
Complex Medical Processes as Context for Embedded
Systems

George S. Avrunin
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
avrunin@cs.umass.edu

Lori A. Clarke
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
clarke@cs.umass.edu

Elizabeth A. Henneman
School of Nursing

University of Massachusetts
Amherst, MA 01103

henneman@nursing.umass.edu

Leon J. Osterweil
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
ljo@cs.umass.edu

ABSTRACT
Many embedded systems are intended for use in complex
and highly concurrent processes with multiple human agents.
In these cases, the requirements for the system depend crit-
ically on the details of the process. If certification is to be
useful for such systems, it must take the details of the pro-
cess into account. In this paper, we describe some current
research involving the formal definition and analysis of com-
plex medical processes. We discuss the ways in which this
work may provide a basis for a more complete understand-
ing of the behavior of medical devices in the context of the
processes in which they are used, and thus for certification
methods for sophisticated embedded systems.

1. INTRODUCTION
Certification is aimed at ensuring that the requirements for
a system are appropriate and complete and that the sys-
tem satisfies those requirements. Even for cases where the
requirements are relatively clear and unchanging and the
main issue is making sure that the system satisfies them,
certification presents a variety of difficult problems, and the
presence of significant software components in the system
exacerbates many of these difficulties. Certification must
address the interaction of the software with the rest of the
system (and with users), the correspondence between the
software and the requirements, and the potential behavior
of software that may have an extremely large number of
possible inputs and executions.

Existing certification procedures, such as for avionics sys-
tems, address these problems by imposing strict standards
for traceability of small units of the software back to the re-
quirements and for the test coverage of the software. Meet-
ing these standards is costly and they are necessarily imper-
fect, but they can be quite effective in ensuring the safety
of systems for which the requirements are well-understood.
A growing number of embedded systems, however, are in-
tended for use in complex processes where the requirements
for the system depend critically on the details of the process.
If certification is to be useful for such systems, it must take
the details of the process into account.

Consider, for example, the new generation of “smart” in-
fusion pumps for intravenous administration of medications
and fluids. Infusion pumps were introduced over 30 years
ago as limited rate/volume devices. Current pumps, how-
ever, are used over a wide range of dosages and rates, from
a milliliter or two per hour to many liters per hour, and
may have several channels infusing different medications.
Errors in setting the pumps can lead to administration of
1000 times the intended dose of medication in a very short
period. In response to this risk, manufacturers have intro-
duced a new generation of “smart” pumps. These pumps
are programmed (in the hospital) with libraries of drugs in
use in divisions of that hospital, together with the usual con-
centrations, dosing units, and dosing limits for those drugs.
More advanced versions of the pumps may also include infor-
mation about drug interactions and provide various patient
monitoring functions. A clinician using a pump typically
designates an area of use (such as adult ICU or neonatal
ICU) when the pump is powered on and the device is con-
figured with appropriate libraries for that area. The clini-
cian then completes the programming of the device, select-
ing the drug, concentration, etc. The pump may prevent
the clinician from entering certain combinations (e.g., using
the patient’s weight to set dosage if the drug is not dosed
by weight) and alerts the clinician if the dose exceeds pre-
established limits, if the drug is already being administered
on another channel, or some other hazardous condition is
identified.

The way these pumps are used has enormous consequences
for safety. Pumps may be used, even for the same patient,
in a variety of contexts where the implications of particular
dosages are quite different. For instance, some pumps pro-
vide an anesthesia mode for use in the operating room. In
this mode, both the drug library and the nature of alarms
and dose alerts are changed. The pump has to be changed
to a different mode when the patient is moved to a post-
operative or ICU setting. So the clinicians using the pump
must be aware of its mode and the process must ensure that
the mode is modified at appropriate times. In other settings,
such questions as whether or not the clinician may override



the stored settings and how responsibility for responding to
alerts of improper dosages is assigned may be critical. The
same device behavior may well be safe in certain uses and
very dangerous in others. The safety of a smart infusion
pump can only be certified in terms of the particular pro-
cesses in which it is to be used.

