
Conclusions of the ARTIST2 Roadmap on Control of Computing Systems

Karl-Erik Årzén∗, Anders Robertsson, Dan Henriksson

Dept of Automatic Control, LTH

Lund University, Box 118, SE-221 00 Lund, Sweden

Mikael Johansson, Håkan Hjalmarsson, Karl Henrik Johansson

Dept of Signals, Sensors and Systems

Royal Institute of Technology, SE-100 44 Stockholm, Sweden

1. Background

The use of control-based methods for resource manage-

ment in real-time computing and communication systems

has gained a substantial interest recently. Applications ar-

eas include performance control of web-servers, dynamic

resource management in embedded systems, traffic con-

trol in communication networks, transactionmanagement in

database servers, error control in software systems, and au-

tonomic computing. Within the European EU/IST FP6 Net-

work of Exellence ARTIST2 on Embedded System Design

a roadmap on Control of Real-Time Computing Systems

has recently been completed. The focus of the roadmap is

how flexibility, adaptivity, performance and robustness can

be achieved in a real-time computing or communication

system through the use of control theory. The item that is

controlled is in most cases the allocation of computing and

communication resources, e.g., the distribution or schedul-

ing of CPU time among different competing tasks, jobs, re-

quests, or transactions, or the communication resources in

a network. Due to this, control of computing systems also

goes under the name of feedback scheduling.

The roadmap is divided into six research areas: con-

trol of server systems, control of CPU resources, feed-

back scheduling of control systems, control of communica-

tion networks, error control of software systems, and con-

trol middleware. For each area an overview is given and

challenges for future research are stated. The aim of this

paper is to summarize the conclusions concerning these

research challenges. A preliminary version of the com-

plete roadmap can be found on http://www.control.

lth.se/user/karlerik/roadmap1.pdf

1.1 Motivation

Feedback-based approaches have always been used in en-

gineering systems. One example is the flow and congestion

control mechanisms in the TCP transport protocol. Typical

of many applications of this type is that feedback control is

used in a more or less ad hoc way without any connections

to control theory. During the last 5-10 years this situation

has changed. Today control theory is beginning to be ap-

1Corresponding author. Email: karlerik@control.lth.se

plied to real-time computing system in a more structured

way. Dynamic models are used to describe how the perfor-

mance or quality of service (QoS) depend on the resources

at hand. The models are then analyzed to determine the

fundamental performance limitations of the system. Based

on the model and the specifications control design is per-

formed. In some cases the analysis and design are based on

optimization. A recent textbook, [Hellerstein et al., 2004],

addresses the question of how to introduce control theory

for computer science students.

The publications in the area are rapidly increasing, see

e.g., [Hellerstein et al., 2005] and the references therein.

However, so far most of the work presented in literature

have been conducted by scientists working either in the real-

time computing or telecommunication fields, or in the auto-

matic control field. Unfortunately, this has sometimes led

to erroneous models and strange results. In order to achieve

good results a multi-disciplinary approach is necessary.

1.2 Modeling

Control of computing systems introduces new types of

problems that are not present when controlling physical

plants. Amain problem is the lack of first principles models.

When controlling a physical plant the laws of nature decide

to a large degree the behaviour of the plant and can be

used to derive dynamical models. A computing system,

on the other hand, is a man-made artifact whose internal

behaviour is not governed by any laws of nature, at least not

on the macroscopic level. This means that it is, generally,

not possible to derive any first principles models. One

exception, where theoretical models are available is queuing

theory [Kleinrock, 1975]. These models have also been

used with some success in the design of computing-system

controllers. A drawback with queuing models is that they

in most cases only hold in the average case and that they

assume certain statistical properties, e.g., Poisson traffic.

Computing systems are discrete-event dynamic systems

(DEDS). This makes it natural to use a timed discrete-

event modeling formalism, such as timed automata or timed

Petri nets. This is, however, in many cases too fine-grained

and easily leads to state-space explosion. Another issue is

the types of problems that these formalisms typically lend



themselves to. Automata-based formalisms are well-suited

for expressing and analyzing safety properties and block-

ing properties. These properties are, however, not the main

objectives of performance control. Instead, issues such as

stability, performance, and robustness are the main objec-

tives. For these types of problems a time-driven approach is

more natural. However, the lack of first principles knowl-

edge necessitates a system identification-based approach,

in which, e.g., a discrete-time difference equation model is

derived from measured input and outputs. The models and

controllers derived in this way are based on periodic sam-

pling. Although periodic controllers are, to a large extent,

the approach that is mostly used in applications, it is from

many respects more natural to invoke the controller in an

event-driven fashion. For example, in a queue-length con-

trol problem it makes more sense to calculate a new control

action when a request is queued or dequeued, or every nth
enqueue/dequeue event, rather than periodically in time. A

problem with aperiodic or event-based systems and aperi-

odic control of this type, though, is the lack of theory and

tools for analysis and design.

2. Control of Server Systems

More and more business and services rely on Internet and

server technology. Queue management is important in all

servers, e.g., web servers. Server requests are stored in

an input queue, the server or worker thread servicing the

requests are stored in the ready queue or in different waiting

queues, e.g., in order to access memory. Many aspects of

the real-time performance of server systems can be inferred

from the behaviour of queues.

In a queue it is the difference between the service rate

and the arrival rate that determines the delay experienced

by the requests. Two types of actuators can be used. An

enqueue actuator influences the arrival rate of the queue.

One example of this is admission control. A dequeue

actuator instead influences the service rate of the requests.

Examples of this type of actuator mechanisms are different

forms of quality adaptation.

