Certifying cryptographic protocols by abstract
model-cheking and proof concretization

R. Janvier, Y. Lakhnech, and M. Périn

VERIMAG, 2 av. de Vignate, 38610 Giéres, France.

Abstract. In this paper, we report on our effort in enhancing our model-
checker for cryptographic protocols with the ability to automatically gen-
erate a deductive proof that the protocol meets its specification. More
specifically, we discuss a technique that allows to transform an abstract
proof extracted from the model-checker to a proof that can be checked
independently of the abstracting and model-checking process.

Model-checking, introduced in [7,20], has enabled automatic verifica-
tion of industrial size applications. It has proven successful in verifying
hardware designs as well as software applications. A key element in the
application of model-checking is the use of abstraction techniques that
reduce the verification of a system with a large state space to the con-
servative verification of an abstract system with a tractable state space.
The abstracting process involves designing an abstraction relation, com-
puting an abstract system and transforming the concrete property into an
abstract one.

When abstract executions that violate the abstract property exist, the
model-checker reports at least one. Thus, a counter-example can be consid-
ered as a "certificate/proof" that the system does not satisfy its property.
In the last few years, many techniques have been developed for analyz-
ing abstract counter-examples with the goal of either reporting a concrete
execution that violates the property or refining the abstracting process
(e.g. [6,11,9]). When the model-checker does not find a counter-example
one may conclude that the concrete system satisfies its specification. How-
ever, this conclusion is only justified in case:

1. The abstracting process is sound meaning that the abstract system
and the abstract property over-approximate the concrete system.

2. The model-checker does not contain itself a bug which causes it to
report absence of counter-examples while, in fact, the checked system
is faulty.

Thus, because of the absence of a certificate, it might be natural to con-
sider a positive answer of a model-checker with some diffidence.

An alternative approach to model-checking is deductive verification.
It consists in constructing an ezplicit proof that the system satisfies its
specification. Such a proof can be validated with the help of a proof-
checker (that is a crucial but small part of a theorem prover). Moreover,
it does not matter how such a proof has been constructed or found. All
that matters is that it is a proof obtained using a sound deduction system.

Clearly, one might argue that also a model-checker constructs a proof.
However, such a proof is hidden inside the model-checker. Moreover, and
may be even more importantly, in case of abstraction-based model-checking
the model-checker constructs a proof for the abstract system.

In this paper, we report on our effort in enhancing our Model-Checker
for Cryptographic Protocols, HERMES [3,4, 25, 5], with the ability to auto-
matically generate a deductive proof that the protocol meets its specifica-
tion. In the context of certification, we seek for the smallest Trusted Com-
puting Base as possible. Our work aims at removing the model-checker
and the abstraction it uses from the TCB. It is therefore mandatory to
study algorithms that allow to have model-checker independent proofs.

Our approach in developing such algorithms consists in two phases:

1. The first phase consists in instrumenting our model-checker in order
to obtain a deductive proof for the abstract system. This is the proof
ertraction process.

2. The second phase consists in transforming the abstract proof into a
proof for the concrete system. This is, the proof concretization process.
A distinguishing feature of our approach is that we target a general
purpose theorem prover in contrast to a tailored proof system. More
specifically, we target the COQ theorem prover which is based on the
calculus of inductive constructions (CIC) [23,2].

We present our approach in the context of cryptographic protocols
for the verification of these systems is particularly challenging because
they are concurrent infinite-state systems that manipulate terms as data.
However our approach is not specific for this type of systems.

In this extended abstract, we focus on proof concretization as it is less
studied than proof extraction. Indeed, several proof extraction algorithms
have been developed, e.g., in [18,21,17,15,22] both for linear-time and
branching-time properties.

Our approach for the concretization of the abstract proof relies on the
idea that a proof made in the abstract theory can be seen as a proof over
the equivalence classes defined by the abstraction. Since the predicates
of the concrete theory do not evaluate to the same boolean value for all

equivalent concrete models, we associate to each concrete predicate a new
predicate which can be seen as an extension or restriction to the equiva-
lence classes. Those predicates are designed to be uniform on equivalence
classes, that is, they evaluate to the same boolean value on all the ele-
ments of a class. Then, the abstract predicates occurring in the abstract
proof term are replaced by the uniform predicates: An abstract predicate
is replaced by an extension (resp. restriction) if it is an over- (resp. under-)
approximation of the concrete predicate. The replacement is done in such
a way that ensures that the structure of the formulas, and the proof tree,
remain unchanged. We then obtain proof obligations to complete the con-
cretized proof tree. It turns out that in many cases these proof obligations
can be proved automatically, as it is the case for HERMES.

Related Work There is not, to the authors knowledge, an earlier sys-
tematic study of the proof concretization problem except the work by
K. Namjoshi [16]. Namjoshi’s work considers a reacher set of properties,
namely p-calculus definable properties. On the other hand, it targets a
specific deductive proof system developed by the same author to repre-
sent proofs of correctness of u-calculus properties.

In [11], an algorithm for concretizing a BDD that represents the set of
abstract reachable states is presented. The so-obtained concrete invariant
is then used in a deductive proof rule for proving invariance properties.
An algorithm is presented in [1,19] that allows to heuristically generalize
an invariant of a small instance of a parameterized system to a candidate
invariant of all instances. The so-obtained candidate invariant is subse-
quently checked for validity. As the small instance is, in general, not a
safe abstraction of the entire system there is no guarantee that the gen-
eralized invariant is indeed an invariant of the entire system.