But medical processes, especially in hospitals, are extremely
complex. They are highly concurrent and exception-rich.
They involve many human agents, each of whom may be
participating in multiple processes at the same time. The ex-
ecution of these processes often depends on whether various
resources are available. Moreover, very often these processes
are poorly specified, so even participants in the processes are
not sure who is responsible for particular activities or what
is to be done in unusual circumstances. Approaches to cer-
tification that assume that the requirements for a medical
device are fixed and well understood are not adequate.

We are currently investigating a number of problems related
to the description and analysis of complex medical processes.
We are exploring methods for producing formal definitions of
such processes, together with statements of the requirements
they are intended to satisfy, that are precise and rigorous
enough to support a variety of analysis methods, including
finite-state verification, simulation, and others. We hope to
identify safety problems, such as possible process executions
on which an infusion pump is not correctly reset. In this pa-
per, we briefly describe this work and discuss ways in which
it may provide a basis for more complete understanding of
the behavior of devices in the context of the processes in
which they are used, and thus for certification methods for
sophisticated embedded systems.

2. DESCRIBING MEDICAL PROCESSES
Many medical processes, especially those carried out in hos-
pitals, are highly complex. They may involve many practi-
tioners, each of whom may be participating in several dif-
ferent processes at the same time. Exceptional conditions,
which necessitate behavior other than that nominally spec-
ified, arise frequently—for example, resources may be un-
available when needed. These processes are usually specified
in natural language documents, sometimes supplemented by
flow charts. Such specifications lack the semantics needed
to define such critical process characteristics as concurrency
and exception management with the precision needed for
careful analysis of the safety of the processes and with the
clarity needed to make the definitions accessible.

We are using the Little-JIL process definition language [1,11]
to formally define a number of complex medical processes,
including the operation of a large Emergency Department
(ED), the administration of outpatient chemotherapy, and
in-patient blood transfusion [4]. Little-JIL is a visual lan-
guage for defining the coordination of tasks that are to be
executed by either computational or human agents. A pro-
cess is defined in Little-JIL using hierarchically decomposed
steps, where a step represents some specified task to be done
by an assigned agent. Steps may also indicate prerequisites,
postrequisites, and exception handling behavior that should
be associated with the step. The language has a precise se-
mantics, defined using finite state automata, and Little-JIL

programs can be executed or can serve as the subject of
careful static analysis.

Steps in a Little-JIL program have names and badges to
represent control flow, exception handling, and pre- and
postrequisites. The interface to a step specifies the resources
to be used by the step, including the type of agent, such as a
nurse, physician, or computer system, who is to execute the
step and the flow of artifacts in and out of the step. Steps
need only be defined once and can be referenced multiple
times, where the semantics of each reference is quite similar
to a procedure invocation.

Every non-leaf step in a Little-JIL process has a sequenc-
ing badge, which defines the order in which its substeps
execute. The substeps of a sequential step are executed se-
quentially, from left to right, with successful completion of
the parent step only after the successful completion of the
last substep. For a try step, the substeps are attempted se-
quentially until one of them completes successfully; at that
point execution of the parent step is considered to have com-
pleted successfully. The substeps of a parallel step are exe-
cuted asynchronously (possibly concurrently) and the parent
step completes successfully only when all substeps have com-
pleted successfully. For a choice step, the agent dynamically
selects a substep to execute.

Any step in Little-JIL can throw exceptions when some as-
pect of the execution of that step fails, for example if a
prerequisite or postrequisite is not satisfied or a necessary
resource cannot be acquired. A thrown exception is handled
by a matching exception handler (itself a Little-JIL step) as-
sociated with the parent of the step that throws the excep-
tion. If the parent step does not provide a handler for the
particular exception, the exception is rethrown by the par-
ent step. Exception handlers have badges that indicate how
the step catching the exception executes after the handler
finishes. The catching step may continue as if the substep
that threw the exception had completed successfully, end its
execution, rethrow the exception to its parent, or restart its
execution from the beginning. A step may have a deadline
specifying the maximum time allowed for completion. If a
step continues to execute past its deadline, an exception is
thrown. The language also includes constructs for describ-
ing the flow of artifacts between steps.