A queue can be modelled in various ways. Using queu-

ing theory, several types of models can be developed. One

example is Tipper’s nonlinear flow model [Tipper and Sun-

dareshan, 1990]. At a high level, a queue can be seen as

an integrator. This can be modeled using, e.g., a difference

equation and then analyzed with control theory. Both Tip-

per’s model and integrator-based models can be used as the

basis for control design, e.g., [Robertsson et al., 2003].

Flow models of queuing systems approximate the

steady-state behaviour of the queue and are typically more

accurate the higher the load is on the server. However, for

small and medium loads these types of models are less

appropriate. An open question is how to combine queu-

ing models with control-theoretic methods. A common

������
��
��
�������
�����
�����
������������
�������
�������
�����������������

����������
����������

����������
����������
����������

��������������
��������������
��������������

��������������
��������������
��������������

���������������
���������������
���������������

���������������
���������������
���������������
�����������������
�����������������
�����������������
�����������������������������������

������������������
������������������
�������������������������������������

�������������������
�������������������
�������������������

������
������
������

������
������
������

A B

CD

E

F

tnow

processing time

queuing time

t

cu
m
u
la
ti
v
e
ar
ri
v
al
s

an
d
d
ep
ar
tu
re
s

Figure 1 Server queuing and processing delay over time.

approach in delay control is to use nonlinear models from

queuing theory for feedforward combined with simple feed-

back control of PID type, e.g., [Sha et al., 2002]. The aim of

the feedforward path is to provide fast setpoint responses,

whereas the role of the feedback controller is to compen-

sate for disturbances and incorrect modeling assumptions.

An example of the latter is incorrect assumptions about the

stochastic nature of arrivals and departures.

In [Henriksson et al., 2004a] an improved feedforward

scheme is presented, that makes no assumptions about the

statistical properties of the traffic. Instead, it predicts future

delays as a function of instantaneous measurements of the

situation in the server queue. This includes current queue

length and the arrival times of the queued requests, which

are assumed to be recorded for use in the prediction, see

Fig. 1. The basic idea with the predictor is to choose the

service rate that achieves a desired average delay of the

requests in the system taking into account their average

queuing delay up until the current time. By continuously

updating the predictor as requests enter and leave the queue,

sudden variations are taken care of more rapidly than using

the queuing-theoretic models. A similar approach can also

be applied to admission control.

Much work has also been performed on multi-class

queuing systems using priority queues. Here it is the ratio

between the average delays of adjacent service classes that

is subject to control. In [Liu et al., 2006] recent work

on multi-tiered web applications using adaptive control is

reported.

2.1 Research Challenges

The main challenge in control of servers and software sys-

tems in general is to derive a unified theory and framework

for performance control of queuing systems that combine

elements from control theory and queuing theory and allow

an integration of both time-driven liquid model formalisms

and event-driven formalisms. Modeling plays a major role

here. Which is the right or optimal abstraction level for this

type of control problem is still a question with no clear an-

swer. Models at different levels and types need to be com-



bined. We also need better insight in how one should cor-

rectly abstract a real server by a suitable queuingmodel. It is

further desirable to combine time-based models with event-

based discrete models. Better understanding is needed for

which models types that are best suited for a particular ap-

plication. It is also possible that new models types must be

derived for this type of problems.

The challenges for control are connected to the mod-

elling challenges. How do we develop a control theory

based on this type of models? The combination of time-

driven control design with event-driven implementation is

one major issue. In control in general and process control

in particular, the characteristics of different types of con-

trol loops and control problems are well known and even

in some cases formally categorized. Similarly a number of

well-defined controller structures exist, e.g., cascade control

and ratio control. The same type of classification is neces-

sary also in control of computer systems. One possibility is

to make use of ideas from design patterns to create well-

defined patterns for server control problems.

Large eCommerce servers are multi-tier systems con-

sisting of web server front-ends, business logic in the in-

termediate layers, and database servers as back-ends. The

overall system is a MIMO system where control is needed

at several layers. Model-based predictive control (MPC) is

an interesting possibility here. MPC also explicitly handles

constraints on control signals and state variables, which is

common in queueing problems, e.g., buffer size limits. In

[Xu et al., 2006] different predictive control algorithms have

been compared and applied to resource allocation.

Our current notion of dynamics is based on the behaviour

of physical systems, e.g., mechanical systems. It is not

necessarily so that this type of dynamics also suits software

systems. The same holds for stability. It is not completely

clear what an unstable software system really means or

what type of stability definitions that makes sense. Related

to this is the question of how we design or program

software systems in such a way that they are observable

and controllable.Which types of sensor and actuatorsmakes

most sense for this type of systems.

In order to make control of server systems applicable

on a wider industrial scale it is necessary to have built-in

support for this in operating systems and/or middleware. On

which level this should be handled is not clear. Should there

be a special POSIX/Control standard defined?

3. Control of CPU Resources

Feedback scheduling of CPU resources is an area where

fairly much research has been performed, especially for em-

bedded real-time systems. In feedback scheduling the allo-

cation of CPU resources is based on a comparison of the

actual resource consumption by, e.g., a set of tasks, with the

desired resource consumption. The difference, or control er-

Feedback
scheduler

Tasks Resources

Feedforward

Feedback

Figure 2 A general feedback scheduling system. The scheduler

adjusts the tasks’ demands based on feedback from the current

use of critical resources. The tasks may also inform the scheduler

that they are about to consume more resources (feedforward).

ror, is then used for deciding how the resources should be

allocated to the different users. The resources can include

CPU-time, memory, I/O bandwidth etc. Dynamic feedback-

based schemes are already part of several commodity op-

erating systems such as Linux and Solaris, but they have

typically not been designed by applying control theory.

