design issue than a fault contain-
ment and tolerance issue. Therefore, in ORTGA we tar-
get our goal at the tolerance of execution domain software
faults. Noticing that a common symptom of execution do-
main faults is that no system output is given within the task
deadline, so we can use aheartbeatmessage mechanism to
detect execution domain faults in real-time systems. In the
heartbeat message mechanism, each controller thread sends
out a brief message to a monitor thread to indicate its health-
iness soon after it sends out its control value in each period.
When no heartbeat message is received within a time pe-
riod for a thread, it is possible that the thread has execution
domain faults. On the other hand, if the heartbeat message
arrives in a timely fashion, we know that there is no execu-
tion domain faults in the thread.

Besides the advantage of larger fault coverage, compar-
ing to other approaches, Heartbeat message fault detection
mechanism has the advantage of easy implementation. It
is also non-intrusive, since no modification is needed in the
OS kernel.

Given the heartbeat message fault detection mechanism,
there are three important research issues to be further ad-

3

dressed in ORTGA.
Q1. How to treat false alarms when detecting faults

of a controller thread?
For real-time control tasks, it is shown that usually sev-

eral deadline misses can be tolerated without causing fa-
tal problems such as instability [5]. What’s more, even if
a controller thread misses one heartbeat message, it may
still be healthy, since other possibilities including tempo-
rary communication channel failure could exist. Consider-
ing these two factors, the monitor should not be designed
too “aggressively” to identify a controller thread as faulty.
One or more missing heartbeat messages may be allowed,
otherwise false alarms could occur. False alarms should
be avoided since they cause unnecessary recovery proce-
dures, which may degrade the system performance, or even
cause unschedulability. This is because unnecessary recov-
eries affect the schedules of other tasks running on the same
CPU.

Q2. When a controller thread CTi is identified as
faulty and a recovery decision is made, when should the
recovery procedure be started?

In generic software systems, when a fault is identified,
the common solution is to recover the faulty component as
soon as possible to minimize the performance loss. For ex-
ample, the Recovery Oriented Computing (ROC) [6] fault
tolerance approach aims to minimize Mean Time To Repair
(MTTR). However, this wisdom may not be true in real-
time systems. To understand this, we show the following
example as illustrated in Figure 4.

In this example, the timing parameters of the two real-
time tasks are(C1; T1)=(1; 2), (C2; T2)=(1; 8). These two
tasks are schedulable under RM scheduling, as shown in
Figure 4(a). Now suppose task¿2 is identified as faulty by
the monitor at timet = 2:0, as shown Figure 4(b). Suppose
the overhead of killing the faulty thread (HPC) and replac-
ing it with a new thread (HAC) takes1:5 milliseconds. If
the recovery procedure takes higher priority (i.e. to recover
¿2 as soon as possible), the recovery procedure is started
immediately att = 2:0. The recovery procedure will finish
at t = 3:5. Now ¿1’s second job begins execution at time
t = 3:5, and will miss its deadline, which is4:0. However,
if we delay¿2’s recovery and let¿1’s second job begin exe-
cution at its release timet = 2:0 (as shown in Figure 4(c)),
then the recovery of¿2 begins att = 3:0 and the recovery is
finished att = 4:5. As a result, no deadline will be missed
for both tasks.

From this example, we clearly see that the determination
of theright time to recover is crucial to guarantee schedu-
lability in fault tolerant real-time systems. Sometimes, a
“late” but timely recovery is more beneficial for all the tasks
in the system to meet their timing requirements. Comparing
to the objective of minimizing MTTR in ROC, one central
problem of ORTGA is to determine RTTR (Right Time To

� � � ��

� � � ��

� � � ��

��� �	
��	� ���	����	��

��� ������ �
�	���	 �� � ���

�
� �	
��	� ���	

Figure 4: Illustration of a late recovery is more desirable.

Recover).
Q3. What is the impact of the recovery procedure and

the recovered controller thread to the schedulability and
performance of the whole system?

From the example given in Q2, we know that when a
controller thread needs to be recovered, the recovery proce-
dure may affect the schedulability of whole task set.

In addition to that, in order to recover from the dam-
age of the faulty controller thread, the recovered controller
thread (i.e. the new controller thread who replaces the pre-
vious faulty controller thread) usually needs to carry out
more complex control computations (such as Kalman fil-
tering etc[1]). Also, the recovered controller thread usually
runs at a faster rate (i.e. shorter sensing-control loop pe-
riod). Let us denote the recovered controller task for faulty
controller threadi as¿ir, with execution timeCir and pe-
riod Tir. Usually we haveCir ‚ Ci andTir < Ti.