Figure 1 shows part of a Little-JIL definition of the blood
transfusion process step “Single-Unit Transfusion Process.”
This step, shown at the top of the diagram, is a sequential
step (as indicated by the arrow sequencing badge in the box
below the step name), so its substeps, “Bedside Checks,”
“Gather Infusion Equipment,” “Administer Unit of Blood
Product,” and “Post Transfusion Work,” are executed in
order unless an exception occurs. (All steps shown here
with a solid black box under the step name are references to
steps that are defined fully in other diagrams.) The anno-
tations show the agents and resources associated with each
step. Two exception handlers, “Unit of Blood Product Ex-
piration” and “Suspected Transfusion Reaction” are shown,
although the steps that might throw those exceptions are
substeps of “Product Verification” and “Administer Unit of
Blood Product” that are defined in other diagrams. The
“Post Transfusion Work” step is a parallel step, so its sub-



steps, “Discard Transfusion Materials,” and “Record Infu-
sion Information,” may be performed concurrently.

In developing Little-JIL definitions of medical processes, our
expectation was that the medical professionals would pro-
vide descriptions of the processes in the form of documents
and oral presentations of the roles of the individual partic-
ipants. The computer scientists would then construct ini-
tial Little-JIL definitions and present these to the medical
professionals, who would clarify points that had been mis-
understood by the computer scientists. After a number of
iterations of this procedure, we expected to be able to con-
struct reasonable Little-JIL definitions of the processes.

In reality, things are somewhat more complicated. First, of
course, each side needs to learn to understand the termi-
nology of the other. The computer scientists need to learn
enough of the medical context to understand the factors that
are important for the process and the medical profession-
als need to learn both the Little-JIL notation and what the
computer scientists mean by such things as exceptions. This
takes some time and there are inevitable misunderstandings
while it is going on. We have been pleased to observe that,
with some training, many of the medical professionals be-
come quite fluent in Little-JIL and are able to understand
the details of Little-JIL diagrams.

Second, and more important, is the fact that many of these
complex processes are poorly understood even by the medi-
cal professionals. As noted earlier, the existing descriptions
of the processes are often quite incomplete. For example,
even when documents describing the process exist, they of-
ten describe only the nominal execution and do not consider
the exceptional conditions that arise if some step in the nom-
inal execution fails. Furthermore, we have found repeatedly
that the different participants in the process have very dif-
ferent views of the process, leading to serious misconceptions
about what other participants will do. For instance, we dis-
covered a mismatch between nurses and pharmacists about
how data on body size were used to determine chemotherapy
dosages. Incorrect assumptions about how other agents (in-
cluding “smart” devices) use data or perform validity and
safety checks are an important safety issue in themselves.
Furthermore, of course, accurate information about the ac-
tivities of the agents in the process is necessary to determine
the precise requirements against which the functioning of a
“smart” device must be certified.

3. ANALYSIS
We are interested in constructing formal definitions of med-
ical processes because we want to apply various analysis
techniques to those definitions in order to identify potential
sources of medical errors. (We are also interested in using
these formal definitions as a basis for automation support,
identifying inefficiencies, and clarifying the roles of agents,
but these aspects of our work are less relevant to certifica-
tion.) In this section, we discuss the kinds of analysis we are
interested in and sketch some of the progress we have made.

3.1 Properties
For safety analyses of processes, we need to know what con-
stitutes unsafe behavior. In particular, to apply rigorous
analysis techniques, we need precise statements of various

properties that the process is expected to enforce. It is,
however, very difficult to get such statements. Although a
variety of formal notations for specifying properties or re-
quirements have been proposed, including various kinds of
automata and temporal logics, it is hard even for experts
in these notations to capture the desired behavior precisely.
Moreover, these formal representations are unlikely to be un-
derstandable to the domain experts—in our case, the med-
ical professionals—who know what the system is supposed
to do. On the other hand, natural language descriptions
that are understandable by the domain experts are typically
ambiguous and incomplete. Consider the following simple
property for blood transfusion:

Before starting to transfuse each unit of blood
product into a patient, the nurse must verify the
patient’s identifying information.