Feedback scheduling is primarily suited for applications

with soft or adaptive real-time requirements. This includes

different types of multimedia applications, but also a large

class of control applications. Feedback scheduling of CPU

resources has strong relationships with the queue control

employed for server systems and many of the results in one

area can be directly applied in the other area.

An early result is given in [Stankovic et al., 1999]

where the Feedback Control EDF scheduling algorithm is

presented. A PID controller is used to regulate the deadline

miss-ratio for a set of soft real-time tasks with varying

execution times, by adjusting their CPU time utilization.

The approach has later been extended with an additional

PID controller that controls the CPU utilization.

Many scheduling techniques that allow QoS adaptation

have been developed. An interesting mechanism for work-

load adjustments is given in [Buttazzo et al., 1998], where

an elastic task model for periodic tasks is presented. A large

amount of feedback-based or adaptive global QoS manage-

ment systems have also been proposed. Some examples are

[Chu and Nahrstedt, 1999; Aparah, 1998]. In [Yuan and

Nahrstedt, 2003a] issues of QoS and energy savings are ex-

perimentally evaluated using the CPU scheduler GRACE-

OS.

Control-based ideas have also been used for dynamic

allocation of bandwidth in aperiodic task servers and for

dynamic allocation of resource reservations in reservation-

based scheduling. The main application area for these tech-

niques is multimedia applications, e.g., streamed audio and

video. The idea behind resource reservation is to explicitly

control the computing resources assigned to a given activity

(job, task, or application). Each activity receives a fraction

(reservation), Ui, of the processor capacity and will behave

as if it was executing alone on a slower, virtual processor.

The motivation for feedback is the need to cope with incor-



rect reservations, to be able to reclaim unused resources and

distribute them to more demanding tasks, and to be able to

adjust to dynamic changes in resource requirements. Hence,

a monitoring mechanism is needed to measure the actual

demands and a feedback mechanism is needed to perform

the reservation adaptation. Two types of feedback are possi-

ble. On a global, system-wide level a QoS controller adjusts

the size of the individual reservations given to the different

activities based on the measured performance and resource

utilization. On a task or activity level, local feedback is em-

ployed to adjust the resource requirements of the individual

tasks based on the experienced QoS levels and the amount

of resources available to the task, as decided by the global

QoS controller. The local resource usage can be adjusted

through rate adaptation, by executing the task at different

service levels, and by job skipping.

3.1 Research Challenges

In addition to several of the challenges for server systems,

the following items are important for control of CPU re-

sources. Multiprocessor systems will become common in

the near future also for certain embedded applications. So

far very little of the control-based methods to CPU re-

source management have been applied to multiprocessor

systems. Power saving is becoming increasingly important

in all computer applications, including server systems. Ad-

justing the CPU speed using, e.g., Dynamic Voltage Scal-

ing (DVS) techniques, is an alternative way of adjusting the

service requirements of a task, e.g. [Yuan and Nahrstedt,

2003b]. Minimizing the power consumption is also an im-

portant goal in itself for many networked embedded sys-

tems, e.g., sensor networks. The joint optimization prob-

lem of minimizing energy while still meeting real-time con-

straints already today receives considerable attention from

the research community. However, it is an important area

also for the future. Resource management in distributed sys-

tems where an activity spans multiple nodes is also an im-

portant issue. How do we adapt the resources individually

in the different nodes in order to obtain a good global be-

haviour, e.g., acceptable end-to-end response times?

Hierarchical resource allocation schemes based on dy-

namic reservations in combination with local feedback con-

trol loops for the individual tasks is an interesting and

promising approachwhere more research is needed. How do

we enforce the notion of virtual CPUs that execute within a

real CPU with, possibly, different scheduling policies, and

where the share that each virtual CPU receives of the total

CPU resources is dynamically adjusted based on resource

requirements and availability?

One of the goals of feedback scheduling is to better

make use of scarce resources. If this should be achieved it

requires that the feedback scheduling mechanism itself does

not consume too much resources. Hence, efficient feedback

C1(z) P1(s)

FBS

x1 xn

h1 hn

Usp

Figure 3 Feedback scheduling of control loops.

scheduling mechanisms are of great importance.

4. Feedback Scheduling of Control Systems

Feedback-based resource scheduling is of particular interest

for control systems. Here the common assumption is that

a control system involving multiple control loops is imple-

mented as a multi-tasking system with each controller being

realized as a separate periodic task. The main resource of

concern in these types of problems is the CPU-time. The ob-

jective for the feedback scheduler is to dynamically adjust

the CPU utilization of the controller tasks so that the task

set remains schedulable and the stability and performance

requirements of the individual controllers are met.

The structure is shown in Fig. 3. The controllers are

denoted Ci(z) and the physical plants are denoted Pi(s).
Control is used at two levels: to control a number of

physical plants and to control the resource allocation to the

controllers.

In this approach the control performance can be viewed

as a QoS parameter. The feedback scheduling problem is

often stated as an optimization problem where the objective

is to maximize the global control performance according

to some criterion, subject to resource and schedulability

constraints.

There are several reasons why feedback scheduling can

be applied to control systems. One reason is the uncertainty

associated with the worst-case execution time (WCET) es-

timation. An overly pessimistic WCET estimate may cause

the designer to chose a more powerful processor, which then

will be under-utilized. Alternatively, the designer will re-

duce the utilization by increasing the task periods, which

may lead to poor control performance. In some control ap-

plications, e.g., hybrid and switching controllers and con-

trollers employing on-line optimization, the computational

workload can change dramatically over time as different

control algorithms are switched in and out when the external

environment changes, and from job to job due to the varying

number of iterations that are needed in the optimization.