However, the new task setf¿1; : : : ; ¿i¡1; ¿ir;
¿i+1; : : : ; ¿N g may not be schedulable any more, since
the CPU bandwidth occupied by¿ir is larger than that of
¿i. This requires the adjustment of the timing parameters
of other (healthy) controller tasks. A common solution
is to back off other controller tasks (i.e., decrease their
sensing-control loop rates) to accommodate the newly
released recovered controller task. How to adjust the

4

sensing-control loop rate for each task in order for the new
task set to meet schedulability constraint is one research
issue.

Another impact of the recovered controller task to the
other controller tasks is control performance loss. A
controller’s control performance depends on the sensing-
control loop rate of the controller task [8]. Since the other
controller tasks may have to back off to guarantee the
schedulability of the whole task set, the system’s overall
control performance will be affected when such back off
happens. When designing the recovered controller and de-
termining its timing parameters, we also need to trade off
between the overall system control performance loss and
the task set schedulability affected.

4 Some Possible Solution Directions

As discussed in Section 3, the design of ORTGA raises
some interesting research problems. In this section, we will
briefly discuss some possible solutions to these problems.
Due to space limit, the discussions here are rather incom-
plete and preliminary than thorough. Our motivation is try-
ing to identify some possible directions for future research
of feedback based fault tolerant real-time systems.

First, it is easy to see that Question 1 (minimize false
alarms in faulty controller thread detection) and Question 2
(when to recover a faulty thread) are closely related. On one
hand, in order to minimize false alarms, the monitor should
not treat heartbeat message misses too aggressively. On the
other hand, the decision of when to recover highly depends
on fault detection. If a fault is detected too late, the recov-
ery procedure may not have enough time to react, hence the
recovery may fail. Moreover, as shown in Figure 4, even if
a fault is detected early, sometimes a late but timely recov-
ery may be more desirable since it helps to maintain system
schedulability. So the core question here in terms of fault
detection and recovery is what is the right time to treat a
thread (who has missed heartbeat messages) as faulty and
recover it. A too early decision may increase false alarms
and affect system schedulability unnecessarily, while a too
late decision will delay the recovery and lead to system fail-
ure.

Here, we propose a possible solution which treats the
fault detection and recovery timing issues in one frame-
work. The idea is to solve the two problems together in
a time reversal fashion. Figure 5 shows a timeline of the
proposed recovery framework.

Suppose the execution of recovery procedure takes a
time overhead ofts. ts includes the time of killing the pre-
vious faulty HPC thread and the time of replacing it with the
new HAC thread. Our minimum goal is to ensure that after
the recovery, the system being controlled will still be stable.
First, we determine the stability region of the controlled sys-

τ

HB1 (t1)

When to recover?

Recovered
Threads

HB2 (t2)

Prediction ts

Monitor find
HB3 missing

Stability Region S
of Controlled Plant

(t3) tr

S

Figure 5: A detection and recovery decision framework.

tem. The stability region is defined as a set of plant states,
outside which the system will not be stable anymore un-
der the current controller. A stability region of a controlled
system under a specific controller can be determined using
Linear Matrix Inequality [2]. Due to space limit, we omit
the details here. Interested readers are referred to [7]. The
determined stability region of the controlled system under
the HAC controller is shown by the shaded ellipsoidS in
Figure 5. From this scenario, we see that for controller task
¿ (corresponding to the case when HPC is running), heart-
beat messages (HB1, HB2) were received by the monitor at
time t1 andt2, which indicates the HPC was healthy. Along
with the heartbeat messages, updated plant states are also
sent to the monitor. However, at timet3, the3rd heartbeat
message was still not received. The monitor then needs to
decide whether the HPC should be identified as faulty and
if so, when the recovery procedure should be launched.

After we have determined the HAC-established stability
region S of the system, we can find the latest time point
tr satisfying the following criterion – the system state will
still be within the HAC-established stability region after the
recovery procedure is completed, only if the recovery pro-
cedure is scheduled by timetr. We use notationx(t) to
represent the state of the plant at timet. tr is determined
such thatx(tr + ts) 2 S under the current HPC control.
Thereforetr is the latest time when the recovery procedure
should begin to maintain the plant stable. In this way, if
until time tr, no new heartbeat message is received by the
monitor from this HPC thread, the recovery procedure has
to be kicked in.

With respect to Question 3 (schedulability and control
performance impacts of the recovered controller thread), we
can carry out offline real-time schedulability analysis [4] or
apply online scheduling algorithms such as elastic schedul-
ing [3] to guarantee all tasks meeting their deadlines during
and after the recovery procedure is executed. To determine
the impact of recovery procedure and recovered controller
thread on overall system control performance, we may be
able to use online load-driven scheduling algorithm to op-
timize the control performance [9] during and after the re-
covery.

