
Towards Formally Verifiable Resource Bounds for
Real-Time Embedded Systems

Kevin Hammond
School of Computer Science

University of St Andrews
North Haugh, St Andrews

Scotland, KY16 9SX

kh@dcs.st-and.ac.uk

Christian Ferdinand
AbsInt GmbH

Science Park 1
D-66123 Saarbrücken

Germany

cf@absint.com

Reinhold Heckmann
AbsInt GmbH

Science Park 1
D-66123 Saarbrücken

Germany

heckmann@absint.com

ABSTRACT
This paper describes ongoing work aimed at the construction
of formal cost models and analyses that are capable of pro-
ducing verifiable guarantees of resource usage (space, time
and ultimately power consumption) in the context of real-
time embedded systems. Our work is conducted in terms of
the domain-specific language Hume, a language that com-
bines functional programming for computations with finite-
state automata for specifying reactive systems. We describe
an approach in which high-level information derived from
source-code analysis can be combined with worst-case exe-
cution time information obtained from abstract interpreta-
tion of low-level binary code. This abstract interpretation
on the machine-code level is capable of dealing with complex
architectural effects including cache and pipeline properties
in an accurate way.

1. INTRODUCTION
Accurate modelling and verification of resource usage is a
major open problem in real-time embedded systems. In con-
trast to conventional software, typical firmware and software
for embedded systems impose very strong requirements on
both space and time usage. This reflects the cost sensitivity
of typical embedded systems designs: with high production
volumes, small differences in unit hardware cost (recurring
expenses) lead to large variations in profit. At the same
time software production costs (non-recurring engineering
expenses) must be kept under control, and time-to-market
must be minimised.

1.1 Challenges for Real-Time Embedded Sys-
tems Software

Historically, much embedded systems firmware and software
was written for specific hardware using native assembly code.
Rapid increases in software complexity and the need for
productivity improvement caused a transition to the use of

C/C++. Despite this, 80% of all embedded systems are de-
livered late [17], and massive amounts are spent on bug fixes:
according to Klocwork, Nortel, for example, spends $14,000
correcting each bug found once a system is deployed.

Many of the faults in C/C++ programs are caused by poor
programmer management of memory resources [41], exacer-
bated by the programming being at a relatively low level of
abstraction. There is thus pressure to reduce software engi-
neering costs by using modern automatic memory manage-
ment techniques (in which we include both static techniques
and dynamic techniques such as garbage collection), by ex-
ploiting very high-level programming notations and even by
automatic code generation from, e.g., UML models. How-
ever, the difficulty of determining accurate bounds on space
and time usage by manual inspection or by standard timing
analyses increases with the use of high-level programming
abstractions. Determination of such bounds is especially
vital in the construction of dependable embedded systems
software.

We envisage (Figure 1) future real-time embedded system
software engineers programming in very high-level next gen-
eration programming notations, whilst being supported by
fully automatic tools for analysing time and space behaviour.
These tools will provide automatically verifiable certificates
of resource usage that will allow software to be built in
a modular and compositional way, whilst providing strong
guarantees of overall system cost. In this way, we will pro-
gress towards the strong standards of mathematically-based
engineering that are present in other, more mature, indus-
tries, whilst simultaneously enhancing engineering produc-
tivity and reducing time-to-market for embedded systems.

Our vision will be achieved by constructing tools that will
automatically assign good upper bounds on resource usage
(including time and space behaviour) for sophisticated pro-
grams that use advanced data structures, recursion, strong
polymorphic typing and automatic memory management,
and that will provide automatically verifiable certificates of
such usage. Whilst such bounds are of general interest, they
are most pertinent in the embedded systems arena, where
hard real-time guarantees must frequently be provided and
memory is highly restricted.

data Questions = Eat | Rabbit | Cow;
data Responses = Yes | No;
data Done2 = Done;
data Maybe a = Just a | Nothing;
data Boolean = True | False;

type State = (Boolean,Boolean,Boolean,Boolean);

--changeState :: State -> Questions -> Responses -> State;
changeState (norabbit,yesrabbit, nocow, yescow) animal response =
 case (animal,response,(norabbit,yesrabbit, nocow, yescow)) of
 (Rabbit,No,(norabbit,yesrabbit, nocow, yescow)) -> (True,yesrabbit,nocow,yescow)
 | (Rabbit,Yes,(norabbit,yesrabbit, nocow, yescow)) -> (norabbit,True,nocow,yescow)
 | (Cow,No,(norabbit,yesrabbit, nocow, yescow)) -> (norabbit,yesrabbit,True,yescow)
 | (Cow,Yes,(norabbit,yesrabbit, nocow, yescow)) -> (norabbit,yesrabbit,nocow,True)
;

showState (True,False, True, False) = "Vegetarian\n";
showState (True,False, False, False) = "Rabbo-vegetarian\n";
showState (False,False, True, False) = "Bovo-vegetarian\n";
showState (_,_, _, _) = "Carnivore\n";

--changestate _ _ _ = Nothing;

--allFalse :: State;
--allFalse = (False,False,False,False);

template cToQ in (c :: char) out (q :: Questions, d :: Done2)
match
 'E' -> (Eat, *)
| 'R' -> (Rabbit, *)
| 'C' -> (Cow, *)
| _ -> (*, Done)
;

template cToR in (c :: char) out (r :: Responses, d :: Done2)

