
Formal Specification and Verification of PLC
for Certification ∗

Jin-Hyun Kim
Dept. of Computer Science,

Korea University
1, 5Ga, Anam-Dong,

Sunbuk-Gu
Seoul, 136-701, Korea

jhkim@formal.korea.ac.kr

Na Young Lee
Dept. of Nuclear Engineering

Seoul National University
56-1, Shillim-Dong

Gwanak-Gu,
Seoul, 151-742, Korea

grasia2@snu.ac.kr

Jin-Young Choi
Dept. of Computer Science,

Korea University
1, 5Ga, Anam-Dong,

Sunbuk-Gu
Seoul, 136-701, Korea

choi@formal.korea.ac.kr

ABSTRACT
KNICS (Korea Nuclear Instrumentation and Control System) is a
national promoted project to develop a safety-critical level embed-
ded system for nuclear plant protection system. PLC(Programmable
Logic Controller) is a typical embedded system to instrument and
control plant system, and KNICS has been developing a PLC for
controlling a reactor of nuclear power plant system. The PLC
micro-kernel is a safety-critical software that should be certified
by KINS (Korea Institute of Nuclear Safety), the certification or-
ganization in Korea. In this paper, we present our experience on
developing micro-kernel in PLC based on formal specification and
formal verification. Using formal methods, we gain correctness of
the target software and when the project ends, we will apply a cer-
tification to KINS.

1. INTRODUCTION
KNICS is a nationally promoted project of which goal is to develop
a digitalized instrumentation control system technology for nuclear
power plant. PLC is a critical embedded system to be developed in
KNICS, which instruments and controls a reactor of nuclear power
plant. The PLC will be certificated to the safety-critical level soft-
ware, thus, it has been developed by rigorous development methods
and process. The PLC micro-kernel in KNICS is a system software
that manages temporal and spatial resources of software and hard-
ware in the system. To gain a certification of the PLC to KINS, the
certification organization in KOREA, we apply formal methods to
specification and verification of the micro-kernel software.

In this work, we apply the resource model-based methodology to
this micro-kernel development. The resource model-based devel-
opment is where function and resource is separate from one an-
other, and the resource model is a specific system model that speci-
fies resource behavior over time and provides requirements for each

∗This work is supported by KNICS(Korea Nuclear Instrumentation
and Control System

of the micro-kernel functions.

In this paper, we present our development process and develop-
ment models for the PLC micro-kernel. In particular, we apply the
resource model-based development to development of it.

This paper is organized as following. First, we present related
works and introduce the development process for the PLC micro-
kernel and the resource model-based method. Next, we informally
explain the PLC micro-kernel software and the relevant entities in
the system. And we provide formal model of the software model to
verify the model formally. Finally, we conclude the paper.

2. RELATED WORKS
To develop micro-kernels in safety-critical systems such as avion-
ics, automobile and nuclear power plant, applying formal methods
has been studied rigorously now a days. Honeywell DEOS[12] is
a real-time operating system that is developed with using formal
methods. The DEOS is described in Promela(the input language
for Spin), and Spin model checker[8] is used to verify time parti-
tioning problem in its scheduling algorithm. During verification of
it, a few already known error was rediscovered in time partitioning
implementation.

In nuclear power plant systems, it is common to apply COTS (Com-
mercial Off-The-Shelf) to certify RTOS kernels because there are
over 100 commercial RTOSs, and there is no standard for the qual-
ity and the reliability of them. However, COTS is not suited for a
newly developed embedded system because of a short development
lifecycle. Moreover, there are no the golden-models for developing
of real-time operating systems. In recent years, resource model is
considered as an suitable model for embedded systems and real-
time operating systems because most of the embedded systems is
limited in using of resources.

Oleg Sololosky[13] gives some insight into resource in developing
embedded system where resource is limited not only on quantity
but also on quality. His research defines resource as processing
power, memory, network bandwidth, and power consumption and
proposes a uniform framework for a formal treatment of the re-
source by using PACSR(Probabilistic Algebra of Communicating
Shared Resource) based on process algebra. However, his resource
model is described in terms of quantitative aspect, not in the behav-
ior of resource. Lee et.al[11] provides a resource model that is used
for verifying a system in terms of timing constraints. And Choi[5]



provides a scheduling algorithm reasoning method for schedula-
bility analysis based on Lee’s research[11]. However, it is hard
to identify resource models and function models from the system
model so that it is not easy to implement the system.

