
Embedded Systems Security Co-Design

Matthew Eby, Jan Werner, Gabor Karsai, Akos Ledeczi

Institute for Software Integrated Systems

Vanderbilt University, Nashville, TN 37235

{firstname.lastname}@vanderbilt.edu

Abstract

There is an ever increasing concern about security

threats as embedded systems are moving towards

networked applications. Model based approaches have

proven to be effective techniques for embedded systems

design. However, existing modeling tools were not

designed to meet the current and future security

challenges of networked embedded systems. In this

paper, we propose a framework to incorporate security

modeling into embedded system design. We’ve

developed a security analysis tool that can easily

integrate with existing tool chains to create co-design

environments that addresses security, functionality and

system architecture aspects of embedded systems

concurrently.

1. Introduction

Model Integrated Computing (MIC) [1] is gaining

wide recognition in the field of embedded software

design. Models represent embedded software, its

deployment platform and its interactions with the

physical environment. Models facilitate formal

analysis, verification, validation and generation of

embedded systems [2]. Hence, this approach is superior

to traditional manual software development process.

Although, there is modeling tool support for analysis of

functionality, performance, power consumption, safety,

etc., currently available tools incorporate little if any

support for security modeling. As a result, security is

looked at only once the complete system has been built.

At best, this approach of addressing security in the last

stages of development is inefficient taking large

amounts of effort to achieve only modest improvements

in security.

Many times vulnerabilities are only discovered

once they have been exploited. We advocate modeling

environments that incorporate security into the early

design phase of embedded systems. In many embedded

applications system resources are scarce. Added

overhead for security can have drastic effects on

performance. An ideal embedded software

development environment will allow the engineer to

analyze security and performance tradeoffs based on

the hardware platform the system will run on.

2. Background and Motivation

MIC can meet the challenges of designing secure

embedded systems. A key advantage of the model

based approach is the abstraction of the application

domain. This abstraction is facilitated through the use

of DSMLs. A DSML provides a system designer a set

of concepts that are specifically tailored for a certain

application domain. In our case, the domain is

networked embedded real-time systems, such as

process control systems, automotive, avionics and

robotics systems. A DSML with the proper level of

abstraction hides the inconsequential details of a

system while allowing the engineer to shift focus to

more important aspects. There are many examples of

DSMLs developed for embedded system design in

different domains [MILAN [4], SMOLES [5], AADL

[4]]. By extending embedded system DSMLs, we can

add tool support for security analysis, validation,

verification and generation. These security tools will

extend the large tool chains that already exist for

embedded system design.

3. General Approach

We will demonstrate a process for integrating

security analysis into existing tool chains to create a

security co-design environment. The approach taken is

to create a common DSML that is used to capture and

analyze security properties of systems. The advantage

of this approach is that the effort needed develop the

security analysis tool is only spent once. Then this tool

can be incorporated into existing embedded systems

languages with minimal effort. By defining mappings

from an embedded system DSML onto the security

analysis DSML, we can analyze the security properties

the embedded system. Figure 1 illustrates the process

of defining mappings from one or more DSMLs onto a

language supporting security analysis and feeding the

analysis results back to the DSML.

DSML1
Security

Analysis

Language

Feedback Analysis

Results

DSMLn

Model

Transformation

DSML1
Security

Analysis

Language

Feedback Analysis

Results

DSMLn

Model

Transformation

Figure 1. Mappings from DSMLs to SAL enable

security analysis of the DSMLs

The co-design environment is implemented in the

Generic Modeling Environment (GME) [2]. GME is a

metaprogrammable tool which facilitates the graphical

implementation of DSMLs through the use of

metamodels. In this environment, we create a Security

Analysis Language (SAL) that enables a user to model

and analyze security related properties of embedded

systems. (Note that while SAL is technically a DSML,

from this point out we use the term DSML only in

reference to a language for embedded systems design

which we wish to add security analysis capabilities to.)

The purpose of this analysis tool is to identify points in

the system model that violate certain security

requirements and provide useful feedback to the

modeler. SAL allows such violations to be identified

and remedied at design time before they can be

exploited. Currently, SAL supports two types of

analyses: information flow analysis and threat model

analysis, which are detailed in the following sections.

3.1. Information Flow Analysis

The two traditional models for dealing with

information flow in systems are the Bell-LaPadula

model [6] and the Biba model [7]. Both of these

models enforce an access control scheme that defines

the rights of a subject to access information. Subjects

and information are assigned a security level and a

compartment which define what information a given

subject is permitted to access. The set of all security

levels is an ordered set that can be evaluated as an

inequality (i.e. Top Secret > Secret). Compartments

are a set that can be evaluated as an inequation (i.e.

FBI ≠ CIA). The Bell-LaPadula model deals with

confidentiality or secrecy of information in systems.

The Biba model deals with integrity of information in

systems.

Figure 2. Partitions and dataflows in SAL

SAL views a system as a set of partitions, a set of

data objects contained in each partition and the

dataflows inside and across the partitions. Dataflows

are represented as connections between input and

output ports on a partition. In SAL, partitions are the

subjects and are assigned a security level and

compartment attributes. A data object inherits the

security level and compartment classification of its

containing partition. SAL allows the security level to

be an integer value and the compartment to be a string

value. Our analysis tool treats each data object as the

root node in a tree search algorithm. The tool will

traverse the dataflow paths originating from a data

object and verify that each partition through which that

data object flows has a security level and compartment

that permit that partition to access the data object.