Resource
Usage
Report

Time: xx ms
Heap: xx KB
Stack: xx KB

Analyse

Compile

Formal Proof

001a00af fed234f5 000012ce 234581fa
001a00af fed234f5 000012ce 234581fa
001a00af fed234f5 000012ce 234581fa
001a00af fed234f5 000012ce 234581fa
001a00af fed234f5 000012ce 234581fa
001a00af fed234f5 000012ce 234581fa
001a00af fed234f5 000012ce 234581fa
001a00af fed234f5 000012ce 234581fa
001a00af fed234f5 000012ce 234581fa
001a00af fed234f5 000012ce 234581fa
001a00af fed234f5 000012ce 234581fa

Source Program

Binary Program

Resource Certificate

Αξ = γ/2 + α ⇒ ξ ≥ 0
⇓

Α ξ > 1

√

⇓

Embedded System

Figure 1: A Vision for Resource Certification

1.2 The EmBounded Project
A major problem with embedded systems is that the avail-
able system resources (processor, computer memory, power)
are necessarily restricted due to cost and other considera-
tions. If it were possible to determine strong bounds on
the use of such resources, then there would be significant
benefits in terms of manufacturing cost, reliability and per-
formance. However, determining such bounds automatically
is a hard problem, and doing so manually is becoming im-
practicable as embedded software increases in complexity.

The EmBounded project (IST-2004-510255 of EU Frame-
work VI), led by Dr Kevin Hammond, aims to research this
problem. Our vision is one where certificates of the bounds
on resource usage can be obtained from a source program
through automatic analysis independently of the usual soft-
ware compilation process. These certificates may be verified
using formal proof techniques derived from mathematics and
logic.

The EmBounded project involves academics and other sci-
entists in France, Germany and the UK, building on world-
leading strengths in programming language design, program
analysis, and embedded applications. Researchers in Theo-
retical Computer Science at Ludwig-Maximilians-Universität
(München, Germany) and St Andrews will develop new the-
oretical models of bounded resource usage and the associ-
ated automatic analyses. Programming language designers
and implementers at St Andrews and Heriot-Watt will cap-

ture the requirements of these analyses within a new pro-
gramming language, Hume. Researchers at AbsInt GmbH
(Saarbrücken, Germany) will relate the resource models to
actual computers, and researchers at the Laboratoire des
Sciences et Matériaux d’Électronique – LASMEA (Clermont-
Ferrand, France), will apply the technology to the sensor and
control systems used in the CyCab autonomous vehicle: a
self-controlled electric car resembling a golf buggy, and ca-
pable of speeds up to 30 km/h (http://www.robosoft.fr).

2. THE HUME LANGUAGE
Our work is undertaken in the context of Hume [18, 20], a
functionally-based domain-specific high-level programming
language for real-time embedded systems. Hume is designed
as a layered language where the coordination layer is used
to construct reactive systems using a finite-state-automata
based notation; while the expression layer is used to struc-
ture computations using a strict purely functional rule-based
notation that maps patterns to expressions. The coordina-
tion layer expresses reactive Hume programs as a static sys-
tem of interconnecting boxes. If each box has bounded space
cost internally, it follows that the system as a whole also has
bounded space cost. Similarly, if each box has bounded time
cost, a simple schedulability analysis can be used to deter-
mine reaction times to specific inputs, rates of reaction and
other important real-time properties.

Expressions can be classified according to a number of levels
(Figure 2), where lower levels lose abstraction/expressibility,

http://www.robosoft.fr

data structures

Full Hume

PR−Hume

FSM−Hume

HW−Hume

Full Hume

PR−Hume

Full recursion

Primitive Recursive functions

Template−Hume
Predefined higher−order functions

Inductive data structures

Inductive

Non−recursive first−order functions
FSM−Hume

Non−recursive data structures

HW−Hume
No functions
Non−recursive data structures

Abstraction

Ease of Costing

Template−Hume

Figure 2: Expression Levels in the Hume Language

but gain in terms of the properties that can be inferred. For
example, the bounds on costs inferred for primitive recur-
sive functions (PR-Hume) will usually be less accurate than
those for non-recursive programs, while cost inference for
Full Hume programs is undecidable in general (and we there-
fore restrict our attention to PR-Hume and below). Previ-
ous papers have considered the Hume language design in
the general context of programming languages for real-time
systems [20, 19], described a heap and stack analysis for
FSM-Hume [21], and considered the relationship of Hume
with classical finite-state machines [35]. The main contribu-
tions of this paper are the provision of a new cost-potential
based model for stack and heap usage including higher-order
functions, recursion and exceptions, and an outline of the de-
sign for a complete analysis of worst-case execution time for
Hume.

2.1 Finite State Automata
Finite state automata provide a basis for constructing sim-
ple state-changing systems. They may also be used to give
a natural model of concurrency. Finite state automata com-
prise a set of linked states, with transitions showing the
changes from one state to another based on the inputs that
are received. Because pure finite-state-automata are so sim-
ple, there is a natural fit between finite-state-automata and
hardware, and it is easy to show that such automata have
bounded time and space costs. Some low-level programming
languages, such as Esterel [8, 5] also use an essentially pure
finite-state approach, and mechanistic systems such as lex-
ers and parsers are also commonly automaton-based. The
primary deficiencies of finite state approaches are:

• there may be a huge number of states for even fairly
simple software programs;

• it may be necessary to decompose programming prob-
lems into very low-level abstractions;

• there are theoretical limitations on the classes of prob-
lems that can be solved using automata.