During developing of the PLC software, we figure out that the re-
source in embedded systems has a specific and dynamic behavior,
and provides the requirements for function behavior in forms of
the behavior of the resource. In particular, the resource describing
such dynamic behavior also gives timing constraints that functions
in embedded systems must satisfy during operating of the system.

In the next chapter, we introduce micro-kernel models for certify-
ing it to the regulation and guide in nuclear power plant. Next,
we explain the development process for the system software for the
PLC. And then, we gives the micro-kernel models of the PLC based
on the resource models.

3. THE DEVELOPMENT PROCESS
IEEE 1012[2] requires development processes methods and V&V
methods to be all differentiated according to the integrity level be-
cause the criticality of each software depends on the system. The
PLC micro-kernel is safety-critical level software because it is used
to control the core reactor of nuclear power plants. According to
IEEE 1012[2], 830[3] and 1016[4], the requirement and design for
the safety-critical level software must be described in mathematical
notations and must be proved by mathematical proof techniques.
In addition, we apply the V development model with using formal
methods in specifying and verifying of the kernel software mod-
els; statecharts and model checker in STATEMATE MAGNUM(I-
Logix).

Figure 1 shows the development process for the micro-kernel soft-
ware of the PLC. To develop the requirement specification for the
micro-kernel, we refer to IEEE 830[3] where general requirement
contents for safety-critical systems are illustrated. To develop de-
sign specification, we refer to IEEE 1016[4] and IEEE 1016.1[1]
that provide contents and development procedure for the design
specification. IEEE 1012[2] explains the verifying and validating
of software according to the system criticality. The gray-colored
box in Figure 1 is where we apply the resource model-based method
to micro-kernel software models.

Most systems in nuclear power plants require the highest reliabil-
ity and safety recommended by IAEA(International Atomic En-
ergy Agency). Therefore, the nuclear society are so conservative in
applying new development methods and processes that only well-

Figure 1: Development process for the micro-kernel of the PLC

established proven methods and processes can be used for develop-
ing nuclear embedded systems. In this work, we adopt V-process
model and formal CASE-tools for the PLC micro-kernel software.
However, we can develop the resource based model in constructing
requirement and design models for functions of the kernel models.
The resource-view development methodology is called resource
model-based methodology.

3.1 Resource Oriented Model for Embedded
Systems

The behavior of most functions in software in embedded systems
depends on hardware resources since it can accomplish its purpose
while changing hardware resource state. The behavior of resource
representing hardware captures the requirement for the relevant
software, in particular, timing constraints over the software.

The resource models are divided into two classes; Synchronous-
type and asynchronous-typed resource. Synchronous-typed resource
is what directly interacts with software function. The resource pro-
vides inputs and its states to the function, the it takes some actions
according the input and states. That is, the function and the re-
source behavior depends on each other. In contrast, asynchronous-
typed resource affects function behavior in one-way, not being af-
fected by function behavior. Thus, the asynchronous-typed resource
changes its behavior by itself.

In addition, other characteristic of the resource model is concerning
time. Most of the resources related to software functions can have
timing constraints and the timing constraints is related to the func-
tions, that is, the software functions also have timing constraints.
Therefore, in this paper, we identify resource type relevant to tim-
ing constraints that is related to the hardware resource.

Figure 2 shows an example of a synchronous-typed resource where
a semaphore synchronizes an interrupt handler and two tasks. One
of two tasks named TASK 2 has timing constraints given by the
semaphore so that the semaphore should put the task to a ready-
list for scheduling unless it synchronizes the task by a certain time.
When the semaphore receives a synchronizing signal from the in-
terrupt handler, it should synchronize a task named TASK 1.

Figure 3 depicts the resource model-based development for devel-
oping the PLC micro-kernel. The system requirements in the figure
are the user’s requirement where products to be developed are de-
scribed in natural languages. Next, it is necessary to identify nec-
essary resources for accomplish the requirement. In this stage, the
resources can be already-exiting resources that are already known

Figure 2: An example of the synchronous-typed resource



Figure 3: Resource model-based development

to developer. After that, newly developed functions would identi-
fied for user’s requirement, then the resource identified at the pre-
vious stage are utilized to allow the functions to accomplish the
requirement. At the same time, some resources are newly identi-
fied for the need of the functions. Then, resource models are con-
structed in forms of a behavioral description such automata, finite
state-machine, state-diagram and so forth. After the modeling of
resource behavior, each function model can be constructed with re-
ferring to behavior of the resource. The resource model provides
useful information for the newly developed functions. That is, the
resource model can provide information how the functions to be
developed exploit the resource in the systems. For example, the
resource model can capture timing requirements which functions
to be developed shall satisfy in performing their programs. Thus,
the function designer should construct function models with sat-
isfying the timing requirements that the resource model provides.
Next, it is needed to construct the resource assignment model for
scheduling shared resources and verifying the system. The resource
assignment model provides criteria to assign the resource to each
function without failing to correctly execute the whole system and
corrupting the resources.