Bell-LaPadula does not allow information to flow to a

lower security level while Biba does not allow

information to flow to a higher security level. Data

objects in SAL are assigned two Boolean attributes,

secrecy and integrity. The flow of every data object is

evaluated based on the settings of these attributes.

When secrecy is true the Bell-LaPadula model is

enforced and when integrity is true the Biba model is

enforced on the flow of that data object between

partitions. Figure 2 shows a small example model in

SAL.

3.2. Threat Model Analysis

The information flow analysis addresses potential

security vulnerabilities in the logical channels explicitly

defined for a system. In actual system these logical

channels are implemented on a physical channel which

is susceptible to attack. To prevent such attack, the

communication channel can be encrypted. Adversary

modeling in SAL enables the analysis tool to identify

vulnerable channels and determine which encryption

algorithms can be used to protect data being

transmitted on that channel. Figure 3 illustrates the

adversary model.

Figure 3. Encryption algorithms library and

adversary models in SAL

In each system there is a library of encryption

algorithms that contains the set of all encryption

algorithms that can be used to encrypt a channel. Each

system also contains a set of adversary models that

define which encryption algorithms are vulnerable in

the context of that adversary. Each adversary contains

a set of references to algorithms that are defined in the

algorithms library. Each reference has an attribute,

maxkeysize, which means that the referenced algorithm

is vulnerable to that adversary if the strength of its

encryption is not greater than maxkeysize. Together,

the encryption algorithm library and adversary models

allow our analysis tool to determine which algorithms

are safe to use to encrypt information flows. Each

information flow in SAL has an attribute, adversary,

which identifies the adversary model associated with

that information flow. Each information flow in SAL

also has an EncryptionAlgorithm and KeySize attribute.

For each information flow in the system, the analysis

tool checks the EncryptionAlgorithm and KeySize

attribute against the set of encryption algorithms that

are vulnerable for the adversary model specified by

adversary.

3.3. Integrating Security Analysis with

Existing Tool Chains

Although, there is modeling tool support for

analysis of functionality, performance, power

consumption, safety, etc., currently available tools

incorporate little if any support for security modeling.

As a result, security is only addressed once the

complete system has been built. We want to leverage

the work behind existing tool chains by incorporating

security analysis in the system design process. SAL

was created to be a reusable tool that can be integrated

with multiple tool chains, thus reducing the effort that

would be required to develop custom security analysis

for each tool chain.

By defining a transformation that maps models of

an embedded system DSML onto SAL, we can perform

information flow analysis and threat model analysis on

the embedded systems models. One of the powerful

concepts of the MIC approach is easy composition of

metamodels to form new languages. By composing the

metamodel of a DSML with concepts from SAL, it is

relatively easy to form these security specific

extensions to an existing language. The tool designer

can then create the transformation rules that map

models in the DSML onto models in SAL.

Figure 4 shows a typical design flow for

performing security analysis with an embedded system

DSML.

Figure 4. Typical embedded system design

flow with SAL

As a proof of concept, we have integrated SAL

with an existing tool for the design of embedded

systems called SMOLES [5]. For full description of

the composition of SAL and SMOLES refer to [8].

4. Conclusion

We have demonstrated a security analysis tool that

is capable of analyzing the flow of data objects through

a system and identifying points in a distributed system

that are vulnerable to attack. We have outlined a

method for composing this type of security tool with

existing tool chains for DSMLs. This approach

leverages the development efforts that have gone into

design of tool suites for existing embedded system

DSMLs. Creating a separate analysis language for

security properties allows reuse of this tool for multiple

DSMLs.

7. Acknowledgement

This work was supported in part by TRUST (The

Team for Research in Ubiquitous Secure Technology),

which receives support from the National Science

Foundation (NSF award number CCF-0424422).

8. References

[1] Sztipanovits, J.; Karsai, G. Model-integrated

computing, Computer Volume 30, Issue 4, April 1997

Page(s):110 – 111

[2] Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.:

“Model-Integrated Development of Embedded Software,”

Proceedings of the IEEE, Vol. 91, No.1., pp. 145-164,

January, 2003

[3] Kevin Poulsen, Slammer worm crashed Ohio nuke plant

network, August 19 2003. Available at

http://www.securityfocus.com/ news/6767

[4] Available from the Authors

[5] Szemethy, T. and Karsai, G. 2004. Platform modeling

and model transformations for analysis. Journal of Universal

Computer Science 10, 10, 1383–1406.

[6] D.E. Bell and L.J. LaPadula. “Secure Computer

Systems: Mathematical Foundations and Model,” Mitre

Corp. Report No. M74-244, Bedford, Mass., 1975.

[7] K.J. Biba, “Integrity Considerations for Secure

Computer Systems,” Mitre Corp. Report TR-3153. Bedford.

Mass., 1977.

[8] Eby, M., Werner, J., Karsai, G., Ledeczi, A.,

“Integrating Security Modeling into Embedded System

Design.” International Conference and Workshop on

the Engineering of Computer Based Systems, IEEE,

March, 2007