While each state may be simple in itself, the explosion in the
number of states means even small, simple programs can be
too complex to understand easily. Moreover, it can be cum-
bersome to write simple functions and other operations as
automata. Hume attempts to systematically address these
objections as follows:

• finite-state automata are used to structure concurrency
only – computations are written using conventional
programming notations;

• high-level programming notations are used to collapse
complex sets into a few manageable automata;

• combining high-level programming notations with au-
tomata greatly extends the classes of problem that can
be solved to cover all computable problems.

In Hume, programs are formed from concurrent boxes, which
respond to inputs and produce outputs on one or more
wires. Computations within boxes are described using nor-
mal high-level programming notations rather than as au-
tomata. While there is a broad analogy with the use of
high-level objects as concurrent agents, and object-based
designs can thus be exploited at the high-level, the anal-
ogy should not be stretched too far – boxes are much more
structured than objects, in particular in restricting commu-
nication patterns, in relating inputs directly to outputs, and
in providing a static rather than dynamic process network.
This discipline allows us to automate testing, to demon-
strate deadlock-freedom using an automatic analysis, and
to enforce strong bounds on program costs.

2.2 Functional Programming
Purely functional programming provides a good basis for
constructing software with excellent formal properties. Be-
cause functional programs are both declarative and deter-
ministic, they are much easier to reason about using math-
ematically-derived techniques than either object-based or

imperative approaches [28]. In fact, many advanced com-
piler optimisations work on an internal representation that
is purely functional, and compilers can go to great lengths
to isolate parts that are not purely functional, so that they
can take advantage of these techniques. However, to obtain
these advantages:

1. programmers must be trained to exploit high-level func-
tional abstractions, which some programmers find dif-
ficult;

2. there may be a poor match between program and ma-
chine implementation, making it difficult to construct
software that must access low-level features; and

3. performance can be significantly worse than the best
imperative implementations (though performance may
be better than say C++ or even Fortran in some cases).

Hume attempts to systematically address these objections:

1. finite-state automata are a natural way to decompose
concurrent programs, and provide analogies to the high-
er levels of object-based program decomposition, with-
out the strictures of overly low-level objects;

2. state changes are made explicit through finite-state au-
tomata, and explicit operating system interactions;

3. it is possible to provide a straightforward translation
from Hume source to the corresponding machine code,
whether direct or through an intermediate abstract
machine; and

4. Hume has been designed to allow the best compiler
optimisations to be exploited – hindrances to compiler
optimisation have been designed out as far as possi-
ble – time performance is roughly 10 times that for
Sun’s embedded KVM, and dynamic space usage is
both guaranteed to be bounded and a fraction of that
required by Java or C++.

The combination of finite state automata with functional
programming therefore gives a powerful programming basis
without sacrificing crucial low-level capabilities.

2.3 Simple Hume Example: a Vending Ma-
chine

type Int = int 32;

data Coins = Nickel | Dime;

data Drinks = Coffee | Tea;

data Buttons = BCoffee | BTea | BCancel;

-- coffee vending box

vend drink cost v =

if v >= cost then (drink, v-cost, *)

else (*, v, *);

box coffee

in (coin :: Coins, button::Buttons, value :: Int)

out (drink :: Drinks, value’:: Int, return :: Int)

match

(Nickel, *, v) -> (*, v + 5, *)

| (Dime, *, v) -> (*, v + 10, *)

| (*, BCoffee, v) -> vend Coffee 10 v

| (*, BTea, v) -> vend Tea 5 v

| (*, BCancel, v) -> (*, 0, v)

;

showdrink Coffee = "Coffee";

showdrink Tea = "Tea";

wire inp (stdin) (coffee.coin, coffee.button);

wire coffee(inp.coin, inp.button,

coffee.value’ initially 0)

(outp.drink, coffee.value, outp.return);

wire outp (coffee.drink, coffee.return) (stdout);

3. PROGRAM ANALYSES TO ESTABLISH
MEMORY BOUNDS FOR EMBEDDED
SYSTEMS

Memory management is an important issue in real-time and/
or embedded systems with their focus on restricted memory
settings. Some languages provide automatic dynamic mem-
ory management without strong guarantees on time perfor-
mance (e.g. Java), whilst others rely on more predictable
but error-prone explicit memory management (e.g. C, C++,
RTSj or Ada). One recent approach [13] is to exploit mem-
ory regions for some or all allocations and to combine anno-
tations with automatic inference. Such approaches do not,
however, provide real-time guarantees, and typically require
manual intervention in the allocation process. Moreover,
static region analysis can be overly pessimistic for long-lived
allocations. Regardless of the memory management method,
there is a strong need for static guarantees of memory util-
isation bounds.

4. A STACK AND HEAP COST MODEL FOR
HUME

We can now define a cost model for stack and heap usage
for (PR-)Hume derived from the actual execution costs that
apply in the prototype Hume Abstract Machine and based
on work from Jost’s forthcoming PhD thesis [31]. As part of
our work, we have defined models for both coordination and
expression layers, but for brevity and clarity we present only
the general format of the rules for expressions in this paper.
We have already produced a prototype implementation of
this cost model based on a sized type system [30] up to FSM-
Hume and are now working on the extension to the analysis
to include higher-order functions and primitive recursion,
as described here, and to combine our work on sized type
based analysis [51] with the Hofmann and Jost linear typing
approach [26].