In verification stages, a system is analyzed in terms of the func-
tionality and timing. In addition, schedulability analysis is also in-
cluded into the verification. In the functional analysis, it is checked
whether it performs its function without fail even if each function is
threaded with other functions. In the timing analysis, it is checked
whether each of functions finish its performance by an appointed
time, deadline. The schedulability analysis checked whether all
of functions having timing constraints finish each of jobs by each
deadline.

4. THE PLC MICRO-KERNEL
Micro-kernel of the PLC is what manages spatial and temporal re-
sources by using protection mechanisms and scheduling policy in
the system. To verify the micro-kernel system model, it is neces-
sary to reason the behavior of the system whether the resources in
the system are legitimately shared by software functions in terms
of timing and behavior. A PLC is a special-purpose computer sys-
tem that operates plant engineer’s programs. The PLC provides five
standard programming languages for a newly developed function;
SFC, ST, IL, FBD and LD. And two kinds of heterogenous I/O de-
vices can be installed into PLC in order to communicate with other
systems.

Figure 4 describes an overview of software system in the PLC. Af-

Figure 4: Micro-kernel software in the PLC

ter a program of a plant engineer is transformed into a machine
code, it is transmitted into a free bank of memory. The function
for the loading and the allocating is PES Agent. Display Agent
and Diagnosis Agent are reporting the PLC status to users, and Se-
quence Solver is an user’s special-purpose scheduler that instantly
manipulates the order of tasks’ running.

The micro-kernel for the PLC functions are more simple rather than
ones that general-purpose real-time operating system provide. And
the RTOS for safety-critical systems should be absolutely deter-
ministic to guarantee the safety and reliability even if it is in any
dangerous situations. Therefore, the functions are needed to be op-
timized for each use of the functions.

• Scheduling : The PLC micro-kernel gives a priority-based
scheduling algorithm for real-time scheduling where any lower
priority task cannot proceed its execution faster than the high-
est priority task. In the priority-based scheduling, any tasks
must its execution by the next clock, that is, any task must
not postpone performances until the next period.

• Inter-task communicating: The micro-kernel provides semaphore,
message-queue, and message mailbox for inter-task commu-
nication. The semaphore is used to synchronize tasks. The
message queue and mailbox are used to communicate data
between tasks and synchronize tasks.

• Interrupt handling : Interrupt handling function is a special-
typed task for handling an interrupt form environment. That
is, the interrupt handler is almost same to general tasks ex-
cept that it begins its execution by interrupt while the tasks
begins by a scheduler.

• Task creating, deleting, idling and suspending : The micro-
kernel provides functions for task creating, deleting, idling
and suspending. When a task is created, the task acquires
Task Control Block(TCB) that is used to control task’s ac-
tivation by a scheduler and is subscribed in ready-list for
scheduling. When a task is deleted, the TCB relevant to the
task is returned to the kernel system in order to have other
new task acquire the TCB.



• Time managing : A task can request the kernel system to
delay its execution for a certain amount of time. After the
delay time, the kernel put the delayed task into ready-list for
rescheduling.

• System idling and reporting : There are two system tasks in
the kernel; idle and statistics task. The idle task is what takes
over a CPU whenever any other tasks do not their execution
any more. The statistics task diagnoses system status.

In addition, time-related functions exist to manage the system time,
however, there are no memory managing system and no deadlock-
related mechanisms that are essential to protect deadlock.

5. FORMAL SPECIFICATION
To apply the resource model-based method, firstly, the necessary
resource is identified resources from system requirement. The re-
sources in the PLC micro-kernel are as follows.

• Task Control Block(TCB) : TCB is a synchronous-typed re-
source for performance a application program in the PLC. It
is controlled to preempt CPU by the micro-kernel scheduler,
and the resource manager also used it for resource schedul-
ing. The behavior of it is deterministic as having the fol-
lowing state; Dormant, ready, running, waiting and interrupt
service routine.