The BLAST toolkit allows the verification of drivers encoded in C
using the abstraction-based model-checking methodology. It also allows
to automatically generate an easily checkable correctness certificate of the
considered driver [10]. The concretization procedure that we present in the
paper as well as the certification process of BLAST consider invariance
properties. Moreover, the latter is tuned for predicate-abstraction.

Outline of the paper Section 1 briefly describes a verification technique
and a tool for verifying secrecy properties of cryptographic protocols. We
explain in Section 2 how the verification tool has been instrumented to
help building a proof of the secrecy of an abstraction of the protocol. Sec-
tion 3 and 4 are dedicated to the concretization process that ends with a

foundational proof that the actual protocol satisfies the secrecy property.
Conclusions and future work are discussed in Section 5.

1 Verifying secrecy properties of cryptographic protocols

We give a sketchy idea of the technique and the tool, called HERMES,
that we developed to verify secrecy properties of cryptographic protocols
in Dolev and Yao’s model of intruder. A formal and complete presenta-
tion of this method can be found in [3]. Cryptographic protocols can be
modeled as a set of transitions of the form ¢t — t' where ¢, t’ are terms
constructed by applying pairing and the operator {t}, (that denotes the
encryption of a term ¢ by a key k), to some free variables and to the param-
eters of the protocol sessions, which are the identities of agents, the fresh
nonces, and the fresh keys of these sessions. A secrecy goal states that
several designated terms representing the secrets should not be deducible
by an intruder whose capacities are defined by the additional transitions
of Figure 1, known as Dolev and Yao’s model [8]. These transitions can
be seen as a deductive system. It defines the messages that the intruder
can deduce and forge from the messages sent on the network during the
protocols execution: this model identifies the log of the network with the
knowledge of the intruder.

1 St

pairing: t, t' — (¢t,t) decryption: {t},, k~
splitting: (t,t') —t, t/ encryption: t, k. — {t},

In Dolev and Yao’s model the network is represented by a set of messages, say N.
This transition system, denoted by DY in the sequel, defines the intruder capacities: a
transition adds its right-hand side to N if its left-hand side matches elements of N.

Fig. 1. The model of the intruder defined by Dolev and Yao

HERMES checks that messages sent by honest agents cannot be used
by the intruder to obtain the exchanged secrets. It is based on the com-
putation of a set of dangerous messages that allow the intruder to deduce
the secrets with the unwitting help of honest agents playing the proto-
col. This set draws sufficient conditions on the initial knowledge of the
intruder to ensure that the secrets exchanged by the protocol will be pre-
served. Section A of the appendix illustrates the verification problem on
Needham-Schroeder-Lowe’s authentication protocol [13].

A cryptographic protocol & defines a transition system R that corre-
sponds to the transition of an unbounded number of session of the protocol

4

& and the transition of Dolev and Yao’s intruder. Given a protocol &
and a set of secrets S, HERMES produces an abstract verification problem
(R*, S*) using four abstraction relations: on agents, nonces, messages and
transitions. It generates the abstraction S* of S, and computes a finite
transition system Rf = 2% UDY that is an over-approximation of R. The
verification is then based on the computation of the predecessors of the
abstract secrets S* for the transition relation Rf. HERMES starts with the
set of secrets as dangerous messages (D' := S*). It computes pre p: (DF),
the predecessors of D! for the transition relation Rf; adds them to D%
and repeats these two steps until reaching a set of dangerous messages
that is stable for pre p:. It is useful for Section 2 to mention that each step
involves solving unification problems.

QNQo=0 preg(Q)CQ
preR(Q)NQo =10

vQ:QOvPL pre;}(Q)ﬁQozw = QQR*(QO):Q

Fig. 2. Principle of reachability analysis for the operator pre [14]

The output of HERMES consists in a set of dangerous messages DF
that satisfies: S* C D? and pre Rt (D*) C D! Based on the properties of
Figure 2 for the operator pre, it turns out that:

D N NF =0 = D N R (Winar) = 0
Using the fact S* C D HERMES returns the verdict at the abstract level:
DINNE =0 = SN RY (Ninis) = 0.
It means that the secrets are not reachable by R* if the initial knowledge
of the intruder /\/ﬁm does not contain any dangerous messages. Section A
provides an example of interpretation of HERMES’ output.

The validity of HERMES’ results depends on the correctness of its im-
plementation and the safetyness of the abstraction. In the context of cer-
tification our aim is to produce a concrete verdict that neither depends
on the verification tool we used, nor on the abstraction we applied:

DﬂMnit =0=58n R*(Mnit) = 0.

In order to produce a proof of that verdict we proceed in two steps: we
instrument the verification tool to get a proof of the property at the

abstract level, then we build a proof of the verdict on the actual system
by applying a concretization function to the abstract proof term.

2 Automatic generation of an abstract proof

We present our technique in the context of cryptographic protocol and
we illustrate our presentation with examples treated with HERMES. How-
ever, the technique can be generalized to other verification tools of safety
properties. Section D defines at the semantic level what it means for a
protocol to preserves secrecy, and gives a sketch of the proof. We distin-
guish two parts in that proof: the lemmas that are proved once for all
(e.g., the principle of reachability analysis of Figure 2), and the stability
property pre i (D*) C D! that depends on the cryptographic protocol and
the secrets we consider. From now on, we focus on the stability property,
and we start by generating a proof that it holds at the abstract level.