The statement V, η
p
p′

m
m′ e ; `, η′ may be read as follows:

expression e evaluates in environment V and heap η in a
finite number of steps to a result value stored at location
` in a possibly modified heap η′, provided that there were
p units of stack space and m units of heap space available

before computation. Furthermore, at least p′ stack units and
m′ heap units are unused after the evaluation is finished.

4.1 Properties
From this semantics, it is possible to derive a number of be-
havioural properties. The most important of these are that
the cost model correctly captures the potential change in
heap usage and that the result of execution is always left as
an extra value on the stack. The proofs follow straightfor-
wardly from the semantic definitions.

These properties are verified against the operational model
of the Hume Abstract Machine (HAM) behaviour via a for-
mal translation relating Hume source to HAM abstract ma-
chine code. The HAM operational model includes a formal
description of the machine implementation of the stack and
heap used by the abstract machine. Both the operational
model and the translation have been constructed and we
are now in the process of formulating the equivalence proof
relating the Hume and HAM levels.

5. WORST CASE EXECUTION TIMING
ANALYSIS USING ABSTRACT INTER-
PRETATION

Our objective as part of the EU Framework VI EmBounded
Project (IST-510255) is to develop a combined high- and
low- level analysis for worst-case execution time. We will
achieve this by extending the stack and heap cost model
presented above with the addition of parameters represent-
ing actual timing costs. Our ultimate objective is to permit
the production of accurate worst-case cost information from
source level programs.

The AbsInt aiT tool (described below) uses abstract inter-
pretation to efficiently compute a safe approximation for all
possible cache and pipeline states that can occur at a given
program point. These results can be combined with ILP (In-
teger Linear Programming) techniques to safely predict the
worst-case execution time and a corresponding worst-case
execution path.

The AbsInt analysis works at a code snippet level, analysing
imperative C-style code snippets to derive safe upper bounds
on the worst-case time behaviour. Whilst the AbsInt anal-
ysis works at a level that is more abstract than simple basic
blocks, providing analyses for loops, conditionals and non-
recursive subroutines, it is not presently capable of manag-
ing the complex forms of recursion which occur in functional
languages such as our own PR-Hume, Haskell or SML. We
are thus motivated to link the two levels of analysis, com-
bining information on recursion bounds and other high-level
constructs from the Hume source analysis with the low-level
worst-case execution time analysis from the AbsInt analysis.

5.1 Prediction of the Worst-Case Execution
Time by Static Program Analysis

Static determination of worst-case execution time (WCET)
in real-time systems is an essential part of the analyses of
over-all response time and of quality of service [39]. How-
ever, WCET analysis is a challenging issue, as the com-
plexity of interaction between the software and hardware

system components often results in very pessimistic WCET
estimates. For modern architectures such as the Motorola
PPC755, for example, WCET prediction based on simple
weighted instruction counts may result in an over-estimate
of time usage by a factor of 250. Obtaining high-quality
WCET results is important to avoid seriously over-engi-
neering real-time embedded systems, which would result in
considerable and unnecessary hardware costs for the large
production runs that are often required.

Three competing technologies can be used for worst-case
execution time analysis: experimental (or testing-based) ap-
proaches, probabilistic measurement and static analysis. Ex-
perimental approaches determine worst-case execution costs
by (repeated and careful) measurement of real executions,
using either software or hardware monitoring. However,
they cannot guarantee upper bounds on execution cost.
Probabilistic approaches similarly do not provide absolute
guaranteed upper bounds, but are cheap to construct and
deliver more accurate costs than simple experimental ap-
proaches [3, 4].

Motivated by the problems of measurement-based methods
for WCET estimation, AbsInt GmbH has investigated a new
approach based on static program analysis [32, 23]. The
approach relies on the computation of abstract cache and
pipeline states for every program point and execution con-
text using abstract interpretation. These abstract states pro-
vide safe approximations for all possible concrete cache and
pipeline states, and provide the basis for an accurate tim-
ing of hardware instructions, which leads to safe and precise
WCET calculations that are valid for all executions of the
application.

5.2 Phases of WCET Computation
In AbsInt’s approach [16] the WCET of a program task is
determined in several phases (see Figure 3):

• CFG Building decodes, i.e. identifies instructions,
and reconstructs the control-flow graph (CFG) from
an executable binary program;

• Value Analysis computes address ranges for instruc-
tions accessing memory;

• Cache Analysis classifies memory references as cache
misses or hits [15];

• Pipeline Analysis predicts the behavior of the pro-
gram on the processor pipeline [32];

• Path Analysis determines a worst-case execution path
of the program [45].

The cache analysis phase uses the results of the value analy-
sis phase to predict the behaviour of the (data) cache based
on the range of values that can occur in the program. The
results of the cache analysis are then used within the pipeline
analysis to allow prediction of those pipeline stalls that may
be due to cache misses. The combined results of the cache
and pipeline analyses are used to compute the execution
times of specific program paths. By separating the WCET
determination into several phases, it becomes possible to use

Figure 3: Phases of WCET computation

different analysis methods that are tailored to the specific
subtasks. Value analysis, cache analysis, and pipeline anal-
ysis are all implemented using abstract interpretation [12], a
semantics-based method for static program analysis. Integer
linear programming is then used for the final path analysis
phase.