• Inter-Task Communications (semaphore, message queue and
message mailbox) : Most ITC elements are all synchronous-
typed resources that are shared by tasks or interrupt handlers.
All of them has deterministic behavior as follows; Used or
not-used, and full, not-full or empty, and request or not-
request. Each of resources can have timing constraints.

• Memory : Memory is a synchronous-typed resource that is
physically shared by processes and interrupt handlers, hence
it should not be corrupted by any illegal accesses of processes
and interrupts handlers.

• I/O port : I/O port is shared by the environment and internal
functions in the system. And it may have timing constraints
to synchronize the environment and software functions. I/O
port can implemented in synchronous-typed or asynchronous
typed resource according to I/O mechanisms.

Figure 5: Semaphore behavior model

Figure 5 shows a simple semaphore behavior depicted in state-
charts(The syntax and semantics of the statecharts in this paper can
be referred to [6] and [7]). The states that the semaphore has in
the system are as follows; NOTCREATED, FREE, NOTFREE,
NOT FREE, IN REQUEST and BEINGSCHEDULED. The re-
quirement for the semaphore can be explained as follows.

• A semaphore can be created by a task. Then, the state of the
semaphore is determined by the creating task;

• A task can acquire a semaphore only when the semaphore is
not acquired by any other tasks.

• A task can request a semaphore even if the semaphore is
already acquired by other tasks, and the task can wait for
the semaphore releasing. If the semaphore is released, it is
scheduled according to task priority, and the highest priority
task can acquire it.

The model of a semaphore in Figure 5 depicts only the resource
behavior that will be used by any tasks. The following requirements
are more specific description for the semaphore functions that is
used by tasks. The following functions are described with focusing
on the semaphore resource behavior.

• SEM CREATE : SEMCREATE creates a semaphore, and a
task invoking the SEMCREATE immediately can preempt
it, or can just create it without preempting semaphore.

• SEM PEND : A task invoking SEMPEND can acquire a
semaphore only when the semaphore is not acquired by any
other tasks. Otherwise, the task should move from the ready-
list to the semaphore-requesting list.

• SEM POST : A task invoking SEMPOST releases a semaphore.
If there exist other tasks waiting for the semaphore, they
should be scheduled to acquire it according to task priority.

• SEM DELETE : SEM DELETE deletes a existing semaphore.
When a semaphore is deleted, the relevant semaphore-requesting
list should also deleted, and the tasks waiting the semaphore
should be return to the ready-list.

Functional models for the micro-kernel are constructed with refer-
ring to resource models that is created previously. Figure 6 shows
each behavior of semaphore-related functions in statecharts. All
of functions related semaphores should consider all of the states
of the semaphore because the resource type of the semaphore is
synchronous-typed. For instance, the semaphore-creating function
can create a semaphore only when the semaphore is already not
created. In addition, The functions related to the semaphore re-
source should consider all of the states of the resource. In other
words, all of the resource states must be satisfied by behavior of all
semaphore-using functions.

The semaphore functions is implemented with based on the func-
tion models.(Figure 7).

Now, we explain the models for the PLC micro-kernel. Figure 8(a)
shows a TCB resource that represents that task has DORMANT,
WAIT, READY, SYSTEM CALL, RUNNING and ISR state, and



task representing both TCB and user’s program executes user’s pro-
gram when TCB has RUNNING state. All of the transition in the
TCB model depends on scheduling and ITC functions. Message
mailbox resource(Figure 8(b)) is more complicated than the TCB
model. It shows all of resource behavior related to functions and
depicts that when and how the functions utilize the resource in de-
tail. Figure 9(a) shows a scheduling functions where the task are
scheduled according to the fixed-priority scheduling policy. The
mark “>” indicates that there exits some internal behavior in the
state so a behavior of a function can task place in the state. Fig-
ure 9(b) shows the semaphore-creating function, which is more
complicated rather than that in Figure 6(a). It disables the inter-
rupt that comes from the environment in order to protect a shared
resource(Event Control Block) to be corrupted.

6. FORMAL VERIFICATION
There are two kinds of formal verification methods in STATEM-
ATE MAGNUM. First, ModelChecker[10] is a simple verifier to
check whether the model is satisfied in terms of non-determinism of
transitions, race-condition of simultaneous read/write, reachability
to all or one state and so on. It gives the engineer a simple and easy
way for checking the consistency, completeness and robustness of
models. Another verifier is ModelCertifier[9], in which verification
property can be expressed in forms of predefined temporal property
patterns. The user knowing the semantics of these patterns, the user
can define very complex properties easily by instantiating pattern
parameters with STATEMATE MAGNUM expressions.