This looks straightforward, but there are a number of details
that must be specified before a precise formal specification
can be created. For example,

• Is the nurse required to verify the patient’s identifying
information at least once (whether or not the blood
transfusion subsequently occurs)?

• Can the nurse verify the patient’s identifying infor-
mation more than once before the blood transfusion
begins?

• Can anything happen between the nurse verifying the
patient’s identifying information and the start of the
blood transfusion? (E.g. can this verification take
place hours, or days before the transfusion? Can the
nurse leave the room between verification and the start
of the transfusion?)

We have been developing a property specification approach
and a corresponding tool, called Propel, for “PROPerty
ELucidator” [9,10], that aims to guide specifiers through the
process of creating property specifications that are both pre-
cise enough to be used by FSV tools and accessible enough
to be understood by domain experts. To provide this guid-
ance, the approach focuses on helping specifiers to elucidate
subtle, but important, property details that need to be con-
sidered but are often overlooked. The properties are repre-
sented using templates that explicitly indicate the possible
variations associated with these details. Our approach cur-
rently provides three alternative, but coordinated, represen-
tations of these templates and, depending on the developer’s
preferences, these representations can be used in isolation
or in combination. These representations are: a graphical
depiction of a finite-state automaton (FSA), which offers
precision and can be used as the basis for verification and
other types of automated analyses; a “disciplined” natural
language (DNL) description, which offers accessibility; and
an interactive question tree format, which offers accessibility
and additional user guidance. Figure 2 shows the FSA and
DNL representations of an elaborated version of the prop-
erty mentioned above. Given a suitable model of a blood
transfusion process, analysis techniques could be used to de-
termine if any possible execution of the process, including,



Figure 1: Little-JIL Diagram for Single-Unit Transfusion Process

for instance, ones in which a nurse is called to assist with
another patient after having started the transfusion process,
can violate the property.

Working with the medical professionals involved in the pro-
cesses we are studying, we are using Propel to specify prop-
erties that the processes are intended to satisfy. We have
found that, as with formalizing the process definitions, the
effort to specify properties precisely is useful for the medical
professionals even before checking those properties. Careful
specification of the properties has exposed a number of is-
sues involving such things as the unclear use of language in
policy documents and the identification of exceptional con-
ditions in which a property need not hold.

3.2 Applying Analysis Techniques to Medical
Processes

Once the requirements for a system have been specified,
hopefully completely, certification involves showing that the
system satisfies those requirements. In our work we have
used Propel to capture key requirements as properties de-
fined by means of FSAs. We have then used these FSAs in
applying finite-state verification (FSV) technology to check
adherence of the processes to the properties.

FSV techniques, such as model checking [3], were developed
to check whether a concurrent system satisfies certain prop-
erties, such as freedom from deadlock or the occurrence of
one event always being followed by the occurrence of an-
other. Testing, which is certainly the most widely used
method for evaluating whether a system meets its require-
ments, is particularly problematic for concurrent systems.
Even for sequential systems, it is usually infeasible to test
more than a tiny fraction of the possible inputs. For con-
current systems, differences in the order of events in differ-
ent parts of the system may lead to different behavior on
subsequent executions of the same test case. Thus, correct
behavior of the system on one execution with a given test
case does not imply that the system will behave correctly
on a later execution with the same inputs.

In order to apply an FSV technique to check properties of
a system, it is necessary to construct a model that repre-
sents the executions of that system in a form that can be
utilized by that technique. We have built automated model
construction tools that take a Little-JIL process definition
and construct models for three tools that implement differ-
ent FSV techniques, FLAVERS [6], Spin [7], and LTSA [8].
Our model constructors first translate the Little-JIL defini-



event alphabet: {verify-patient-ID, transfuse-blood, check-vitals}

scope:

In every event sequence, the behavior must hold.

behavior:

transfuse-blood cannot occur unless verify-patient-ID has already occurred.

It is acceptable if verify-patient-ID does not occur, however, and if it does not 
occur then transfuse-blood can never occur. Even if verify-patient-ID does 
occur, transfuse-blood is not required to occur.