When a recovered controller runs an extended period of
time, it can be switched back to the original controller to

5

improve overall system control performance. How to deter-
mine when to switch back is raised in Question 3. A pos-
sible solution is still using stability region as follows. Sup-
pose the switch back time overhead istb, which includes the
time of killing the current recovered controller thread and
the time of switching back to the original controller thread.
At any timet, when the monitor gets the heartbeat message
of the recovered controller, along with its current plant state
informationx(t), the monitor then calculates ifx(t + tb) is
already within stability region of the plant under the origi-
nal controller. If so, the monitor can initiate the switching
back procedure. This approach guarantees the stability of
the system.

5 Related Work

Recovery-Oriented Computing (ROC) [6] is an approach
for general fault tolerant systems. A major goal of ROC
is to recover (by methods such as reboot or micro-reboot)
the system as soon as possible when a fault has occurred,
i.e. minimizing the MTTR (Mean Time To Repair) rather
than maximizing MTTF (Mean Time To Failure). Hence
ROC offers high availability1. ORTGA differs from ROC
in two aspects. First, when the HPC is diagnosed as faulty,
the recovered controller (HAC) is not a simple restart of
the HPC. In stead, HAC is a predetermined reliable core
controller which guarantees to make the plant stable2. Sec-
ondly, as we showed in Section 3.2, in real-time systems a
late but timelyrecovery may be more desirable in some sit-
uations. Hence one fundamental research issue of ORTGA
is to determine RTTR (Right Time To Recover) instead of
minimizing MTTR.

Simplex [7] is a software architecture which facilitates
the building of dependable real-time control systems. It
provides dynamic toleration of software faults. In Simplex,
analytical redundant high-assurance controller (HAC) runs
in parallel with high-performance controller (HPC). This
unnecessarily lowers the total CPU utilization available to
other active tasks when no fault occurs. This drawback
keeps the application of Simplex from those industrial ap-
plications where both an efficient resource utilization and a
high fault coverage are desired. ORTGA solves this prob-
lem by running the HAC in an on-demand fashion. Hence
it achieves much higher resource utilization.

6 Conclusions

In this paper, we propose ORTGA, a feedback based
fault tolerance architecture for real-time systems. We dis-

1Recall that availability is traditionally defined as the ratio of MTTF to
MTTF + MTTR.

2Of course, in some application scenarios, we can use the restarted HPC
as the HAC under ORTGA architecture.

cuss the advantages and benefits of using ORTGA for fault
tolerance in real-time systems compared with other existing
approaches. Most importantly, we list research issues faced
by ORTGA, many of which are raised by the timing, per-
formance and stability requirements of real-time systems.
These requirements are not common in generic software
systems, hence make the design of ORTGA quite different
from traditional ROC. We also point out possible directions
for finding the solutions to these problems.

We hope this paper will arouse the interests of re-
searchers and foster the discussions in using feedback based
fault tolerance for computing systems.

Acknowledgment

This material is based upon work supported by the NSF
CCR 02-09202, by ONR N00014-02-1-0102, and by MURI
N00014-01-0576. The first author is also supported in part
by the Mavis Memorial Fund Award. Any opinions, find-
ings, and conclusions or recommendations expressed in this
publication are those of the author(s) and do not necessarily
reflect the views of the funding agencies.

References

[1] K. J. Astrom and B. Wittenmark.Computer-Controlled Sys-
tems: Theory and Design, 3rd edition. Addison-Wesley Pub
Co., 1994.

[2] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan.Linear
Matrix Inequalities in System and Control Theory. Society
for Industrial and Applied Mathematics (SIAM), 1994.

[3] G. Buttazzo, C. Lipari, M. Caccamo, and L. Abeni. Elastic
scheduling for flexible workload management.IEEE Trans-
actions on Computers, 51(3):289–302, 2002.

[4] J. Liu. Real-Time Systems. Prentice Hall PTR, 2000.
[5] P. Marti, R. Villa, J. Fuertes, and G. Fohler. On real-time

control tasks schedulability. InEuropean Control Conference,
2001.

[6] D. A. Patterson et al. Recovery-oriented computing (ROC):
Motivation, definition, techniques, and case studies. Techni-
cal report, UC Berkeley Computer Science Technical Report
UCB//CSD-02-1175, March 2002.

[7] D. Seto, B. H. Krogh, L. Sha, and A. Chutinan. Dynamic
control system upgrade using the simplex architecture.IEEE
Control System Magazine, 1998.

[8] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin. On task
schedulability in real-time control system. InProceedings of
the 17th IEEE Real-Time Systems Symposium, pages 13–21,
1996.

[9] L. Sha, X. Liu, M. Caccamo, and G. Buttazzo. Online control
optimization using load driven scheduling. InConference on
Decision and Control, Sydney, Australia, 2000.

6

