
Process and Product Certification Arguments –
Getting the Balance Right

Ibrahim Habli

Department of Computer Science
University of York, UK

Ibrahim.Habli@cs.york.ac.uk

Tim Kelly
Department of Computer Science

University of York, UK
Tim.Kelly@cs.york.ac.uk

ABSTRACT
Many current safety certification standards are process-based, i.e.
they prescribe a set of development techniques and methods. This
is perhaps best exemplified by the use of Safety Integrity Levels
(SILs), e.g. as defined by IEC 61508 and UK Defence Standard
00-55. SILs are defined according to the level of the risk posed by
a system, and hence prescribe the tools, techniques and methods
that should be adopted by the development and assessment
lifecycle. Product-based certification relies on the generation and
assurance of product-specific evidence that meets safety
requirements derived from hazard analysis. This evidence can be
used as the argument basis in a safety case. However, uncertainty
about the provenance of evidence in such a safety case can
undermine confidence. To address this problem, we argue that
process arguments remain an essential element of any safety case.
However, unlike the sweeping process-based integrity arguments
of the past, we suggest instead that highly directed process
arguments should be linked to the items of evidence used in the
product case. Such arguments can address issues of tool integrity,
competency of personnel, and configuration management. Much
as deductive software safety arguments are desirable, there will
always be inductive elements. Process-based arguments of the
type we suggest address partly this problem by tackling the
otherwise implicit assumptions underlying certification evidence.

Keywords
Software Safety, Safety Certification, Safety Argument, Safety
Process.

1. INTRODUCTION
Many software safety standards recommend or mandate a set of
practices (tools, techniques and methods) that should be used in
the development and assessment lifecycle. Such practices are
often categorised according to Safety Integrity Levels (SILs) [1,2]
or Development Assurance Levels (DALs) [3] that correspond to
the degree of risk reduction expected from the system. However,

the fundamental limitation of process-based certification lies in
the observation that good tools, techniques and methods do not
necessarily lead to the achievement of a specific level of integrity
of a SIL (e.g. as defined by a target failure rate). It is infeasible to
justify the correlation between the prescribed techniques and the
failure rate considered by many to be defined by a SIL [4].

Recently, there has been a marked shift towards safety standards
that recommend or mandate well structured and reasoned software
safety arguments. Such arguments justify the acceptability of
software safety based on product-specific and targeted evidence.
Product-based arguments rely on the generation and assurance of
product-specific evidence demonstrating the satisfaction of safety
requirements derived from hazard analysis. This approach is
typically referred to as evidence-based certification. Nevertheless,
evidence-based certification is based on the provision of both
product and process evidence. Safety arguments, along with their
evidence, are typically presented in a safety case. A safety case is
defined in UK Defence Standard 00-56 as [5]:

“A structured argument, supported by a body of evidence that
provides a compelling, comprehensible and valid case that a
system is safe for a given application in a given operating
environment”

The role of the process should not be underestimated even in
product-based arguments. The process evidence should be
focused and have well-defined relationship to product integrity
(and the assurance of product integrity). Just as product evidence
must be targeted towards specifications, so should process
evidence [15]. Uncertainty about the provenance of evidence in
product arguments can undermine confidence. Hence, the balance
between process-based and product-based arguments should be
managed carefully. In this paper, we propose that process
arguments should be linked to the items of evidence used in the
product-based safety case. Such arguments can address issues of
tool integrity, competency of personnel, and configuration
management. Process-based arguments of the type we suggest
tackle the implicit process assumptions underlying the product-
based argument and evidence.

The rest of this paper is as follows. Section 2 presents the
underlying elements of a safety argument. Section 3 introduces
the Goal Structuring Notation (GSN) – a structured technique for
representing safety arguments. Then, a product-based software
safety argument is presented and analysed in Section 4. In Section
5, this argument is then extended with process evidence that
justifies the trustworthiness of the product evidence. The process

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITCES '06, April 4, 2006, San Jose, USA.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

is discussed and evaluated in Section 6. Finally, conclusions are
presented in Section 7.

2. SAFETY ARGUMENTS
Underlying the descriptions of the safety case given in the
previous section is a view of the safety case consisting of three
principal elements: Requirements, Argument and Evidence. The
relationship between these three elements is depicted in Figure 1.

Safety Requirements & Objectives

Safety Evidence

Safety Argument

Figure 1. The Role of Safety Argumentation

The safety argument is that which communicates the relationship
between the evidence and objectives. However, a commonly
observed failing of safety cases is that the role of the safety
argument is often neglected. In such safety cases, many pages of
supporting evidence are often presented (e.g. hundreds of pages of
fault trees or Failure Modes and Effects Analysis tables), but little
is done to explain how this evidence relates to the safety
objectives. The reader is often left to guess at an unwritten and
implicit argument.