5.3 aiT – WCET Analyzers
The techniques described above have been incorporated into
AbsInt’s aiT WCET analyser tools, that are in commercial
use in several organisations. The input to these tools is
the executable program to be analysed, user annotations
describing the targets of any indirect jumps and calls that
are not resolved by the automatic analysis, user annotations
describing the maximal iteration counts of loops that are
not determined by the automatic loop bound analysis, a
description of the (external) memories and buses (i.e. a list
of memory areas with minimal and maximal access times),
and a task to be analysed (identified by a start address).

AbsInt’s aiT tools are widely used in industry [43, 11, 14,
55, 42], e.g. to demonstrate the correct timing behaviour
of the new Airbus A380 fly-by-wire computer software in a
certification process according to DO178B level A [46, 44].
For this purpose, aiT for MPC755 and aiT for TMS320C33
will be qualified as verification tools according to DO178B.

5.4 Linking the High- and Low-Level Analy-
ses

In order to link the two levels of analysis, we must extend
our stack and heap cost model for Hume to include tim-
ing information. The top-level description is a straightfor-

ward extension to our previous form: V, η
p
p′

m
m′

t
t′ e ; `, η′,

where t and t′ are time potentials. Each rule in the model
must now be adapted to include time potential which will

vary monotonically in a similar way to the heap potential.
This time potential must be verified against the actual times
for execution on the Hume Abstract Machine using informa-
tion obtained from the aiT tool. In this way, we will have
constructed a complete time model and analysis from Hume
source to actual machine code.

Pragmatically, in order to obtain timing information from
the aiT tool, our high level analysis must be adapted to out-
put information on the limits on recursion bounds and other
high-level constraints derived from the program source that
can be fed to the aiT tool using its native system specifica-
tion language (aiS). This information must be provided in
terms of the compiled executable code that has been pro-
duced from the Hume source rather than directly from the
source itself. It will therefore also be necessary to provide
details of the compilation process in an appropriate form.

6. RELATED WORK
6.1 Functional Languages for Soft Real-Time

Programming
Accurate time and space cost-modelling is an area of known
difficulty for functional language designs [38]. Hume is thus,
as far as we are aware, unique both in being a practical lan-
guage based on strong automatic cost models, and in be-
ing specifically designed to allow straightforward space- and
time-bounded implementation for hard real-time systems,
those systems where tight real-time guarantees must be met.
A number of functional languages have, however, looked at
soft real-time issues [1, 52, 53], there has been work on using
functional notations for hardware design (essentially at the
HW-Hume level) [22, 6, 34], the Timber language includes
monadic constructs for specifying strong real-time proper-
ties [37], and there has been much recent theoretical inter-
est both in the problems associated with costing functional

languages [38, 30, 10, 48, 49] and in bounding space/time
usage [29, 47, 24, 53], including work on statically predicting
heap and stack memory usage [50].

The most widely used soft real-time functional language is
the impure, strict language Erlang [1], a concurrent language
with a similar design to Concurrent ML [40]. Erlang has
been used by Ericsson to construct a number of successful
telecommunications applications in the telephony sector [7],
including a real-time database, Mnesia [54]. Erlang is con-
current, with a lightweight notion of a process. Unlike Hume
boxes, Erlang processes are constructed using explicit spawn
operations, with communication occurring through explicit
send and receive operations to nominated processes.

6.2 Functional Languages imposing Syntactic
Restrictions

Other than our own work [38, 51], we are aware of three
main studies of formally bounded time and space behaviour
in a functional setting [10, 29, 48]. All three approaches
are based on restricted language constructs to ensure that
bounds can be placed on time/space usage. In their proposal
for Embedded ML, Hughes and Pareto [29] have combined
the earlier sized type system [30] with the notion of region
types [47] to give bounded space and termination for a first-
order strict functional language [29]. Their language is re-
stricted in a number of ways: most notably in not support-
ing higher-order functions, and in requiring the program-
mer to specify detailed memory usage through type speci-
fications. The practicality of such a system is correspond-
ingly reduced. Burstall [10] proposed the use of an extended
ind case notation in a functional context, to define inductive
cases from inductively defined data types. While ind case
enables static confirmation of termination, Burstall’s exam-
ples suggest that considerable ingenuity is required to recast
terminating functions based on a laxer syntax. Turner’s el-
ementary strong functional programming [48, 49] has simi-
larly explored issues of guaranteed termination in a purely
functional programming language. Turner’s approach sepa-
rates finite data structures such as tuples from potentially
infinite structures such as streams. This allows the definition
of functions that are guaranteed to be primitive recursive,
but at a cost in additional programmer notation.

6.3 Other Approaches to Bounding Space Us-
age

Compile-time garbage collection techniques attempt to elim-
inate some or all heap-based memory allocation through
strong static means. One approach that has recently found
favour is the use of region types [47]. Such types allow mem-
ory cells to be tagged with an allocation region, whose scope
can be determined statically. When the region is no longer
required, all memory associated with that region may be
freed without invoking a garbage collector. In non-recursive
contexts, the memory may be allocated statically and freed
following the last use of any variable that is allocated in
the region. In a recursive context, this heap-based alloca-
tion can be replaced by (possibly unbounded) stack-based
allocation.