Before the first verify-patient-ID occurs, the events in the alphabet of this 
property, other than transfuse-blood, can occur any number of times.

After verify-patient-ID occurs and before the first subsequent transfuse-
blood occurs, the events in the alphabet of this property, including verify-
patient-ID but not transfuse-blood, can occur any number of times.

After the first subsequent transfuse-blood occurs:
• the events in the alphabet of this property, other than verify-patient-ID or 

transfuse-blood, could occur any number of times;
• transfuse-blood cannot occur again until after another verify-patient-ID 

occurs;
• verify-patient-ID can occur and if it does, then the situation should be 

regarded as exactly the same as when the first verify-patient-ID occurred, 
meaning that all restrictions described on the events would again apply.

verify-patient-ID

 check-vitals

verify-patient-ID, 
check-vitals

 verify-patient-ID, 
transfuse-blood, 

check-vitals

transfuse-blood

check-vitals

verify-patient-ID

transfuse-blood transfuse-blood

Figure 2: FSA and DNL versions of a blood transfusion property

tion into the Bandera Intermediate Representation (BIR) [5]
and then translate from the BIR into the representation re-
quired by the FSV tool. In order to reduce the size of the
models and improve the efficiency of the verification, we ap-
ply several abstractions and optimizations during the trans-
lation process. These transformations are conservative, in
the sense that the verification process will never falsely re-
port that a property holds for all process executions. (It is
sometimes the case that a much smaller model can be con-
structed if it is allowed to include extra “executions” that
do not correspond to executions of the real system, so we
may occasionally get incorrect reports that a property does
not hold on some “execution.”)

We are still refining the Little-JIL definitions of the ED
and outpatient chemotherapy processes, but we have applied
FSV methods to a number of properties of the blood trans-
fusion process [4]. Most properties we checked were success-
fully verified, but we have detected some interesting errors
involving exceptions and concurrent behavior that lead to
unexpected event orderings. We are currently investigat-
ing ways to model the failure of a process step that is not
recognized by the agents involved, e.g., a nurse comparing
the label on a unit of blood with the patient’s identification
bracelet and erroneously saying that they match. With bet-
ter ways of modeling such failures, we will also be able to
use FSV techniques to measure redundancy in processes by
determining, for example, that all possible executions of the
process involve three successive checks of patient identity.
If we can use actual data to conclude that two checks are
enough to ensure an appropriate level of safety, the process
can be modified to eliminate the third check.

We have also recently begun the investigation of other meth-
ods for analyzing formal process definitions. We mention

two of these here, though space limitations prevent a discus-
sion of details. First, we are developing a simulation engine
that runs directly off the Little-JIL process definition. This
will allow us to investigate the impact of changes in such
things as staffing and resource availability, or even changes
in the basic process itself, on such factors as waiting times
in the ED.

We are also exploring the automatic generation of fault trees
from Little-JIL definitions [2]. Fault Tree Analysis is widely
used in safety engineering to identify the possible causes of
hazardous conditions. Manual construction of fault trees for
complex processes is extremely time-consuming and error-
prone, and the automatic construction of fault trees may be
very useful in detecting safety problems in medical processes.

4. DISCUSSION
The correct behavior of devices used in complex, multi-agent
medical processes must be understood in the context of those
processes. Behavior that is safe in one process context may
well be dangerous in a slightly different one. The certifica-
tion of medical devices used in such processes must take the
processes into account.

In this paper, we have outlined some of our current research
on describing and analyzing medical processes. We are cur-
rently developing formal process definitions for a large emer-
gency department, for outpatient chemotherapy, and for
blood transfusion. Our work is based on the Little-JIL pro-
cess definition language and makes use of the Propel tool
for specifying properties of these processes. We are apply-
ing several finite-state verification tools to check properties
of the medical processes, as well as investigating other ways
of analyzing the processes to evaluate their safety and effi-
ciency.