An optimization-based approach to feedback scheduling

requires performance metrics that are parameterized with



scheduling-related parameters, e.g., task periods. For gen-

eral applications this is normally not available. However,

for control application such performance metrics often ex-

ist. For example, using tools such as Jitterbug, [Lincoln and

Cervin, 2002], it is possible to evaluate variance-type per-

formance indices for linear control systems as a function of

sampling periods.

4.1 Actuators & Sensors

The actuators of a feedback scheduler are the means with

which the scheduler can modify the CPU utilization. For a

controller task the task period is a natural actuator. Depend-

ing on the performance requirements one can either adjust

the controller parameters when the task period is changed,

i.e., use gain scheduling with respect to the sampling inter-

val, or use the same controller parameters independently on

the task period.

An alternative actuator is the execution time of the con-

troller. This can be realized using a multiple-versions ap-

proach or using an anytime approach. In a multiple version

approach one may use multiple control algorithms with dif-

ferent execution time demands or one may occasionally skip

the execution of parts of the control algorithm. The anytime

approach can be applied to controllers in which the com-

putations in the control algorithm or the sensors can be ex-

pressed in an iterative way that may be terminated after an

arbitrary number of iterations, and where the control perfor-

mance increases with the number of iterations. One exam-

ple where this is applicable is model-predictive controllers

(MPC) in which a quadratic optimization problem is solved

in every sample. In the case of overload, the optimization

may be terminated early and still produce acceptable re-

sults. In [Henriksson et al., 2004b], value-based dynamic

scheduling of multiple MPC controllers is considered using

the optimization cost function as the value function. How-

ever, in general, changing the task periods is more natural

for control algorithms than changing the execution time de-

mands.

The sensor in this type of feedback scheduler is a

measurement of the actual CPU utilization. This assumes

that the processor and RTOS are equipped with the means

to perform such measurements. In order to avoid control

actions caused by spurious measurement outliers (“noise”)

a low-pass filter may be included in the sensor. The low-

pass filter can also be used to calculate an average of the

utilization over a certain time period, e.g., the sampling

period of the feedback scheduler.

4.2 Stationary Feedback Scheduling

In [Eker et al., 2000] it was shown that a simple linear

proportional rescaling of the nominal task periods in order

to meet the utilization set-point is optimal with respect to the

stationary control performance under certain assumptions.

It holds if the control cost functions, Ji(hi), where hi is the

sampling period, are quadratic, i.e.,

Ji(hi) = αi + βih
2

i

or if they are linear,

Ji(hi) = αi + γihi,

and if the objective of the feedback scheduler is to minimize

the sum of the control cost functions or a weighted sum of

the control cost functions. Linear or quadratic cost functions

are quite good approximations of true cost functions in

many cases.

The advantage of this approach is a simple and fast

calculation that easily can be performed on-line. The linear

rescaling also has the advantage that it preserves rate-

monotonic ordering of the tasks and, thus, avoids any

changes in task priorities in the case that rate-monotonic

fixed priority scheduling is used. It is also possible to add

more constraints to the optimization problem and still retain

a simple solution. For example, one can use the nominal task

periods as minimum task periods and use these whenever

the utilization is less than the utilization set-point.

It is also possible to assign maximum periods to certain

tasks. This leads however to an iterative computation (LP-

problem) in order to find the total rescaling of all the tasks.

4.3 Optimal Feedback Scheduling

A drawback with the previous approach is that it does not

consider the actual control performance. The optimization

only concerns the stationary performance. Disturbances

acting on the control loops will not be taken into account

in the optimization. In [Henriksson and Cervin, 2005] an

alternative approach is proposed. Instead of basing the

optimization on stationary cost functions it is based on

finite-horizon cost functions related to the sampling period,

the current state of the control loop, and the period at which

the feedback scheduler is invoked. The optimization horizon

corresponds to the period of the feedback scheduler. Hence,

rather than having cost functions that only are a function of

the task periods, i.e.,

Ji(hi) = αi + βih
k
i ,

the cost functions now can be expressed as

Ji(hi, xi, Tfbs) = αi(xi, Tfbs) + βi(xi, Tfbs)h
k
i .

The intuition behind this formulation is that a process in a

transient phase, for example, during a setpoint change or ex-

posed to an external disturbance, may require more comput-

ing resources than a process in stationarity. In [Henriksson

and Cervin, 2005] a stationary noise model was assumed,



causing the current plant state to have a quite small influ-

ence on the assigned periods. In [Castañé et al., 2006] the

approach is extended to also handle non-stationary noise

processes.

The approach is formulated for arbitrary linear con-

trollers. The optimization objective is to minimize the com-

bined performance of all the control loops,

min
h1... hn

n∑

i=1

Ji(hi, xi, Tfbs)

subject to the utilization bound given by the schedulability

condition
n∑

i=1

Ci

hi

≤ Usp

This problem is a convex problem if the functions

Ji(1/fi, xi, Tfbs) are convex in fi. If all the cost func-

tions have the same shape then an explicit solution exists. If

that is not the case analytical solutions exist only for special

cases. In other cases the cost functions are approximated

as linear functions at the current sampling period and the

cost function derivatives for each controller are computed

off-line and stored in look-up tables.

An important design parameter is the feedback scheduler

period. The shorter period, the more responsive the system

will be to external disturbances. However, the execution

of the feedback scheduler induces overhead and consumes

CPU time from the control tasks.

4.4 Value-Based Feedback Scheduling

Most of the feedback scheduling approaches proposed for

control applications are indirect. By adjusting the task pa-

rameters, e.g., period and execution time, one makes sure

that the task set is schedulable and has certain timing prop-

erties (latencies and jitter).These timing properties will then

indirectly determine the performance of the application. The

problem with this is the relationship between the timing pa-

rameters and the cost/performance. Often the relationship

only holds in stationarity and in a mean-value sense.