Both argument and evidence are crucial elements of the safety
case that must go hand-in-hand. Argument without supporting
evidence is unfounded, and therefore unconvincing. Evidence
without argument is unexplained – it can be unclear that (or how)
safety objectives have been satisfied.

A valid and sound deductive argument is the strongest form of
argument. Validity indicates that the argument conclusion follows
from its premises. In other words, true premises of a valid
argument provide conclusive basis for the truth of the conclusion
[6]. On the other hand, soundness implies that the argument
premises are true. Although deductive arguments are desirable,
software safety argument premises comprise, for the most part,
subjective elements. Such subjective elements make it infeasible
to declare that the premises are true. For example, even when
formal proof principles are used to create deductive arguments,
subjectivity may exist in the scoping and abstraction of the formal
model. Therefore, software safety arguments are predominantly
inductive. The premises of an inductive argument offer support
for the conclusion. However, the support of these premises, even
if they are true, is insufficient to attain absolute certainty.
Therefore, the weakness or strength of an inductive argument
depends on the level of confidence in the support of the premises
for the conclusion. The stronger the evidence provided in the
premises, the more confidence is gained in the argument. Hence,
rather being either true or false, the evidence in software safety

arguments is examined against the degree of confidence or
assurance it provides.

This degree of confidence in a software safety argument can be
defined with respect to the evidence’s relevance, trustworthiness,
and independence [7]. The assurance of the development process
plays a key role weakening or strengthening the software safety
argument. Uncertainty about the provenance of the software
evidence, such as testing and analysis, can undermine confidence,
and consequently weaken the evidence’s relevance,
trustworthiness, and independence. For example, a software
safety argument, supported by direct evidence from formal
methods, may be weakened by detecting flaws in the underlying
proof attributable to a lack of training in discrete mathematics.
Regardless of the type of argument (product or process), a clear
and unambiguous representation of the argument is a prerequisite
for communicating and analysing the strength and weakness of
the argument. The next section presents a structured technique for
representing safety arguments clearly and systematically.

3. REPRESENTING SAFETY ARGUMENT
USING THE GOAL STRUCTURING
NOTATION (GSN)
Safety arguments are most typically communicated in existing
safety cases through free text. However not all engineers
responsible for producing safety cases write clear and well-
structured English. Consequently, the meaning of the text, and
therefore the structure of the safety argument, can be ambiguous
and unclear. Structured argumentation techniques can overcome
the limitations of free text arguments. The Goal Structuring
Notation (GSN) [8] - a graphical argumentation notation -
explicitly represents the individual elements of any safety
argument (requirements, claims, evidence and context) and
(perhaps more significantly) the relationships that exist between
these elements (i.e. how individual requirements are supported by
specific claims, how claims are supported by evidence and the
assumed context that is defined for the argument). The principal
symbols of the notation are shown in Figure 2 (with example
instances of each concept).

System can
tolerate single

component
failures

Argument by
elimination of all

hazards

Fault Tree
for Hazard

H1

Goal Solution Strategy

All Identified
System
Hazards

Context
Undeveloped Goal

(to be developed further)

Figure 2. Principal Elements of the Goal Structuring Notation
When the elements of the GSN are linked together in a network
they are described as a ‘goal structure’. The principal purpose of
any goal structure is to show how goals (claims about the system)
are successively broken down into sub-goals until a point is
reached where claims can be supported by direct reference to
available evidence (solutions). As part of this decomposition,
using the GSN it is also possible to make clear the argument

strategies adopted (e.g. adopting a quantitative or qualitative
approach), the rationale for the approach and the context in which
goals are stated (e.g. the system scope or the assumed operational
role).

Within Europe, GSN has been adopted by a growing number of
companies within safety-critical industries (such as aerospace,
railways and defence) for the presentation of safety arguments
within safety cases. The following list includes some of the
applications of GSN to date:

• Eurofighter Aircraft Avionics Safety Justification

• Hawk Aircraft Safety Justification

• U.K. Ministry of Defence Site Safety Justifications

• U.K. Dorset Coast Railway Re-signalling Safety
Justification

• Submarine Propulsion Safety Justifications

• Safety Justification of UK Military Air Traffic
Management Systems

• London Underground Jubilee Line Extension Safety
Justification

• Swedish Air Traffic Control Applications

• Rolls-Royce Trent Engine Control Systems Safety
Arguments

The key benefit experienced by those companies adopting GSN is
that it improves the comprehension of the safety argument
amongst all of the key project stakeholders (i.e. system
developers, safety engineers, independent assessors and
certification authorities). In turn, this has improved the quality of

the debate and discussion amongst the stakeholders and has
reduced the time taken to reach agreement on the argument
approaches being adopted.