The proof of the stability of D! is built using proof tactics which
are generated during execution of an instrumented version of HERMES.
A tactic is an heuristic that guides the proof construction. It is given
as a collection of proof schemes guarded by syntactic conditions which
control its triggering. So, the order in which they are generated by the
instrumented algorithm does not matter. Actually, the proof construction
puts no constraints on the control flow of the instrumented algorithm. It
only matters to provide the arguments needed by the proof and to define
criteria that recognize where these arguments are helpful.

We consider proof terms built from the inference rules of the sequent
calculus (see Figure 7). The main difficulty in the automatic generation
of the proof arises for properties with an existential quantification: The
inference rule (3;) that leads to a conclusion 3z ¢ requires to exhibit a
witness that satisfies the property ¢. We address this problem by running
the instrumented version of HERMES on the already stable set Df. Dur-
ing this run, all attempts to add a "dangerous" message m fails for the
reason that it is already covered by a message m’ of D!, and we store the
relation (m,m’) between the new message and its witness of membership
in D*. This information is stored in a tactic generated by the membership
function. It is then used during the proof process to feed the rule (3;).
The main effort to obtain the proof of stability was to design the crite-
rion that triggers this tactic. This experiment gave us confidence that it
is possible to develop a general framework that allow the developers of a
verification algorithm to associate a proof tactics to the computation step
of an algorithm.

3 Concretizing abstract proofs

The instrumentation of the verification tool provides us with tactics that
drive the cOQ proof-engine in order to produce a proof of the stability
property pre p: (QF) C QF for an abstract transition system R* and a prop-
erty Qf (1). We investigate three techniques that capitalize on that proof
to obtain a foundational proof of the stability property prez(Q) C @ at
the concrete level. Figure 3 illustrates three possible proofs. They differ
on the specialization of the proof toward the specific system and prop-
erty we consider: 1) the most general proof consists in proving that the
abstraction « is safe for a class Cr of transition systems and a class Cg
of properties, that is, (prep: (Q%) C Q%) = (preg(Q) C Q) holds for any
transition system R in Cr and any property @ in Cq. This is the kind of
results we find in literature on abstractions to ensures that the verification
at the abstract level entails the property at the concrete level. 2) An easier
proof consists in proving the previous result only for a specific system R
and a specific property). This proof and the previous one require to deal
with the definitions of the abstraction relation, and with the transition
systems and the properties at both the concrete and abstract levels.

We advocate a third way that we believe is simpler because it only
deals with the concrete/actual system and property: 3) We use a con-
cretization function [.] on proof terms and formulas that automatically
transforms the proof at the abstract level into a walid proof term at the
concrete level. The hypothesis and conclusion of the proof are not ex-
actly the desired ones, so, to complete the proof, we have to discharge
two proof obligations PO; and PQO» shown in Figure 3. Let us put in
word the proof obligation PO;. The abstract proof depends on the ax-
ioms, say Ag, e ,,451, resulting from the definition of the abstract stability
problem (R!, Q%). Similarly, the definition of the concrete problem (R, Q)
generates concrete axioms. Then, the concretization process ends with the
obligations to prove that the axioms of the concrete problem entails the
concretization of the axioms used in the abstract proof of stability.

We show in the next section that this approach has some advantages:
First, the proof obligations are expressed at the concrete level and the
final proof only relies on the definitions of the actual system and prop-
erty. So, the developper that attempts to produce a proof of its protocol
does not have to understand the abstraction used in the verification tool.
Second, depending on the property, only a subset of the abstract axioms

! As usual in literature on model-checking, we use the same notation to denote a
predicate and the set of states that satisfy this predicate.

The three proofs of the stability property prep(Q) C @Q make use of the proof term
V* generated by the verification tool. The two first technique are based on a proof
of correctness of the abstraction. The third technique builds the concretization of the
proof term, resulting in two proof obligations at the concrete level, that is, they do not
refer to any abstract domains.

QeCa REQ REQ [AS AN AL

RﬁEC% W W W

QFeCh, pre(QHCQ! | RQ,RLQE pre (QHCQ? [pre e (@9)2@7]
prep(Q)CQ pren(Q)CQ pre(Q)CQ

(1) Correctness of an abstraction a = (ar, ag)

a,Ch,Ch,Cr,Cq - YR € Cr, YR* € Ch, YQ € Cq, YQ* € Cl,

(an(B B A ao(@ Q%) A pres (@) € QF)
= prep(Q) € Q
(2) Correctness of an abstraction restricted to a given R, R' and Q,Q*
O‘7Rﬁ7 Qﬁ7R7Q F prepy (Qﬁ) g Qﬁ = preR(Q) g Q

(3) Two proof obligations at the concrete level

(OPy) Validity of the concretization of the top-most properties

Al ..., Al used in the V¥ proof of R*, QI prey: (Q) C QF

R,QF A AL A AL with [¢'] = concretization of ¢*
(OP>) The concretization of the abstract property entails the

concrete property

R,QF [preq:(QF) C QF] = prep(Q) € Q

Fig. 3. Three ways to lift an abstract property

are actually used in the proof and leads to proof obligations. Hence, the
final proof is reduced to what is really needed.