An interesting but still largely unexplored approach is to

instead use value-based or direct feedback scheduling. Here,

the idea is to base the decision of which task to execute on

an instantaneous cost function. This cost function should

grow the longer the control loop executes in open loop and

decrease when a control action is issued. The instantaneous

cost could then be used as a dynamic task priority similar

to the deadline in EDF. The resulting system would be a

special case of an aperiodic event-triggered sampled system.

4.5 Research Directions

The challenges and resource directions for feedback

scheduling of control tasks include all the challenges and

research direction of control of CPU resources. Addition-

ally, the following items are important. Temporal robustness

indices are needed that allow us to decide how the control

performance depends on the computing resources, e.g., on

the sampling period. Although work has and is being done

in this area more work is necessary. Frameworks must be

developed that allow dynamic negotiation about resources

and control performance between the control applications

and the QoS manager. These frameworks must be able to

express the control-specific aspects of the problem in ad-

dition to the computing and scheduling-specific aspects. It

must also be able to express the performance requirements

of the different control loops in a flexible way.

Formal performance guarantees on control loops is

something that today require a fairly static implementa-

tion of the control system with respect to resource utiliza-

tion, e.g., a statically scheduled time-triggered control loop

has a very predictable performance. It is an open question

whether it is possible to combine the flexibility implied by

feedback scheduling with formal guarantees and, in that

case, what type of formal guarantees.

5. Control of Communication Networks

The success of the Internet as a worldwide information car-

rying network can be attributed to the feedbackmechanisms

that control the data transfer in the transport layer of the IP

stack. These algorithms have historically managed to dis-

tribute network resources among contending users in a suf-

ficiently fair and resource-efficient way. An explanation to

this is that the control is allocated at the end-systems (users)

and hence obey a decentralized structure. Furthermore, to-

gether with the source control, buffers have played a key-

role during the evolution of the Internet. Since end-users

base control action on limited, corrupt and delayed informa-

tion; buffers are used at links inside the network to smooth

out errors in the control, hence making the system more ro-

bust. Auxiliary control from the network interior has also

been introduced by “intelligent” links that mark or drop

packets depending on the traffic load. This is referred to as

Active Queue Management (AQM).

Historically, congestion control algorithms have been de-

signed by computer scientists outside the framework of

control theory. The tremendous complexity of the Internet

makes it extremely difficult to model and analyze, and it

has been questioned if mathematical theory can offer any

major improvements in this area. Recently, however, signif-

icant progress in the theoretical understanding of network

congestion control has been made following seminal work

by Kelly and coworkers [Kelly et al., 1998]. The key is to

work at the correct level of aggregation, which is fluid flow

models with validity at longer time-scales than the round-

trip time. By explicitly modeling the congestion measure

signal fed back to sources, posing the network flow control



as an optimization problem where the objective is to maxi-

mize the total source utility, it is shown that the rate control

problem can be solved in a completely decentralized man-

ner [Kelly et al., 1998; Low and Lapsley, 1999]. This as-

sumes that each source has a (concave) utility function of

its rate.

To ensure that the system will reach and maintain a fa-

vorable equilibrium, it is important to assess the dynam-

ical properties, such as stability and convergence, of the

schemes. Stability of the basic schemes, which allow dy-

namic rate control and static marking, or dynamic queue

management schemes and static source rate control, was es-

tablished already in [Kelly et al., 1998; Low and Lapsley,

1999] but under idealized settings. A unifying framework

for global stability of congestion control laws based on pas-

sivity has been proposed in [Wen and Arcak, 2004].

The above results have all ignored the effect of network

delay, and assumed that price information is available in-

stantaneously at the source, that the sources take immediate

action, and that the new rates affect the link prices instanta-

neously. However, stability of the protocols in equilibrium

depends critically on the feedback delay. Recent research

therefore focuses on source- and link control laws that guar-

antee stability for more general network configurations and

delay distributions.

Wireless networks are specially interesting from a re-

source control point of view. Whereas the link capacities

in wireline networks are fixed, the capacities of wireless

links can be adjusted by the allocation of communication re-

sources, such as transmit powers, bandwidths, or time-slot

fractions, to different links. Adjusting the resource alloca-

tion changes the link capacities, influences the optimal rout-

ing of data flows, and alters the total utility of the network.

Hence, optimal network operation can only be achieved by

coordinating the operation across the networking stack. This

is often referred to as cross-layer optimization.

A basic question is whether it is worthwhile to introduce

advanced resource management and coordination schemes.

One way of attacking this problem is to try to determine the

information-theoretic capacity, which includes optimiza-

tion over all possible modulation and coding schemes and

involves many of the unsolved problems of network infor-

mation theory. An alternative approach is to focus on net-

work layer capacity, where coding and modulation schemes

are fixed, and one optimizes over some critical parameters,

such as power allocations and scheduling decisions.

5.1 Research Challenges

Control-based approaches in communication networks is a

very large research field, in particular if wireless systems,

e.g., sensor networks, are included. In order to be able to

control the network performance it is necessary to measure

and modify the network parameters. The current ISO-OSI

stack layer is not ideally supported for cross layer designs

where information from the lower layers must be made

available at the application layer and where the application

layer must be able to modify the behaviour of the lower

layer protocols dynamically. Hence, new protocols and

protocol models are needed that simplify this.

Theories and engineering principles for dynamically al-

locating resources in wireless ad hoc networks to ensure

quality of service are needed for a wide range of applica-

tions. One interesting suggestion is to have a formal, pos-

sibly optimization-based, theory for the design of network

protocols based on a model of the underlying network and

a specification of the application requirements.