4. AN EXAMPLE SOFTWARE PRODUCT
ARGUMENT
Rather than arguing software safety based on the compliance with
prescribed methods and techniques, software product-based
arguments justify the acceptability of software safety based on
product-specific evidence. Product-based arguments rely on the
generation and assurance of product-specific evidence that meets
safety requirements derived from hazard analysis. Product
evidence plays a key role in evidence-based safety certification.
McDermid outlines the concepts of evidence-based safety
certification as follows [9]:

“First, identify the potential failure modes of software which can
give rise to, or contribute to, hazards in the system context.
Second, provide evidence that these failure modes:

• Cannot occur, or

• Are acceptably unlikely to occur, or

• Are detected and mitigated so that their effects are
acceptable.”

The evidence should be explicit and directly related to the
software under analysis [10]. For example, Weaver identifies
three categories of evidence that are needed for the support of a
software safety argument [14]: requirements validation,
requirements satisfaction and requirements traceability.

G1

C/S Logic is fault free

S1

Argument by
satisfaction of all C/S
safety requirements

S2

Argument by omission
of all identified software
hazards

C1

Identified
software hazards

G2

Press controls being
'jammed on' will cause
press to halt

G3

Release of controls prior to press
passing physical PoNR will
cause press operation to abort

G4

C/S fails safe (halts) on, and
annunciates (by sounding
klaxon), all single component
failures

Sn1

Black Box
Test Results

G5

'Failure1' transition of PLC
state machine includes
BUTTON_IN remaining true

G7

'Abort' transition of PLC
state machine includes
BUTTON_IN going FALSE

Sn2

C/S State
Machine

G8

Unintended opening of press
(after PoNR) can only occur
as a result of component
failure

G9

Unintended closing of press
can only occur as a result of
component failure

Sn3

Fault tree analysis
cutsets for event
'Hand trapped in

press due to
command error'

Sn4

Hazard
directed test

results

Figure 3. An Example Goal Structure

Figure 3 shows an example goal structure of a product-based
argument. The goal structure is for an argument for the safe

operation of a sheet metal press. This operation is controlled by
an operator via a simple control system based on a Programmable

Logic Controller (PLC). In this structure, as in most, there exist
‘top level’ goals – statements that the goal structure is designed to
support. In this case, “C/S (Control System) Logic is fault free”,
is the (singular) top level goal. Beneath the top level goal or
goals, the structure is broken down into sub-goals, either directly
or, as in this case, indirectly through a strategy. The two argument
strategies put forward as a means of addressing the top level goal
in Figure 3 are “Argument by satisfaction of all C/S (Control
System) safety requirements”, and, ”Argument by omission of all
identified software hazards”. These strategies are then
substantiated by five sub-goals. At some stage in a goal structure,
a goal statement is put forward that need not be broken down and
can be clearly supported by reference to some evidence. In this
case, the goal “Press controls being ‘jammed on’ will cause press
to halt” is supported by direct reference to the solutions, “Black
Box Test Results” and “C/S State Machine”.

5. SOFTWARE PROCESS ARGUMENT
Confidence in the evidence (i.e. the test and state machine based
evidence) shown in the product argument in Figure 3 can be
weakened by the uncertainty about its provenance. Firstly, black
box testing (Sn1) is an effective verification technique for
showing the achievement of safety requirement specifications.
However, confidence in the black box testing depends on
justifying the trustworthiness of testing process. For example,

factors that need to be addressed by a process evidence include
issues such as:

• the testing team is independent from the design team

• the process of generating, executing and analysing test
cases is carried out systematically and thoroughly

• the traceability between safety requirements and test
cases is well established and documented.

Similarly, a state machine (Sn2) is a powerful formal method for
specification and verification. Nevertheless, process information
is required to reveal the mathematical qualification of the
verification engineers and their ability to demonstrate
correspondence between the mathematical model and the software
behaviour at run-time [11]. Mistakes can be made in formal
proofs the same way that they can be made in coding. Therefore,
the quality of the verification process by means of formal
methods is as important as the deterministic results such methods
produce.

To address the above limitation, we propose addressing process
uncertainty through linking process arguments to the items of
evidence used in the product safety argument. Such process
arguments address issues of tool and method integrity,
competency of personnel, and configuration management.