4 Concretization of the proof of stability

This section describes the concretization process and the resulting proof
obligations. An abstraction relation o C Q x Q¥ induces a relation on the
concrete domain, ~C Q) x @), defined as:

g~q € 3¢ e, alg.d) rald,q)
Based on this remark, we present a concretization process that builds a
proof of the concrete stability property from the abstract proof generated
by the verification tool. The resulting proof does not mention the abstrac-
tion, neither the abstract transition system Rf, nor the abstract property
Q'; instead it reasons on equivalence? at the concrete level.

We first compute a definition of ~ that is independent of the abstract
domain. We exploit the predicative definition of the abstraction relation
to produce a logical characterization of all abstract objects. In the case of
HERMES, the abstraction relations on agents, nonces, messages, transitions
are all governed by pairs of predicates (C;, A;) respectively defined on the
concrete and abstract domain:

a= |J {le,d") | Ci(q) A Ai(gh)}.

1€[0,n]
The definition of ~ can then be rewritten into an equivalent form:

g~q = 3¢ €, olg,¢) nald,)
= 3¢" € @, Vicjo. Ci@) A Ci(d) A Ai(g)
= Vicjon 3¢* € QF, Ci(a) A Cild) A Ai(d?)
= Vicjon Ci(0) A Ci(d') A (3¢* € QF, Ai(gh))

Finally, a satisfiability analysis reduces each sub-formula 3¢* € QF, A;(¢")
to a boolean value and the verification tools outputs a definition of ~
which only depends on the concrete predicates C;. Section E and F illus-
trate this principle on two abstractions used in HERMES.

Our goal is to transform the abstract proof term into a concrete one
by removing all reference to the abstract domains: the symbols of quan-
tified variables do not need to be changed, they are domain independant;

2 If the abstraction relation is a total function, then ~ is an equivalence relation. This
remark can help getting the intuition but it is not a pre-requisite of our method.

all abstract equalities can be replaced by ~-equivalences ; and each ab-
stract constant ¢! can be replaced by a constant symbol ¢ that satisfies
the disjunction of all the C;(q) such that A;(¢%) evaluates to true. These
constraints on ¢ are added as hypothesis in the concrete proof.

We now detail the replacement of abstract predicates. Intuitively, we
can replace a function by another and preserve the validity of a proof as
long as the two functions evaluate to the same values on equivalent argu-
ments. We cannot simply replace an abstract predicate P! by the original
concrete predicate P for, in general, the predicate P does not evaluate to
the value P*(c*) on all the concrete values abstracted on c*. So, we asso-
ciate to each abstract predicate P! a concrete predicate P¢ that is built
from the original concrete predicate P, and that have a uniform valuation
with respect to the relation ~, meaning that vy ~ vy = P%(v1) = P%(v2).
For this purpose, we introduce two predicate transformers ¥/~ that de-
fine the uniform extension/restriction of a concrete predicate P with a
free variable x. Figure 4 illustrates these definitions graphically.

Pt(x) et Jy, y~x AP(y) and P~ (z) = Yy, y ~x = P(y).

~

-
{ [
) \ D)

P~ P Pt
The abstraction induces a relation ~ on the concrete domain. The grid represents
a partition of the concrete domain along the equivalence classes of the relation ~.

Fig. 4. Uniform restriction/extension of a predicate P with respect to a relation ~

We can now define the concretization of the abstract proof terms. In order
to get a valid proof term, the resulting transformation must not invalidate
the proof steps of the abstract proof term. This puts strong constraints on
the transformation: the concretization function [.] must be a morphism
on proof terms, and it must preserve the structure of formulas. The con-
cretization of formulas is presented in Figure 5. The interesting cases are

10

We use z,y for variables, ¢ for constants, P for predicates, ¢ for formulas. The symbol
v can denote either a constant value or a variable. We use ff to denote their abstact
version. All the definitions extend in the obvious way to predicates on tuples.

Concretization of formulas

[-6°] = -[¢7]
[4} ® ¢i] = [4i] @ [¢4] for ® € {V, A, =, &}
[Qz ¢f] = Qz [¢°] for Q € {¥,3}

[P#(v9)] = [PF([*])

[x] =z if x is a symbol of variable
[¢] = ¢ and Hyp := Hyp U { [eele®, eM)] }

[z1 :ﬁT za] = [x1] ~7 [z2] where T denotes the type of x; among
agents, nonces, messages, transitions

[a(z,)] =V, Ci(z) A Ai(c*) from the definition of o
false if \/; Ai(c") = false
- (cy-l Y, Cip)(m) forix € {i | As(cb) = true)

[P*] = P° with Def :=
let P°(x) = PT(x) =3y y~xAP(y) ifP* over-approrimates P
DefU < let Pé(z) = P~ (
let P°(x) = P(x) otherwise

x)=Vy y~x= P(y) if P* under-approzimates P

Concretization of a proof sentence

A proof sentences 7, F'V,H I ¢ mentions the theory 7, the free variables F'V and the
active hypothesis H (in this order) on the left-hand side of the deduction symbol -,
and the property ¢ to be proved on the right.