Hofmann’s linearly-typed functional programming language
LFPL [24] uses linear types to determine resource usage pat-

terns. So-called diamond resource types are used to count
constructors. First-order LFPL definitions can be computed
in bounded space, even in the presence of general recursion.
Hofmann has recently considered the extension of LFPL to
higher-order functions with reference to non size-increasing
recursive definitions on lists [25], where the size of all inter-
mediate computations is bounded by the size of the inputs.
Where definitions are restricted to primitive recursion only,
this then guarantees polynomial size complexity. Unfortu-
nately, for arbitrary higher-order functions, the cost of intro-
ducing closures means that an unbounded stack is required.

Finally, Camelot and Grail [33] use a proof carrying code
approach that allows formal properties of resource usage
to be expressed in the form of easily checked certificates.
Camelot is a resource-aware functional programming lan-
guage that can be compiled to a subset of JVM bytecodes;
Grail is a functional abstraction over these bytecodes. This
abstraction possesses a formal operational semantics that
allows the construction of a program logic capable of cap-
turing program behaviours such as time and space usage [2].
The objective of the work is to synthesise proofs of resource
bounds in the Isabelle theorem prover, and to attach these
proofs to mobile code in the form of more easily verifiable
proof derivations. In this way the recipient of a piece of
mobile code can cheaply and easily verify its resource re-
quirements.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have introduced the Hume language and
shown how a cost model can be constructed that is capable
of exposing stack and heap cost information for higher-order,
primitive recursive expressions. We have also outlined how
our work can be extended in order to synthesise worst-case
memory usage and execution time using a combination of
source- and binary-based analysis.

Our work is formally based and motivated: we aim to con-
struct formal models of behaviour at source program and ab-
stract machine levels (as exemplified here by the cost model
for stack and heap usage); have provided elsewhere a formal
translation between these levels; and will synthesise actual
worst-case execution time costs using abstract interpretation
of binary programs. The abstract interpretation developed
by AbsInt, which we intend to use for Hume, comprises a
complete formal model of a processor architecture including
cache and pipeline effects.

The approach we have outlined here will automatically syn-
thesise cost information from program source, but supports
only limited provision of programmer information. In a re-
cent paper [9], we have developed a dependently-typed frame-
work which is capable of expressing dynamic execution costs
through the type system. A key feature of a dependently
typed setting is that it is possible to express more com-
plex properties of programs than the usual simply typed
frameworks in use in languages such as Standard ML [36]
or Haskell [27]. In fact, computation is possible at the type
level, and it is also possible to expose proof requirements
that must be satisfied. In this way it is possible to exploit
information that may be possessed by the programmer in or-
der to direct cost analysis and the construction of the associ-
ated proofs. We anticipate that we will be able to construct

a hybrid type checking/synthesis system that will possess
benefits of both approaches: flexibility through checking of
dependent types and simplicity through synthesis of most
resource bounds.

8. ACKNOWLEDGMENTS
This work has been supported by EU Framework VI grant
IST-2004-510255 and by EPSRC Grant EPC/0001346.

9. ADDITIONAL AUTHORS
Roy Dyckhoff and Steffen Jost
School of Computer Science, Univ. of St Andrews, Scotland
email: {rd,jost}@dcs.st-and.ac.uk
Martin Hofmann and Hans-Wolfgang Loidl
Ludwig-Maximilians Universität, München
email: {mhofmann,hwloidl}@informatik.uni-muenchen.de
Greg Michaelson, Robert Pointon, and Andy Wallace
Heriot-Watt University, Riccarton, Edinburgh, Scotland
email: {G.Michaelson, A.M.Wallace}@hw.ac.uk
Norman Scaife and Jocelyn Sérot
LASMEA, Univ. Blaise-Pascal, Clermont-Ferrand, France
email: Jocelyn.SEROT@univ-bpclermont.fr

10. REFERENCES
[1] J. Armstrong, S. Virding, and M. Williams.

Concurrent Programming in Erlang. Prentice-Hall,
1993.

[2] D. Aspinall, L. Beringer, M. Hofmann, and H.-W.
Loidl. A resource-aware program logic for a JVM-like
language. In Trends in Functional Programming,
Volume 4. Intellect, 2004.

[3] G. Bernat, A. Burns, and A. Wellings. Portable
Worst-Case Execution Time Analysis Using Java Byte
Code. In Proc. 12th Euromicro International
Conference on Real-Time Systems, Stockholm, June
2000.

[4] G. Bernat, A. Colin, and S. M. Petters. WCET
Analysis of Probabilistic Hard Real-Time Systems. In
Proceedings of the 23rd IEEE Real-Time Systems
Symposium (RTSS 2002), Austin, TX. (USA),
December 2002.

[5] G. Berry. The Foundations of Esterel. In Proof,
Language, and Interaction. MIT Press, 2000.

[6] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh.
Lava: Hardware design in Haskell. ACM SIGPLAN
Notices, 34(1):174–184, Jan. 1999.

[7] S. Blau and J. Rooth. AXD-301: a New Generation
ATM Switching System. Ericsson Review, 1, 1998.

[8] F. Boussinot and R. de Simone. The Esterel Language.
Proceedings of the IEEE, 79(9):1293–1304, Sept. 1991.

[9] E. Brady and K. Hammond. A Dependently Typed
Framework for Static Analysis of Program Execution
Costs. In Proc. Implementation and Applications of
Functional Language, 2005, Lecture Notes in
Computer Science, Dublin, Sept. 2005.
Springer-Verlag. To appear.