While the use of mathematical decomposition techniques

as guiding principle for organizational design is well-known

in economics and operational research (e.g., [Holmberg,

1995]), the application of such ideas to networked systems

has just begun to appear [Chen et al., 2005; Chiang, 2005;

Lin and Shroff, 2004; Johansson and Johansson, 2006].

Breaking up the layered structure of the networking

stack may also have negative consequences, partially in

terms of maintenance and compatibility issues but also in

terms of the resulting performance. In particular, it has

been observed that cross-layer coordination protocols can

introduce dependency relations and unintended interactions

[Kwadia and Kumar, 2005]: in some situations, adaption

mechanisms in different layers can start working against

each other, leading to worse practical performance than in

a layered network. It is thus important to develop control-

theoretic tools for analyzing protocol dynamics in order to

guarantee stable and efficient overall behaviour.

The control of network performance often requires ac-

cess to network state variables, such as available bandwidth,

round-trip times, and packet loss. These variables are typi-

cally not immediately available, but must be estimated from

other quantities. The design of reliable and efficient estima-

tors for network state is thus instrumental for many applica-

tions, and requires the development of simple and flexible

models of network dynamics together with the associated

advances in estimation theory.

Improving congestion control is intimately linked to the

quality of the used models. The development of accurate

fluid flow models will help understanding the limitations

communication networks are subject to and provide a basis

for new control laws. Present fluid flow models disregard

important system aspects and very little has been done in

terms of experimental validation of the proposed models.

6. Error Control of Software Systems

The development of completely defect-free complex soft-

ware systems is extremely difficult, if not impossible. At

the same time several large existing software systems are

remarkably stable and reliable in the presence of thousands



or maybe millions of residual software bugs, e.g., the tele-

com networks or the Internet. Hence, rather than focusing

the development effort on trying to eliminate all bugs at de-

sign time it is important to develop methods that allow us

to develop safe and stable software systems that still can

utilize COTS-quality software components with a consider-

able amount of residual bugs. Hence, the focus should be on

detection and recovery from software errors at run-time, in

addition to elimination of software errors at design-time.

The idea behind error control of software is to use tech-

niques from feedback control in order to detect malfunc-

tioning software components and, in that case fall back on,

a well-tested core software component that is able to pro-

vide the basic application service with guarantees on per-

formance and safety. Hence, the basic idea assumes that a

certain amount of defect-free components are available, that

can be used to implement the fall-back safety core service.

The second key idea is to always design your system to have

a simple and well-formed dependency tree, with a minimal

number of dependency relations among components. This is

necessary in order to be able to identify the core services and

keep them small. The background to several of the key ideas

of the area is given in [Sha, 2001]. In [Liu et al., ] a fault tol-

erance architecture is presented based on these ideas.

In software error control, our view of what control is

has to be broadened substantially. Control is normally con-

cerned with the temporal behaviour of systems. The ideas

behind software error control are, however, not restricted

to the temporal behaviour. The same approach can in prin-

ciple also be used for applications that only contain func-

tional requirements. In this case software error control has

strong relationships to techniques that are commonly asso-

ciated with fault tolerance, e.g., hardware and software re-

dundancy and diversity through replication and N-version

programming. However, the principles behind software er-

ror control have so far mainly been applied to reactive ap-

plications, i.e., avionics control systems.

6.1 Research Challenges

The major challenge is to develop a new paradigm for soft-

ware stability control, based on an integration of concepts

from fault-tolerant computing and control, that is applicable

to a wide range of application types. The number of doc-

umented examples where software error control has been

applied is small. In order to increase the understanding for

the subject and to develop the necessary methods and the-

ory, more documented applications must be developed. The

relationships to the methods within the traditional fault tol-

erance area must also be clarified. It is further necessary to

investigate for which application types, other than feedback

control, the approach is suitable.

7. Control Middleware

Applying control techniques to a computer software system

requires certain generic services. Often these have to do

with the sensor and actuator interface of the control loop.

For example, in queue delay control it is necessary to be

able to measure arrival and departure times of requests

and calculate average delays. Rather than implementing the

support for this in every application or provide the support

in the operating system (often not possible) an alternative is

to use middleware technology.

Several middleware technologies are available, e.g.,

Java-RMI, Microsoft’s COM, and CORBA. Middleware

frameworks are also available for real-time and embedded

systems, e.g., RT-CORBA and Embedded CORBA. There

are also a large number of research middleware framework

developed for pervasive networked embedded system appli-

cations, e.g., sensor networks. Examples of these are GAIA

[Romn et al., 2002] and AURA [Garlan et al., 2002].

A few middleware solutions have been developed ex-

plicitly for control purposes. ControlWare, [Zhang et al.,

2002], is a middleware QoS-control architecture originally

designed to help programmers apply control theory to con-

trol software performance. It allows the user to express QoS

specifications off-line, maps these specifications into appro-

priate feedback loops, and connects the loops to the right

performance sensors and actuators in the application code

such that the desired QoS is achieved [Abdelzaher et al.,

2003]. The aim of ControlWare is to isolate the software ap-

plication programmer from control technology issues while

still utilizing the theory.

The basic abstraction provided in ControlWare is a com-

ponent. Components are connected via their ports, and com-

municate with each other via an infrastructure named Soft-

bus. Properly connected, several components (various num-

ber of sensors, actuators and controllers) form a control

loop. Two main types of software sensors and actuators are

supported: passive and active. A passive sensor or actuator

is simply a function or software component that returns sen-

sor data or accepts a command to perform an actuationwhen

called by a controller. An active sensor, on the other hand, is

a thread that usually is awakened periodically by the oper-

ating system to perform sensing or actuation. The topology

of a control loop is described by a template. Essentially, a

template describes a general solution to a type of QoS guar-

antee. Several QoS performance control templates are sup-

ported. For example, absolute convergence guarantees, rela-

tive differentiated service guarantees, prioritization, and op-

timization guarantees. The absolute convergence guarantee

ensures that some performance metric R converges asymp-
totically to a desired value and that the error is bounded at

all times. In [Zhang et al., 2002] the corresponding control

loop templates for relative differentiated service, prioritiza-

tion, and utility maximization are presented.