[T, FV.HE @] =[T,FV,H] F [¢]
with [7,FV,H] =Def, FV UFV(Hyp), HypU[Z]U[H]

Concretization of an inference rules of a proof term

@ = ————— (rule) where & denotes a proof sentence

e

Fig. 5. The concretization function

11

those of abstract constants and predicates. The concretization replaces the
abstract constant ¢! by a symbol ¢¢ and produces hypothesis on ¢¢ which
express that ¢ is abstracted on ¢f. Note that they only use concrete predi-
cates. The concretization of predicates requires the advice of the developer
of the verification tool to choose the right concretization. Intuitively, each
symbol of an abstract predicate P* is replaced by P* (resp. P~, P) if
P% is an over (resp. under, exact) approximation of P. In practice, we
do not go through the proof term to apply these replacements, we only
redefine the existing predicates®. Eventually, the concretization function
returns: 1) Def, the definitions of uniform predicates P¢ that refer to the
predicates P of the concrete system 2) Hyp, the hypothesis on the symbols
denoting concrete constants, and 3) a proof term in which all proof steps
are valid and which contains no reference to the abstract system, nor to
the abstraction relation.

Figure 6 completes the picture with the construction of the concrete
proof. The verification tools produces tactics which drive the COQ engine
to build the abstract proof term V* that demonstrates the property (.
Then, the concretization function transforms this term into a concrete
proof terms [V*]. This term gives a proof of [¢*], the concretization of
the abstract property. The proof [[Vﬁ]] relies on the concretization of the
abstract axioms Ag, . ,ABZ used in V% The first proof obligation PO;
requires to answer the question: does the axioms of the concrete theory
entails the concretization of those abstract axioms? The second obligation
POs requires to prove that the concretization of the abstract property [¢f]
entails the concrete property .

In general, PO is trivial since the abstraction has been designed to be
fine enough with respect to the property . The application to HERMES,
presented in section G, has shown that all the proof obligations can be
automatically discarded.

5 Conclusion and future work

We presented a technique for producing proofs of the results generated
by tools based on combination of model-checking and abstractions. The
proofs obtained are independant of correctness the tool and the abstrac-
tions it uses. Our technique works in two steps. First a proof of the abstract
property is generated on the abstract theory. Then this proof is syntac-
ticaly lifted into a partial proof of the wanted property, alongside proof

3 To avoid confusion, the concretization function pretends to replace each symbol of
an abstract predicate P! by an corresponding symbol of a concrete predicate P°.

12

The proof terms are build with the inference rules of the sequent calculus for first order
logic (see Figure 7). The symbol V* denotes the proof term produced by the verification
tool as a certificate of the abstract property. The proof of the concrete property ¢,
denoted by V below, uses the concretization of V¥ and three proof obligations:
(PO3) The concretization of an abstract constants ¢ can be any constant ¢° which
satisfies the conditions of the abstraction relation a(c®,c?). These conditions are re-
duced to disjunctions of concrete predicates on c¢, then gathered into Hyp during the
concretization (see Figure 5). The proof obligation PO3 requires to prove the existence
of concrete elements that satisfy the hypothesis, meaning that there exists a pre-image
for each abstract constants ¢* used in the proof V¥. The proof of an existential property
is done by exhibiting a witness. It can be automated by instrumenting the verification
tool so that it provides a possible concretization for each abstract constant.

(POn)

Proof obligation PO; requires to show that the concrete version A° of the

axioms used in the abstract proof are valid for the concrete elements that satisfy the
hypothesis Hyp.
(PO2) This last proof obligation requires that the concretization of the abstract prop-
erty entails the concrete property. Note that the concrete proof (and so, the proof
obligations) are done in the concrete theory 7 extended with the auxilliary definitions,
Def, of uniform predicates introduced during the concretization.

We use Vey (hyp) (resp. Ipy (Hyp)) to denote the universal (existential) quantification on
all free variables of Hyp. The step (1) in V is valid since F'V (Hyp) N F'V (7 U Def) = 0.

Vi =

PO,

[V¥]
[A2 AL A AR 0]
FIAR AL A AL = [of]

T UDef, HppF ASA...AAS TUDef, Hyp AF A ... A AS =[]

TU

PO

Def, Hyp F [¢']

V]

Vi PO;

T UDef, Hyp b [¢*] 7 UDef, Hyp+ [¢'] = ¢
(

POs3

T U Def + EIFV(Hyp) Hyp

T UDef, HypF ¢
T UDef - Hyp = ¢ (
T U Def = Vpy (hypy (Hyp =)

i)

(Vi) (1)

(Jes Ve, =e)

T UDef ¢

le

i

(=e)

In the case of HERMES we apply this proof construction with ¢ * ! pre r(D)CD,and a
theory 7 that is an axiomatization of R and D. The proof term V is the concrete proof
of the stability property for the concrete problem (R, D). The two remaining proofs
obligations PO; and PO> we obtain are presented in Section G.

Fig. 6. The construction of the concrete proof

13

obligations. The obtained proof does not rely on the abstract theory, the
abstraction or the way the tool produced the result.

In the case of HERMES, our verification tool for secrecy of crypto-
graphic protocol, our aim was to get a fully automatic certification pro-
cess. Then, in addition to the concretization, we designed tactics for the
proof obligations. The obligation PO, is trivial and it is always discarded
(see section G). Some obligations of PO; are resolved by our tactics but
there still are protocols that show up cases which are not captured. A
prototype of HERMES is available on-line from the authors’ web-page [25].
When HERMES’s model-checker obtains a positive verdict, its back-end
produces both the abstract and concrete proofs that the protocol pre-
serves secrecy. Both proofs are submitted to the cOQ proof-checker and
its outputs is presented to the user.