We see several ways in which this work could support certi-
fication of medical devices. The device could be treated as
an agent in the Little-JIL definition of a process. The be-
havior of the device could be represented either in Little-JIL
or in constraints used in finite-state verification, and safety
properties of the process including the device could be ver-
ified. Similarly, a finite-state model of the device could be
constructed and that model (or an abstracted version of it
constructed after some initial analysis) could be combined
with the finite-state model of the process used for verifica-
tion. In a related way, an abstracted version of the finite-
state model of the process definition could be used with the
device to show that the device behaves safely as long as the
process satisfies certain constraints. In this way, the device
could be certified within a “process envelope,” and the cer-
tification would only hold when the device was used in a
process satisfying these constraints.

Certification of devices that do not have rich interactions
with a complex process is certainly not a simple problem.
Certification of medical devices that do have such interac-
tions presents many additional challenges. But many medi-
cal devices do interact in complicated ways with complex
processes and those challenges must be addressed if the
safety and effectiveness of those devices are to be ensured.

Acknowledgments
This research was partially supported by the National Sci-
ence Foundation under grants CCR-0205575 and CCF-0427071,
by the U.S. Army Research Laboratory and the U.S. Army
Research Office under agreement DAAD190110564, and by
the U.S. Department of Defense/Army Research Office un-
der agreement DAAD190310133. Any opinions, findings,
and conclusions or recommendations expressed in this publi-
cation are those of the authors and do not necessarily reflect
the views of the National Science Foundation, the U.S. Army
Research Office or the U.S. Department of Defense/Army
Research Office.

5. REFERENCES
[1] A. G. Cass, B. S. Lerner, E. K. McCall, L. J.

Osterweil, J. Stanley M. Sutton, and A. Wise.
Little-JIL/Juliette: A process definition language and
interpreter. In Proceedings of the 22nd International
Conference on Software Engineering, pages 754–757,
Limerick, Ireland, June 2000.

[2] B. Chen, G. S. Avrunin, L. A. Clarke, and L. J.
Osterweil. Automatic fault tree derivation from
Little-JIL process definitions. In Proceedings of the
Software Process Workshop/Workshop on Software
Process Simulation (SPW/ProSim 2006), Shanghai,
May 2006. to appear.

[3] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled.
Model Checking. MIT Press, Cambridge, 2000.

[4] L. A. Clarke, Y. Chen, G. S. Avrunin, B. Chen,
R. Cobleigh, K. Frederick, E. A. Henneman, and L. J.
Osterweil. Process programming to support medical
safety. In M. Li, B. Boehm, and L. J. Osterweil,
editors, Unifying the Software Process Spectrum:
International Software Process Workshop, SPW 2005,

number 3840 in LNCS, pages 347–359, Beijing, May
2005.

[5] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach,
C. S. Păsăreanu, Robby, and H. Zheng. Bandera :
Extracting finite-state models from Java source code.
In Proceedings of the 22nd International Conference
on Software Engineering, pages 439–448, June 2000.

[6] M. B. Dwyer, L. A. Clarke, J. M. Cobleigh, and
G. Naumovich. Flow analysis for verifying properties
of concurrent software systems. ACM Trans. Softw.
Eng. Meth., 14(3):359–430, 2004.

[7] G. J. Holzmann. The Spin Model Checker.
Addison-Wesley, Boston, 2004.

[8] J. Magee and J. Kramer. Concurrency: State Models
& Java Programs. Wiley, 1999.

[9] R. L. Smith, G. S. Avrunin, and L. A. Clarke. From
natural language requirements to rigorous property
specifications. In Workshop on Software Engineering
for Embedded Systems (SEES 2003): From
Requirements to Implementation, pages 40–46,
Chicago, IL, Sept. 2003.

[10] R. L. Smith, G. S. Avrunin, L. A. Clarke, and L. J.
Osterweil. Propel: An approach supporting property
elucidation. In Proceedings of the Twenty-Fourth
International Conference on Software Engineering,
pages 11–21, Orlando, FL, May 2002.

[11] A. Wise. Little-JIL 1.0 language report. Department of
Computer Science Technical Report UM-CS-1998-024,
University of Massachusetts, Amherst, MA, 1998.