A related example is IBM’s AutoTune Agents, see [Diao

et al., 2002], where an agent-based solution is proposed

which automates the tuning of the IT environment for

eCommerce applications and also automatically designs an

appropriate tuning mechanism for the target system. Us-

ing AutoTune agents are constructed to automate a control-

theoretic methodology that involves model building, con-

troller design, and run-time feedback control.

The Agilos (Agile QoS) architecture, [Li and Nahrstedt,

1999], is a middleware control architecture designed to pro-

vide middleware services to assist application-aware QoS

adaptations. Agilos is designed as a three-tier architecture:

In the first and lowest tier, application-neutral adaptors and

observers maintain tight relationships with individual types

of resources, and react to changes in resource availability.

In the second tier, application-specific configurators are re-

sponsible for making decisions on when and what adaptive

mechanisms are to be invoked. In the third tier, a gateway

and negotiators are introduced to control adaptation behav-

ior in an application with multiple clients and servers, so

that dynamic reconfigurations of client-server mappings are

possible and tuned to the best interests of the application.

The adaptation algorithm in Agilos is based on PID control.

FCS/nORB is a feedback control real-time scheduling

service on nORB, a small footprint Object Request Bro-

ker (ORB) middleware for networked embedded systems,

[Lu et al., 2003]. FCS/nORB provides support for real-time

performance portability across platforms and robust perfor-

mance guarantees in face of workload/platform variations.

Three types of control loops are supported: control of CPU

utilization, control of deadline miss ratio, and combined

control of utilization and miss ratio. The same group is also

developing CAMRIT, a control-based adaptive middleware

framework for real-time image transmission in distributed

real-time embedded systems, [Wang et al., 2004].

There are also other types of middleware associated with

control. However, the majority of these are intended for

real-time control, i.e., control of some physical system using

some type of networked embedded control system. One

system worth mentioning, however, is Etherware, [Baliga

et al., 2004], a messaging middleware for networked control

loops.

7.1 Research Directions

The most important research item for control middleware is

to develop these systems from research prototypes to com-

modity systems. It is still an open question whether the mid-

dleware only should be passive, i.e., provide sensing and

actuation services that the application can use to itself im-

plement the feedback control, or if it should be active, i.e.,

provide the actual control loops. Both of these approaches

have advantages and disadvantages. Another unclear issue

is when the support for feedback control should be provided

by a middleware and when the support should be provided

by the underlying OS. Clearly for severely resource con-

strained applications the addition of a middleware layermay

not be an option.

8. Acknowledgements

This work has been funded by the EU/IST FP6 NoE

ARTIST2. Important input to the roadmap were provided

by the participants of the Lund Workshop on Control

for Embedded Systems, June 2005. We also gratefully

acknowledge the valuable comments of the reviewers.

9. References

Abdelzaher, T., J. Stankovic, C. Lu, R. Zgang, and Y. Lu (2003):

“Feedback performance control in software services.” IEEE

Control Systems Magazine, 23:3.

Aparah, D. (1998): “Adaptive resource management in a multime-

dia operating system.” In Proceedings of the 8th International

Workshop on Network and Operating System Support for Dig-

ital Audio and Video.

Baliga, G., S. Graham, L. Sha, and P. Kumar (2004): “Service con-

tinuity in networked control using Etherware.” In Proceedings

of Middleware 2004.

Buttazzo, G., G. Lipari, and L. Abeni (1998): “Elastic task model

for adaptive rate control.” In Proc. 19th IEEE Real-Time

Systems Symposium, pp. 286–295.

Castañé, R., P. Martı́, M. Velasco, A. Cervin, and D. Henriksson

(2006): “Resource management for control tasks based on the

transient dynamics of closed-loop systems.” In Proceedings

of the 18th Euromicro Conference on Real-Time Systems.

Dresden, Germany.

Chen, L., S. Low, and J. Doyle (2005): “Joint congestion control

and media access control design for ad hoc wireless networks.”

In Proc. of IEEE Infocom. IEEE, Miami, FL.

Chiang, M. (2005): “Balancing transport and physical layers

in wireless multihop networks: Jointly optimal congestion

control and power control.” IEEE JSAC, 23:1, pp. 104–116.

Chu, H. and K. Nahrstedt (1999): “CPU service classes for multi-

media applications.” In Proceedings of the IEEE International

Conference on Multimedia Computing and Systems.

Diao, Y., N. Gandhi, J. Hellerstein, S. Parekh, and D. Tilbury

(2002): “MIMO control of an Apache web server.” In Proceed-

ings of the American Control Conference.

Eker, J., P. Hagander, and K.-E. Årzén (2000): “A feedback

scheduler for real-time control tasks.” Control Engineering

Practice, 8:12, pp. 1369–1378.

Garlan, D., D. P. Siewiorek, A. Smailagic, and P. Steenkiste

(2002): “Aura: Toward distraction-free pervasive computing.”

IEEE Pervasive Computing.

Hellerstein, J., Y. Diao, S. Parekh, and D. Tilbury (2005): “Control

engineering for computing systems.” IEEE Control Systems

Magazine, 25:6, pp. 56–68.



Hellerstein, J. L., Y. Diao, S. Parekh, and D. M. Tilbury (2004):

Feedback Control of Computing Systems. John Wiley.