The continuation of this work is twofold: On the one hand, we try to
build a framework that allows to compare the three proof techniques of
Figure 3 and to get some sufficient conditions that ensures the validity of
our proof obligations. On the other hand, we now focus on the concretiza-
tion of tactics instead of the proof term in order to produce a readable
concrete proof. Indeed, the users of proof-engine build their proofs at
the level of tactics. With some habits the sequence of tactics becomes a
quite readable proof (while proof term are not understandable). The tactic
level underlines the main steps, whereas the details are treated by general
powerful tactics. We experiment this idea on two challenging problems for
automatic proof generation at the concrete level: First, the certification of
safety property of parametric systems, e.g., the bakery protocol of Lam-
port [12]. Our interest in this problem is to generate an inductive proof of
its correctness from a proof on a bounded number of systems. The second
case study is the certification of a reader/writer protocol used for imple-
menting synchronous communication on an asynchronous platform [24].
This simple protocol ensures that the implementation respects the frontier
of synchronization of the ideal synchronous model. It is interesting for the
property to prove and the abstraction are not usual.

References

1. Tamarah Arons, Amir Pnueli, Sitvanit Ruah, Jiazhao Xu, and Lenore D. Zuck.
Parameterized verification with automatically computed inductive assertions. In
Gérard Berry, Hubert Comon, and Alain Finkel, editors, CAV, volume 2102 of
Lecture Notes in Computer Science, pages 221-234. Springer, 2001.

2. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Devel-
opment. Coq’Art: The Calculus of Inductive Constructions, volume XXV of Texts

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

in Theoretical Computer Science. An EATCS Series. Springer, 2004. 469 p., Hard-
cover. ISBN: 3-540-20854-2.

L. Bozga, Y. Lakhnech, and M. Périn. Abstract interpretation for secrecy using
patterns. In TACAS’03, volume 2619 of LNCS, 2003.

L. Bozga, Y. Lakhnech, and M. Périn. Hermes: An automatic tool for verification
of secrecy in security protocols. In 15th International Conference on Computer
Aided Verification (CAV),, volume 2725 of LNCS, 2003.

L. Bozga, Y. Lakhnech, and M. Périn. Pattern-based abstraction for verifying
secrecy in protocols. STTT: International Journal on Software Tools for Technlogy
Transfer, 8(1):57-76, 2005.

E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In Computer Aided Verification, LNCS, pages 154-169.
Springer-Verlag, 2000.

Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Logic of Programs, Workshop,
pages 52-71, London, UK, 1981. Springer-Verlag.

D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transac-
tions on Information Theory, 29(2), 1983.

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan.
Abstractions from proofs. In Neil D. Jones and Xavier Leroy, editors, POPL, pages
232-244. ACM, 2004.

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, George C. Necula, Gre-
goire Sutre, and Westley Weimer. Temporal-safety proofs for systems code. In
Proceedings of the 14th International Conference on Computer-Aided Verification,
pages pp. 526-538. Lecture Notes in Computer Science 2404, Springer-Verlag, 2002.
Y. Lakhnech, S. Bensalem, S. Owre, and S. Berezin. Incremental verification by
abstraction. In TACAS 2001, volume 2031 of Incs, 2001.

Leslie Lamport. A new solution of dijkstra concurrent programming problem.
Communication of the ACM, 17(8):453-455, 1976.

G. Lowe. Breaking and fixing the needham-schroeder public-key protocol using
FDR. In T. Margaria and B. Steffen, editors, Proceedings of TACAS’96 - Second
International Workshop on Tools and Algorithms for the Construction and Analysis
of Systems, Passau, Germany, volume 1055 of LNCS. Springer, March 1996.

Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, 1995.

Kedar S. Namjoshi. Certifying model checkers. Lecture Notes in Computer Science,
2102:2-77, 2001.

Kedar S. Namjoshi. Lifting temporal proofs through abstractions. In VMCAI,
2003.

Doron Peled, Amir Pnueli, and Lenore D. Zuck. From falsification to verification. In
Ramesh Hariharan, Madhavan Mukund, and V. Vinay, editors, FSTTCS, volume
2245 of Lecture Notes in Computer Science, pages 292-304. Springer, 2001.
David A. Plaisted and Yunshan Zhu. Ordered semantic hyper-linking. J. Autom.
Reason., 25(3):167-217, 2000.

Amir Pnueli, Sitvanit Ruah, and Lenore D. Zuck. Automatic deductive verification
with invisible invariants. In Tiziana Margaria and Wang Yi, editors, TACAS,
volume 2031 of Lecture Notes in Computer Science, pages 82-97. Springer, 2001.
Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent
systems in cesar. In Proceedings of the 5th Colloquium on International Symposium
on Programming, pages 337-351, London, UK, 1982. Springer-Verlag.

15

21.

22.

23.

24.

25.

Abhik Roychoudhury, C. R. Ramakrishnan, and I. V. Ramakrishnan. Justifying
proofs using memo tables. In Principles and Practice of Declarative Programming,
pages 178-189, 2000.

L. Tan and R. Cleaveland. Evidence-based model checking, 2002.

The Coq Development Team. The Coq Proof Assistant Reference Manual Version
8.0. Logical Project, January 2005.