To apply model checking to the kernel models, firstly, we perform
ModelChecker to check the syntactical correctness. Moreover, we
perform reachability analysis to check completeness of the model
of the system. As shown in the functional models(Figure 6), they
have final state where indicates function’s success. We can easily
check the completeness by checking whether the final state in the
function model can be reachable from the beginning state of the
function. After that, we perform model checking to verify the user’s
requirement and property by using ModelCertifier.

The first verification property is mutual exclusion, and it is de-
scribed as follows.

More than two tasks never shares a semaphore.

A task can invoke SEMPEND function while other task invokes
another SEMPEND function simultaneously. Then, only one of
SEM PEND functions can enter into the SUCCESSSEM ACQUIRE
state that indicates that a task acquires the semaphore resource.
The property for the mutual exclusion in formal language is as fol-
lows. In this paper, we use the temporal logic of ModelCertifier in
STATEMATE MAGNUM(I-Logix).

in(TASK 1:SEM PEND:SUCCESSSEM ACQUIRE)
and

in(TASK 2:SEM PEND:SUCCESSSEM ACQUIRE)

The verification for mutual exclusion results in the micro-kernel
model satisfying the property.

Now, we are applying model checking for such properties as schedu-
lability, priority inversion, and mutual exclusion.

7. CONCLUSION
In this paper, we introduced formal models of a micro-kernel for
PLC to be developed in KNICS. The PLC is a safety-critical level
embedded system that should be certified by the certification orga-
nization in Korea.

For specification and verification of the model of the PLC micro-
kernel, we use statecharts and model checking methods in STATEM-
ATME MAGNUM.

When constructing the models, we apply the resource model-based
development methods to spiflication of the micro-kernel model be-
cause the resource in embedded systems plays a critical role in
terms of shares and time. Hence, we depicts dynamic behavior
of the resource for software functions, and verify the whole sys-
tem based on the resource behavior. In result, the function model
for each of the micro-kernel functions is specified with centering
around the resource identified from the requirement, and the verifi-
cation is easily performed by checking the resource states.

In future, we will verify more specific verification properties by us-
ing model checking and develop software requirement and design
models relatively based on the resource models.

8. REFERENCES
[1] IEEE std. 1016.1, guide to software design description,

1993.

[2] IEEE std 1012, standard for software verification and
validation, 1998.

[3] IEEE std. 803, recommended practice for software
requirement specification, 1998.

[4] IEEE std.1016, recommended practice for software design
specification, 1998.

[5] J.-Y. Choi, I. Lee, and H. liang Xie. The specification and
schedulability analysis of real-time systems using ACSR. In
IEEE Real-Time Systems Symposium, pages 266–275, 1995.

[6] D. Harel. Statecharts: A visual formalism for complex
systems.Sci. Comput. Program., 8(3):231–274, 1987.

[7] D. Harel and A. Naamad. The statemate semantics of
statecharts.ACM Trans. Softw. Eng. Methodol.,
5(4):293–333, 1996.

[8] G. Holzmann.The SPIN MODEL CHECKER.
Addison-Wesley, September 2003.

[9] http://www.osc es.de/products/en/modelcertifier.php.

[10] http://www.osc es.de/products/en/modelchecker.php.

[11] I. Lee, P. Br’emond-Gr’egoire, and R. Gerber. A process
algebraic approach to the specification and analysis of
resource-bound real-time systems, 1994.

[12] J. Penix, W. Visser, E. Engstrom, A. Larson, and
N. Weininger. Verification of time partitioning in the deos
scheduler kernel. InICSE ’00: Proceedings of the 22nd
international conference on Software engineering, pages
488–497, New York, NY, USA, 2000. ACM Press.

[13] O. Sokolsky. Resource modeling for embedded systems
design. InWSTFEUS, pages 99–103, 2004.



(a) Creating function

(b) Pending function

(c) Posting function

(d) Deleting function

Figure 6: Semaphore function models



Figure 7: Implementation of semaphore pending function



(a) Task resource

(b) Message mailbox resource

Figure 8: The resource models



(a) Scheduling function

(b) Semaphore creating function

Figure 9: The function models