Henriksson, D. and A. Cervin (2005): “Optimal on-line sampling

period assignment for real-time control tasks based on plant

state information.” In Proceedings of the 44th IEEE Confer-

ence on Decision and Control and European Control Confer-

ence ECC 2005. Seville, Spain.

Henriksson, D., Y. Lu, and T. Abdelzaher (2004a): “Improved

prediction for web server delay control.” In Proceedings of the

16th Euromicro Conference on Real-Time Systems (ECRTS

04). Catania, Sicily, Italy.

Henriksson, D., Y. Lu, and T. Abdelzaher (2004b): “Improved

prediction for web server delay control.” In submission to

Euromicro Conference on Real-Time Systems. Catania, Sicily,

Italy.

Holmberg, K. (1995): Design Models for Hierarchical Organiza-

tions: Computation, Information, and Decentralization, chap-

ter Primal and dual decomposition as organizational design:

Price and/or resource directive decomposition, pp. 61–92.

Kluwer Academic Publishers.

Johansson, B. and M. Johansson (2006): “Mathematical decom-

position techniques for distributed cross-layer optimization of

data networks.” IEEE Journal on Selected Areas in Communi-

cations, November. (to appear).

Kelly, F., A. Maulloo, and D. Tan (1998): “Rate control in commu-

nication networks: shadow prices, proportional fairness and

stability.” Journal of the Operational Research Society, 49,

pp. 237–252.

Kleinrock, L. (1975): Theory, Volume 1, Queuing Systems. Wiley-

Interscience.

Kwadia, V. and P. R. Kumar (2005): “A cautionary perspective on

cross layer design.”W. IEEE Wireless Communication, 12:1,

pp. 3–11.

Li, B. and K. Nahrstedt (1999): “A control-based middleware

framework for quality of service adapations.” IEEE Journal

on Selected Areas in Communications, Sep, pp. 1–19.

Lin, X. and N. B. Shroff (2004): “Joint rate control and scheduling

in multihop wireless networks.” In Proc. of IEEE Conference

on Decision and Control. IEEE, Paradise Island, Bahamas.

Lincoln, B. and A. Cervin (2002): “Jitterbug: A tool for analysis

of real-time control performance.” In Proceedings of the 41st

IEEE Conference on Decision and Control. Las Vegas, NV.

Liu, X., H. Ding, K. Lee, L. Sha, and M. Caccamo “Feedback

based real-time fault tolerance – issues and possible solu-

tions.”. First International Workshop on Feedback Control Im-

plementation and Design in Computing Systems and Net-

works, FEBID’06.

Liu, X., J. Heo, L. Sha, and X. Zhu (2006): “Adaptive control

of multi-tiered web applications using queueing predictor.” In

Proc. 2006 IEEE/IFIP Network Operations & Management

Symposium. Vancouver, Canada.

Low, S. H. and D. E. Lapsley (1999): “Optimization flow control –

I: Basic algorithm and convergence.” IEEE/ACMTransactions

on Networking, 7:6, pp. 861–874.

Lu, C., X. Wang, and C. Gill (2003): “Feedback control real-

time scheduling in orb middleware.” In Proceedings of the 9th

IEEE Real-Time and Embedded Technology and Applications

Symposium.

Robertsson, A., B. Wittenmark, and M. Kihl (2003): “Analysis

and design of admission control in web-server systems.”

In Proceedings of the 2003 American Control Conference

(ACC’03), pp. 254–259. Denver, Colorado, USA.

Romn, M., C. Hess, R. Cergueira, R. Campbell, and K. Nahrstedt

(2002): “Gaia: A middleware infrastructure to enable active

spaces.” IEEE Pervasive Computing, Oct-Dec.

Sha, L. (2001): “Using simplicty to control complexity.” IEEE

Software, 18:4, pp. 20–28.

Sha, L., X. Liu, Y. Lu, and T. Abdelzaher (2002): “Queuing model

based network server performance control.” In IEEE Real-

Time Systems Symposium.

Stankovic, J. A., C. Lu, S. H. Son, and G. Tao (1999): “The

case for feedback control real-time scheduling.” In Proc. 11th

Euromicro Conference on Real-Time Systems, pp. 11–20.

Tipper, D. and M. K. Sundareshan (1990): “Numerical models for

modeling computer networks under nonstationary conditions.”

IEEE Journal on Selected Areas in Communications, 8:9,

pp. 1682–1695.

Wang, X., H.-M. Huang, V. Subramonian, C. Lu, and C. Gill

(2004): “Camrit; control-based adaptive middleware for real-

time image transmission.” In Proceedings of the IEEE Real-

Time and Embedded Technology and Applications Sympo-

sium.

Wen, J. T. and M. Arcak (2004): “A unifying passivity framework

for network flow control.” IEEE Transactions on Automatic

Control, 49:2, pp. 162–174.

Xu, W., X. Zhu, S. Singhal, and Z. Wang (2006): “Predictive

control for dynamic resource allocation in enterprise data

centers.” In Proc. 2006 IEEE/IFIP Network Operations &

Management Symposium. Vancouver, Canada.

Yuan, W. and K. Nahrstedt (2003a): “Energy-efficient soft real-

time CPU scheduling for mobile multimedia systems.” In 19th

ACM Symposium on Operating Systems Principles. Bolton

Landing, NY.

Yuan, W. and K. Nahrstedt (2003b): “Energy-efficient soft real-

time CPU scheduling for mobile multimedia systems.” In

Proc. of the 19th ACM Symposium on OPerating Systems

Principles, Bolton Landing, NY.

Zhang, R., C. Lu, T. Abdelzaher, and J. Stankovic (2002): “Con-

trolware: A middleware for feedback control of software per-

formance.” In Proceedings of the 2002 International Confer-

ence on Distributed Computing Systems, Vienna, Austria.