Stavros Tripakis, Christos Sofronis, Norman Scaife, and Paul Caspi. Semantics-
preserving and memory-efficient implementation of inter-task communication on
static-priority or edf schedulers. In Wayne Wolf, editor, EMSOFT, pages 353—360.
ACM, 2005.

http://wuw-verimag.imag.fr/ Liana.Bozga/eva/hermes.php.

T HF L T HU{p}F L T HFo T,HF -y
T HE

— (h H ——— (awiom T
T’,}_H_@(yp) pe ’T,H}—go() »E

(=e)

e

T HE - 7 T HF L

T,HU{QDl}l—ch (T,H}—cp1:><p2 T,'Hl—cm

THE o1 = 05 7 T.HF o» =

T HEe1 T,HF @2 T, HE p1 A p2 T, HE @1 A2

(ni) 5 (Ne)
T, HE o1 A2 T, HtF 1

T,H}—cm) ’T,H}—gol
T, HFe1 Ve T, HE 1V 2
T HEo1 Ve T,HU{p1}bFws T,HU{p2}tF o3 «
T,H}_QO3

e

T,H"(pg

(Vi)

T, HEVz T,HE

(Ye) ————— (v;) « does not appear in T UH

T, HFolz—t] ° T,HFVz @

T, HEF plz] @) T, HE3z o1 T,HU{p1} F o2 x does not appear

T HFIw e T HF oo) i T UH nor in o3

Fig. 7. The inference rules of the sequent calculus

A The Needham-Schroeder-Lowe’s authentication

A

protocol

session of the protocol distinguishes from the other sessions by its ses-

sion identifier and the identities of the agents that play the protocol (two
agents for NSL’s protocol). We denote the parameters of a session by =, its

16

components are referred as S, for the session identifier, A, for the agent
playing the role of the initiator, and B, for the responder.

initiator: = {A,r, Nonce(w, 1)}KB
P(m) wf responder: {.1‘, 7”L}KB7r — {BW, n, Nonce(, 2)}Ka:
initiator: { B,., Nonce(m,1),n'} . — {n}x,

where x,m,n' € Var denote free variables; Ky (resp. Ky') is the public
(resp. secret) key of the agent X and Nonce(w,p) denote a fresh number
created in Session 7.

The secrets of the protocol are defined with respect to the session
parameters:

Secret(m) = { KE:, Kg:, Nonce(r,2) }

B Principle of the verification tool for secrecy of
cryptographic protocols

From & and Secret, HERMES computes a set D that is an over-approximation
of the messages that allow the intruder to deduce some of the secrets of
Session 7. For the Needham-Schroeder-Lowe’s protocol, the resulting set
D includes for instance:

{ {i, Nonce(m,2)} ., | i, h € Agents, K 'e NAKTTEN)

Although the secret Nonce(w,2) is encrypted with a safe key (since
K, L ¢ N), these messages indirectly reveal the secret. Indeed, a honest
agent h that takes part in an session ' = (s,4,h) of the protocol would
accept such a message as the left-hand side of the second transition. Apply-
ing the protocol, he would then respond {h, Nonce(r,2), Nonce(r',2)} .
which can be decrypted for K, ! is known on the network. He would then
involuntarily help the intruder to get the secret of Session .

C Interpretation of the dangerous messages returned by
HERMES

The dangerous messages put constraints on the knowledge of the intruder,
i.e. the messages that belong to N. The protocol can safely be used if
D NN = (. Since a nonce is a fresh value created during a session of the
protocol, all the dangerous messages that contains a nonce of Session 7

17

cannot be present on the network before the beginning of that session.
Hence, these constraints are removed. Eventually, there is no constraint
left and we can conclude that the protocol preserves the secrets.

D The proof of secrecy preservation in Dolev and Yao’s
model

The transition system associated to a protocol & simulates an unbounded
number of sessions of the protocol in the presence of an intruder that is
modeled by the transitions system DY of Dolev and Yao.

RY by U 2

meSession

The certified verdict of HERMES is a formal proof in cOQ of the property:

(Py) V€ Session, VN C Message,
D(m) NN =0 = Secret(r) N R*(N) =10

where D(7) is the set of dangerous messages computed by HERMES from
the protocol &2 and the secrets Secret. It satisfies Secret(mw) C D(w) by
construction.

The proof of (P;) starts by a skolemization that fixes an arbitrary Ses-
sion 7. Then, we prove the implication using the principle of induction
associated to the operator pre (see Figure 2). It requires to exhibit a set
that is stable for the prep operator (Property P» below). Our verification
tool, HERMES, outputs such a set D, that we use to conclude the proof
noticing that:

1. Secret(my) C D, by construction of Dy,

2.VQ,Q', prep(Q)NQ =0 & QNER(Q) =10 from [14]

The correction of these steps is proved once for all and the only proof-step
specific to the given protocol and secrets is that of the stability of Dy,:

(P) prep(Dyy) C Dry L V(t,t') € R, Vo, t'o € Dyy = to € Dy,
where o denotes a substitution of variables by messages.