[10] R. Burstall. Inductively Defined Functions in
Functional Programming Languages. Technical Report
ECS-LFCS-87-25, Univ. of Edinburgh, Apr. 1987.

[11] S. Byhlin, A. Ermedahl, J. Gustafsson, and B. Lisper.
Applying static WCET analysis to automotive
communication software. In 17th Euromicro
Conference of Real-Time Systems, (ECRTS’05),
Mallorca, Spain, July 2005.

[12] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In 4th
ACM Symposium on Principles of Programming
Languages, pages 238–252. ACM, 1977.

[13] M. Deters and R. Cytron. Automated Discovery of
Scoped Memory Regions for Real-Time Java. In Proc.
ACM Intl. Symp. on Memory Management, Berlin,
Germany, pages 132–141, June 2002.

[14] O. Eriksson. Evaluation of static time analysis for CC
systems. Technical report, Mälardalen University,
August 2005.

[15] C. Ferdinand. Cache Behavior Prediction for
Real-Time Systems. PhD thesis, Saarland University,
Saarbrücken, Germany, 1997.

[16] C. Ferdinand, R. Heckmann, M. Langenbach,
F. Martin, M. Schmidt, H. Theiling, S. Thesing, and
R. Wilhelm. Reliable and precise WCET
determination for a real-life processor. In Proc.
EMSOFT 2001, First Workshop on Embedded
Software, volume 2211 of Lecture Notes in Computer
Science, pages 469–485. Springer-Verlag, 2001.

[17] T. G. Group. Perfecting the Art of Building
Embedded Systems. http://www.ganssle.com, May
2003.

[18] K. Hammond. Hume: a Bounded Time Concurrent
Language. In Proceedings of the IEEE Conf. on
Electronics and Control Systems (ICECS ’2K), pages
407–411, Kaslik, Lebanon, Dec. 2000. IEEE Press.

[19] K. Hammond. Is it Time for Real-Time Functional
Programming? In Trends in Functional Programming,
volume 4. Intellect, 2004.

[20] K. Hammond and G. Michaelson. Hume: a
Domain-Specific Language for Real-Time Embedded
Systems. In Proc. Conf. Generative Programming and
Component Engineering (GPCE ’03), Lecture Notes
in Computer Science. Springer-Verlag, 2003.

[21] K. Hammond and G. Michaelson. Predictable Space
Behaviour in FSM-Hume. In Proc. Implementation of
Functional Languages (IFL ’02), Madrid, Spain,
number 2670 in Lecture Notes in Computer Science.
Springer-Verlag, 2003.

[22] J. Hawkins and A. Abdallah. Behavioural Synthesis of
a Parallel Hardware JPEG Decoder from a Functional
Specification. In Proc. EuroPar 2002, Aug. 2002.

http://www.ganssle.com

[23] R. Heckmann, M. Langenbach, S. Thesing, and
R. Wilhelm. The influence of processor architecture on
the design and the results of WCET tools. Proceedings
of the IEEE, 91(7):1038–1054, July 2003. Special Issue
on Real-Time Systems.

[24] M. Hofmann. A type system for bounded space and
functional in-place update. Nordic Journal of
Computing, 7(4):258–289, 2000.

[25] M. Hofmann. The strength of non size-increasing
computation. In Proc. 17th Annual IEEE Symposium
on Logic in Computer Science, pages 258–289, 2002.

[26] M. Hofmann and S. Jost. Static Prediction of Heap
Space Usage for First-Order Functional Programs. In
POPL’03 — Symposium on Principles of
Programming Languages, New Orleans, LA, USA, Jan.
2003. ACM Press.

[27] P. Hudak, S. L. Peyton Jones, and P. Wadler (editors).
Report on the Programming Language Haskell, A
Non-strict Purely Functional Language (Version 1.2).
ACM SIGPLAN Notices, 27(5), May 1992.

[28] R. Hughes. Why functional programming matters?
The Computer Journal, 32(2):98–107, Apr. 1989.

[29] R. Hughes and L. Pareto. Recursion and dynamic
data structures in bounded space: towards embedded
ML programming. In ICFP’99 — International
Conference on Functional Programming, pages 70–81,
Paris, France, Sept. 1999. ACM Press.

[30] R. Hughes, L. Pareto, and A. Sabry. Proving the
correctness of reactive systems using sized types. In
POPL’96 — Symposium on Principles of
Programming Languages, St. Petersburg Beach,
Florida, Jan. 1996. ACM Press.

[31] S. Jost. Linearly Bounded Heap Space Analysis. PhD
thesis, Ludwig-Maximilians-Universität, München,
Germany, 2006. In preparation.

[32] M. Langenbach, S. Thesing, and R. Heckmann.
Pipeline modeling for timing analysis. In Proc. 9th
International Static Analysis Symposium SAS 2002,
volume 2477 of Lecture Notes in Computer Science,
pages 294–309. Springer-Verlag, 2002.

[33] K. MacKenzie and N. Wolverson. Camelot and Grail:
Compiling a resource-aware functional language for
the Java virtual machine. In TFP’03 — Symposium
on Trends in Functional Programming, Sep 11–12,
2003, Edinburgh, Scotland, 2004.

[34] J. Matthews, B. Cook, and J. Launchbury.
Microprocessor specification in Hawk. In Proc. 1998
International Conference on Computer Languages,
pages 90–101. IEEE Computer Society Press, 1998.