Figure 4. Process Argument Extension
Figure 4 shows a modified version of the goal structure of the
sheet metal press safety argument. This version uses a new
extension to GSN [12] — the ‘Away’ Goal (e.g.
BXTestingTrustworthy and SMachineTrustworthy) to attach

process arguments to the solutions. Away Goals are used within
the arguments to denote claims that must be supported but whose
supporting arguments are located in another part of the safety
case. Away Goals were developed to enable modular and

compositional safety case construction, such that safety case
elements may be safely composed, removed and replaced. In the
rest of this section, the process arguments justifying the
trustworthiness of the black box testing and the state machine
analysis are presented.

Figure 5 shows the goal structure for the BXTestingTrustworthy
away goal. Here, the argument stresses the importance of process
information to justify the trustworthiness of the black box testing
evidence. The process information addresses team competency,
test case generation, execution and analysis, and testing
traceability. Firstly, the competency of the testing team (goal:
BXTestTeam) is supported by claims regarding the team’s

qualifications and independence from the design team (avoiding
common mode failures with the design team). Secondly, the goal
structure contains an argument that claims that the process of
generating, executing, and analysing test cases is systematic
(argument: ArgBXTestCaseGen). This argument is supported by
items of evidence such as the fact that the test cases cover all
defined safety requirements and executed on the final source code
and target platform. Finally, the goal structure shows that the
black box testing process is traceable. However, in order to avoid
complicating the goal structure, the justification argument for
traceability is documented elsewhere (module:
ConfigProcessArg).

Figure 5. Black-Box Process Argument

Similarly, the goal structure depicted in Figure 6 justifies the
trustworthiness of the state machine analysis by referring to
process information. In addition to the consideration of staff
competency and process traceability, this goal structure depends
on the state machine’s tool and notations. The dependability of
the state machine tool is verified against the tool’s operational
requirements (solution: SMachineToolRq). A formal approach

such as state machine analysis requires a simple and unambiguous
representation. This facilitates the definition of correct
correspondence between the formal model and the actual software
artefact. This claim about correct representation is supported by
referring to the adequacy of the notations and the clarity of the
accompanying natural language (solutions: SMachineNotation
and SMachineLang).

Figure 6. State Machine Process Argument

In short, in this section we have showed how to attach process-
based arguments to the product evidence. In the next section, we
evaluate the effectiveness of such an approach, particularly in
uncovering hidden factors that can weaken or strengthen
confidence in the safety argument.

6. DISCUSSION
The process arguments presented in this paper aim, primarily, to
support product-specific evidence. We believe that process-based
evidence should not be correlated with the direct achievement of
safety risk levels or failure rates. Instead, process arguments
should only be used to strengthen product-based arguments.
Arguing explicitly about the trustworthiness of the process
protects the safety case against counter-arguments based on
argument deconstruction and common mode failures.

Firstly, argument deconstruction attempts to undermine an
argument by referring to doubts about hidden assumptions and
conclusions [13]. However, by justifying the process behind the
generation of the evidence, safety engineers can address and
mitigate the impact of such hidden assumptions explicitly early on
during the safety case development. For example, in the sheet
metal press safety argument shown in Figure 4 the Context C1
“Identified Software Hazards” is supported by an argument that
justifies the trustworthiness of the hazard identification process
(HzIdentTrustworthy). By arguing explicitly about the
trustworthiness of the hazard identification process, the safety
argument is defended against counter-arguments that question the
completeness of the list of defined hazards.

Secondly, arguing explicitly about the trustworthiness of the
process can demonstrate independence between the evidence
items provided in a safety argument. Evidence independence is
particularly necessary to protect against common mode failures.

The goal structure in Figure 7 depicts a safety case pattern for a
diverse argument [8]. The diversity strategy (S1) is supported by
one or more distinct statements (Gn). Although diversity might be
proven by referring to the conceptual and mechanistic differences
between evidence types, underestimating diversity at the process
level can undermine the diversity of product evidence.

Figure 7. Diverse Argument Safety Case Pattern [8]
Figure 8 depicts an extended version of the above safety case
pattern (diverse argument). An away goal (GArgDiverse) is
attached to the argument strategy (S1). This away goal is used to
justify diversity of the items of evidence (Gn) at both the product
and process levels.