18

E The abstraction on agents in HERMES

The semantics of cryptographic protocols considers a set of infinite iden-
tities of agents which is partitioned into the honest ones that did not
publish their secret key k~' and the dishonest ones that revealed their
keys to the intruder. The abstraction on agents maps the honest ones
onto the identity k! and the dishonest ones onto #*. In the concrete proof,
this abstraction is replaced by an equivalence relation ~, that only refers
to the concrete semantics: a ~, b = (k7' & Ninit) & (kb_l ¢ Ninit)-

Definitions of the concrete notion of agents:
— Agent denotes an infinite set of identities of honest and dishonest

agents
— the predicate “honest” on agents is defined by: H(a) < k7! ¢ Ninit

Definition of an abstraction relation between Agent and Agent® =
{Rnt,i%}
a, C Agent x Agent! is defined by two pairs of predicates:

<

(Ci(a), Ai(a®) < (H(a), af = h?)
(Ca(a), Az(a®)) < (~H(a), af =)

then o, ={(a,h*)|H(a)} U {(a,i*) | ~H(a)}

The abstraction relation o, induces a relation ~,C Agent x Agent
Note that ~, is an equivalence relation since «, is a total function.

a~4 b=3al € Agentt, a,(a,al) Aa,(b,ab)
= (H(a) NH(b))V (=H(a) N=H(b)) = H(a) < H(b)
= (k7' ¢ Niit) & (kb & Ninit)

F The abstraction relation on transition systems used in
HERMES

The abstraction relation oz C R x R* on transition systems that we use
in HERMES is not a function: a transition that contains free variables can
have several abstract images. Moreover, two different concrete transitions
can share an abstract image. We illustate this phenomena on an ad’hoc
example: the transition {hﬁ,hﬁ,n}Khﬁ — {hﬁ’{n}Khu}Khu belongs to
the abstract images of the transitions {A,z,n}; — {A,{n} g }x, and
{z,B,n}g, — {z,{n}x, } K, Therefore, the abstract relation depicted
by the graph below can arise in HERMES for some protocols:

19

re C1, 41 L ort
Co, As
7o =—— ’ 97'5

Cy, Ay

7/e —1 =T£
- -
R R Fi’:I

This abstraction relation on transition systems induces the concrete re-
lation ~z= {(7,7),(7’,7")} between transitions that have an abstract
image in common. The abstraction relation is governed by concrete pred-
icates (Cj, A;). The predicates A; that bear on the abstract transition can
be eliminated from the definition of ~y: they can be reduced to a boolean
value by enumeration on the finite domain of abstract transitions. So, it
is possible to produce a concrete definition of the relation ~j that does
not mention R! or a:

m e 7 (O C(T) A (CLV CDE) Y (Ca v Ch)(T) A (Cy v CH)(T)

G The proof of stability generated by HERMES

Starting with a concrete transition system R, HERMES generates an ab-
stract transition system RE. Then, it computes a set Dt of dangerous mes-
sages that is stable for the operator prep:. Finally, it drives the cOQ proof-
engine to output a proof of the abstract stability property pre p: (D¥) C D*
and produces a predicate D! that characterizes this set. Then, HERMES’
back-end computes the concretization of the definition of the predicate Df
and takes the resulting formula for the definition of the concrete predicate
D. Tt applies the concretization function to the abstract proof term with
the choices to replace [R*] by R (since R* is an over approximation of
R) and [D*] by D (by construction). The concretization results in a proof
of the concrete stability property pre (D) C D that depends on two proof
obligations.

e POy : TUDef, HypF A{ A L. AN AS

The abstract transition system is defined by the axiom:

Vit Rt tY) € 3o (t=tio At =tio) V...V (t =tyo At =t,0)

20

The abstract proof only use the left-to-right implication of (‘g), SO we
have to prove the concretization of this implication, that is,

[Vt,t' Rt)= Jo (t =tiont =tfo) V...V (t=tho At = tiio)]
=Vt,t' RY(t,t') = 3o (t~tio At ~tio) V...V (t ~tho ANt ~ o)

under the hypothesis Hyp = [ax((t1,), (£, DA . Alar((tn, t)), (th,)]

nsy bp

This proof obligation actually corresponds to the property R = [def. of RY],
meaning exactly that R? is an over approximation of R.

The abstract proof also uses the axiom that defines the set Df of dan-
gerous messages. It produces the obligation [D¥] < [def. of D¥]. This
property holds by construction since the concretization replaces the sym-
bol D* by* D and HERMES defines D as [def. of D]. This proof is done
automatically.

e PO, : T UDef, HypF [¢'] = ¢

goﬁ et p?"@Ru(Dﬁ) - Dt = Vi, to Vo Rﬁ(tl,tg) A Dﬁ(tQU) = ’Dﬁ(tla)
[[(,Oﬁ]] = Viti,t9 Vo HRﬁ]] (tl,tg) AN HDW (tQO') = [[Dﬁ]](tla)
= Viqi,t9 Vo R+(t1,t2) AN D(tQO') = D(tla)
= Viy, to Vo (3,1 (t1,t2) ~g (8], th) A R(th,t5)) AD(teo) = D(ti0)
The obligation POs requires to prove that the above property
entails the desired concrete stability property:
def

p = Vit,ts Vo R(tl,tg) VAN D(tQJ) = D(tla) = pT‘eR(D) cD

The proof of PO is trivial, since R(t1,t2) implies R*(t1,t2). This
proof has been fully automated: it uses a meta theorem VP, P = PT,
that is proved for any predicate.

4 In fact [D?] is replaced by D° with the additional definition let D¢(x) = D(z).

21