[35] G. Michaelson, K. Hammond, and J. Sérot. The finite
state-ness of finite state Hume. In Trends in
Functional Programming, Volume 4. Intellect, 2004.

[36] R. Milner, M. Tofte, R. Harper, and D. MacQueen.
The Definition of Standard ML (Revised). MIT Press,
1997.

[37] J. Nordlander, M. Carlsson, and M. Jones.
Programming with time-constrained reactions.
Unpublished report, 2006.

[38] A. R. Portillo, K. Hammond, H.-W. Loidl, and
P. Vasconcelos. A Sized Time System for a Parallel
Functional Language (Revised). In Proc.
Implementation of Functional Languages (IFL ’02),
Madrid, Spain, number 2670 in Lecture Notes in
Computer Science. Springer-Verlag, 2003.

[39] P. Puschner and A. Burns. A review of worst-case
execution-time analysis. Real-Time Systems,
18(2/3):115–128, 2000.

[40] J. H. Reppy. CML: A Higher-Order Concurrent
Language. In Proc. Conf. on Programming Language
Design and Implementation, volume 26(6) of
SIGPLAN Notices, pages 293–305, Toronto, Ontario,
Canada, June 26–28, June 1991. ACM Press, New
York.

[41] M. Sakkinen. The Darker Side of C++ Revisited.
Technical Report 1993-I-13, Univerity of Jyväskylä,
1993.

[42] D. Sandell, A. Ermedahl, J. Gustafsson, and
B. Lisper. Static timing analysis of real-time operating
system code. In 1st International Symposium on
Leveraging Applications of Formal Methods
(ISOLA’04), Cyprus, October 2004.

[43] D. Sehlberg. Static WCET analysis of task-oriented
code for construction vehicles. Master’s thesis,
Mälardalen University, October 2005.

[44] J. Souyris, E. Le Pavec, G. Himbert, V. Jégu,
G. Borios, and R. Heckmann. Computing the worst
case execution time of an avionics program by
abstract interpretation. In Proceedings of the 5th Intl
Workshop on Worst-Case Execution Time (WCET)
Analysis, pages 21–24, 2005.

[45] H. Theiling and C. Ferdinand. Combining abstract
interpretation and ILP for microarchitecture
modelling and program path analysis. In Proceedings
of the 19th IEEE Real-Time Systems Symposium,
pages 144–153, Madrid, Spain, Dec. 1998.

[46] S. Thesing, J. Souyris, R. Heckmann,
F. Randimbivololona, M. Langenbach, R. Wilhelm,
and C. Ferdinand. An abstract interpretation-based
timing validation of hard real-time avionics software.
In Proc. 2003 Intl. Conf. on Dependable Systems and
Networks (DSN 2003), pages 625–632. IEEE
Computer Society, 2003.

[47] M. Tofte and J.-P. Talpin. Region-based memory
management. Information and Computation,
132(2):109–176, 1 Feb. 1997.

[48] D. Turner. Elementary Strong Functional
Programming. In Proc. 1995 Symp. on Functional
Programming Languages in Education — FPLE ’95,
number 1022 in Lecture Notes in Computer Science.
Springer-Verlag, Dec. 1995.

[49] D. Turner. Total Functional Programming. Journal of
Universal Computing, 10(7):751–768, 2004.

[50] L. Unnikrishnan, S. Stoller, and Y. Liu. Automatic
Accurate Stack Space and Heap Space Analysis for
High-Level Languages. Technical Report 538,
Computer Science Dept, Indiana University, Apr.
2000.

[51] P. Vasconcelos and K. Hammond. Inferring Costs for
Recursive, Polymorphic and Higher-Order Functional
Programs. In Proc. Implementation of Functional
Languages (IFL 2003), Lecture Notes in Computer
Science. Springer-Verlag, 2004.

[52] M. Wallace and C. Runciman. Extending a Functional
Programming System for Embedded Applications.
Software: Practice & Experience, 25(1), Jan. 1995.

[53] Z. Wan, W. Taha, and P. Hudak. Real-time FRP. In
Proc. Intl. Conf. on Functional Programming (ICFP
’01), Florence, Italy, September 2001. ACM.

[54] C. Wikström and H. Nilsson. Mnesia — an industrial
database with transactions, distribution and a logical
query language. In Proc. Intl. Symp. on Cooperative
Database Systems for Advanced Applications, 1996.

[55] Y. Zhang. Evaluation of methods for dynamic time
analysis for CC-systems AB. Technical report,
Mälardalen University, August 2005.

	Introduction
	Challenges for Real-Time Embedded Systems Software
	The EmBounded Project

	The Hume Language
	Finite State Automata
	Functional Programming
	Simple Hume Example: a Vending Machine

	Program Analyses to Establish Memory Bounds for Embedded Systems
	A Stack and Heap Cost Model for Hume
	Properties

	Worst Case Execution Timing Analysis using Abstract Interpretation
	Prediction of the Worst-Case Execution Time by Static Program Analysis
	Phases of WCET Computation
	aiT -- WCET Analyzers
	Linking the High- and Low-Level Analyses

	Related Work
	Functional Languages for Soft Real-Time Programming
	Functional Languages imposing Syntactic Restrictions
	Other Approaches to Bounding Space Usage

	Conclusions and Future Work
	Acknowledgments
	Additional Authors
	References