Figure 8. Extended Diverse Argument Safety Case Pattern

It is important to address the approach presented in this paper
from a practical perspective. It may be complicated to attach a
process argument to each item of product evidence. However, this
can be simplified by using GSN modular features, i.e. away goals.
Away goals can support process claims by arguments located in
another part of the safety case (modules). It may also be possible
to present process justification in less detail. Instead of linking a
process argument to each item of product evidence (i.e.
solutions), it may be feasible to link the process argument to a
high-level strategy, as shown in the safety case pattern in Figure
8. Additionally, not all safety arguments are of the same
significance. Safety case developers may choose to elaborate only
on high-priority safety arguments, where hidden process
assumptions have direct impact on undermining confidence.
Finally, in our example safety argument (sheet metal press), we
have backed items of product evidence, such as black box testing
and state machine analysis, by linking them to claims about the
trustworthiness of the underlying process. However, in reality,
there are different levels of trustworthiness in process evidence
(similar to the different levels of confidence in product evidence
[7]). The level of process trustworthiness varies with factors such
as the degree of independence and rigor. For example, testing
performed by an external and independent company will provide
a higher level of trustworthiness than one performed by an
internal testing team. Therefore, further work is required that
defines levels of process trustworthiness based on process-
specific measures and analysis.

7. SUMMARY
In this paper, we have stressed the importance of process-based
arguments in justifying the trustworthiness of the evidence that is
presented in product-based arguments. The software safety
arguments are predominantly inductive, and therefore process-
based arguments play a key role in strengthening or weakening
confidence in the software safety. The Goal Structuring Notation
(GSN) can be used to represent highly integrated and directed
process arguments that are linked to the evidence in the product-
based arguments. This, in turn, protects the software safety
argument against hidden process assumptions that make the
argument vulnerable to criticism and counter-arguments.

8. REFERENCES
[1] U.K. Ministry of Defence, 00-55 Requirements of Safety

Related Software in Defence Equipment, Part 1:
Requirements, Issue 2, MOD, Defence Standard, August
1997.

[2] IEC (International Electrotechnical Commission), IEC
61508: Functional safety of electrical / electronic /
programmable electronic safety related systems, Draft
International Standard, International Electrotechnical
Commission, 1997.

[3] EUROCAE (European Organisation for Civil Aviation
equipment) ED-12B/DO-178B, Software considerations in
airborne systems and equipment certification, EUROCAE,
1994.

[4] F Redmill, Safety Integrity Levels – Theory and Problems,
Lessons in System Safety, Proceedings of the Eighth Safety-
Critical Systems Symposium, edited by T. Anderson & F.
Redmill, Springer-Verlag, 2000.

[5] UK Ministry of Defence, 00-56 Safety Management
Requirements for Defence Systems, Part 1: Requirements,
Issue 3, UK MOD, August 2004.

[6] I. M. Copi, C. Cohen, Introduction to Logic, 10th Edition,
Prentice Hall, 1998.

[7] R. A. Weaver, The Safety of Software – Constructing and
Assuring Arguments, DPhil Thesis, Department of Computer
Science, University of York, UK, 2003.

[8] T. P. Kelly, Arguing Safety – A Systematic Approach to
Safety Case Management, DPhil Thesis, Department of
Computer Science, University of York, UK, 1998.

[9] J. McDermid, Software Safety: Where's The Evidence?,
Proceedings of the Sixth Australian Workshop on Industrial
Experience with Safety Critical Systems and Software,
Australian Computer Society, 2001.

[10] CAA (Civil Aviation Authority), SW01 - Regulatory
Objective for Software Safety Assurance in Air Traffic
Service Equipment, CAA, 1999.

[11] A. Hall, “Seven Myths of Formal Methods”, IEEE Software
archive, Volume 7, Issue 5, September 1990.

[12] I. J. Bate, T. P. Kelly, Architectural Considerations in the
Certification of Modular Systems, Reliability Engineering
and System Safety, Elsevier, vol. 81, Issue 3, Pages 303-324,
September 2003.

[13] J Armstrong, S. Paynter, The Deconstruction of Safety
Arguments Through Adversarial Counter-Argument,
Proceedings of the Computer Safety, Reliability, and
Security, 23rd International Conference, SAFECOMP 2004,
Potsdam, Germany, September 21-24, 2004.

[14] R. A. Weaver, J. A. McDermid, T. P. Kelly, Software Safety
Arguments: Towards a Systematic Categorisation of
Evidence, Proceedings of the 20th International System
Safety Conference, Denver, USA, 2002.

[15] UK Ministry of Defence, 00-56 Safety Management
Requirements for Defence Systems, Part 1: Requirements,
Issue 3, UK Ministry of Defence, August 2004.

	1. INTRODUCTION
	2. SAFETY ARGUMENTS
	3. REPRESENTING SAFETY ARGUMENT USING THE GOAL STRUCTURING NOTATION (GSN)
	4. AN EXAMPLE SOFTWARE PRODUCT ARGUMENT
	5. SOFTWARE PROCESS ARGUMENT
	6. DISCUSSION
	7. SUMMARY
	8. REFERENCES

