Kensho: A Dynamic Tasking Architecture for Sensor Networks

James Horey
Department of Computer Science
University of New Mexico

jhorey@cs.unm.edu

Abstract

Recent research on sensor network programming archi-
tectures has managed to alleviate many common program-
ming burdens, but has not fully addressed the problems as-
sociated with tasking and deployment. This has impeded the
development of new multi-purpose sensor networks that re-
quire new software abstractions and mechanisms.

We present the design of a new software architecture for
sensor networks that provides abstractions to explicitly ad-
dress the issues of tasking and deployment. We also present
an initial implementation of our architecture in simulation
to investigate the potential memory overheads. Finally, we
present a mobile tracking application to demonstrate how to
use the abstractions provided by our architecture.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures

General Terms

Design Languages

1 Introduction

New application scenarios, such as large-scale urban
sensing, are driving sensor networks in new directions. One
direction is the move from dedicated, single-purpose net-
works to open, multi-purpose sensor networks[22]]. Un-
like single-purpose sensor networks[[17][[14][8], these multi-
purpose networks will amortize deployment costs by sup-
porting multiple applications provided by many users. This
additional functionality requires more flexible tasking ab-
stractions than provided in existing architectures.

In general, multi-purpose sensor networks impose the fol-
lowing requirements:

e Tasking - The process of mapping a set of functions
onto a set of nodes. The user must be able to define
the set of sensor nodes flexibly and easily.

e Dynamic Retasking - The process of remapping the set
of functions running on a set of nodes following some
internal or external event.

e Redeployment - Mechanisms to handle the removal and
introduction of sensor nodes gracefully are necessary.

Existing sensor network architectures do not fully address
these tasking requirements and, as such, are inadequate with
respect to next generation, multi-purpose sensor networks.

Arthur B. Maccabe
Department of Computer Science
University of New Mexico

maccabe@cs.unm.edu

Angela Mielke
Los Alamos National Laboratory

amielke@lanl.gov

New tools and architectures that recognize and solve these
deficiencies are necessary.

We present the design of a communications and tasking
architecture called Kensho. Kensho provides abstractions
and mechanisms to explicitly address the issues associated
with tasking multi-purpose sensor networks. The Kensho ar-
chitecture extends common abstractions such as group spec-
ification, task assignment, and name-based communication,
and uniquely combines these abstractions to address the pre-
viously outlined requirements.

2 Overview and Abstractions

The Kensho architecture relies on the following key ab-
stractions:

e Explicit group specification
e Hierarchical task assignment
e Hierarchical tuple-based communication

Kensho’s explicit group specification allows the user to spa-
tially and temporally divide the sensor network. Hierarchi-
cal task assignment then uses the explicit group specifica-
tions to map functions onto the sensor network. Functions
are tasked either to run on individual group members or to
run collectively on the group. Finally, this tasking structure
is used to provide tuple-based communication with a hierar-
chical namespace. Data is sent and received according to the
role assigned to the function.

Limited versions of these abstractions have been explored
in the literature[21][18][3]. However, previous works have
used these abstractions in isolation, limiting the applicability
of these systems in addressing all the tasking requirements.
The Kensho architecture expands upon these initial ideas and
uniquely combines these abstractions to create a more flexi-
ble tasking architecture.

2.1 Explicit Group Specification

Explicit group specification is used to functionally di-
vide the sensor network into different roles. Such roles in-
clude simple tasks such as data collection and aggregation,
and complex tasks such as object classification and tracking.
Currently, many systems[[7][19] implicitly define roles; sen-
sor nodes are defined by the code they currently run. Explicit
functional roles allow us to use groups in conjunction with
other abstractions such as hierarchical task assignment and
communication.

Groups are defined in the Kensho architecture using the
following user provided information:



e Admission Function

e Potential Candidate List

An admission function is a binary function, unique to
each group, that is executed by sensor nodes to determine
group membership. The admission function is capable of ac-
cessing local storage and sensor data using the API described
in Section 3] The ability to access the local storage and sen-
sor devices allows membership in a group to be defined by a
wide array of data conditions. For example, a simple admis-
sion function may read one or more sensor values, perform
some simple computation on the data, and return true if the
result exceeds some threshold.

The user is able to limit which sensor nodes run the ad-
mission function by specifying a candidate list. The candi-
date list contains the set of unique IDs of the sensor nodes
that should execute the specified admission function.

The Kensho architecture allows the user to specify two
group types: static and dynamic. These group types corre-
spond respectively to spatial and temporal divisions in labor,
and differ in when the admission function is executed. For
static groups, the admission function is run once when the
sensor node receives the admission function. A true return
value indicates that the sensor node should join the group.
Otherwise, the sensor node should not join the group. Mem-
bership in static groups does not change over time. This al-
lows static groups to be used for spatial division of labor.
For example, sensor nodes equipped with passive infrared
devices could be statically grouped and would run analy-
sis functions that differ from functions running on nodes
equipped only with thermistor devices.

For dynamic groups, the admission function is run peri-
odically throughout the lifetime of the sensor node. As such,
one of four situations can occur:

e The admission function returns true and the sensor node
currently is not a member of the group. The sensor node
then joins the group.

e The admission function returns frue and the node is al-
ready a member. The sensor node then continues being
a member.

e The admission function returns false and the node is al-
ready a member. The sensor node then leaves the group.

e The admission function returns false and the node is not
a member. The sensor node does nothing.

Because dynamic group membership can change over
time, dynamic groups allow the sensor network to be tasked
temporally. This can be used, for example, to activate analy-
sis functions that only run when an object is near a group of
sensors. These functions would automatically stop running
once the object moves away from the sensors.

2.2 Hierarchical Task Assignment

Task assignment is the process by which a set of func-
tions is mapped to a set of sensor nodes. By leveraging
explicit group specification, functions are mapped to func-
tional groups instead of specific sensor nodes. This makes
the system more robust to individual sensor node changes;
as new nodes are introduced into the network and old nodes

are removed, the Kensho architecture can remap the tasked
functions onto alternative sensor nodes associated with the
group. In the case of dynamic groups, tasked functions stop
executing when the sensor node leaves the group. Unlike
other software architectures|9], tasked functions in Kensho
consist of normal C functions that are not restricted to pre-
defined tasking instructions. Examples of functions and au-
tomatic function remapping is given in Section 4}

The Kensho architecture provides two methods to task a
group: collective and local. Locally tasked functions are run
on the group members while collectively tasked functions
are run on the group. These tasking abstractions are similar
to the process of abstracting for-loops with a functional map
operation, where instead of applying the same function itera-
tively to each data value, the function is applied to the entire
list. Code that samples and reports sensor data can be locally
tasked to the appropriate group without specifying individ-
ual sensor nodes. Similarly, instead of assigning code that
aggregates data to run on a pre-defined leader node, the user
can specify that this code be tasked as a collective function.
Because the user does not choose which sensor node per-
forms the collective operation, the Kensho runtime has the
flexibility to choose from multiple group leader policies. For
instance, collective functions could be implemented to run
on a single powerful node, or rotate between multiple sensor
nodes. Although the current algorithm explored in Section
[B]uses a single leader election scheme, exploring alternative
group leader policies remains a subject for future work.

2.3 Hierarchical Communication

By taking advantage of its hierarchical tasking scheme,
Kensho is able to abstract common communication patterns
by providing the following communication mechanisms:

e All communication consists of accessing named data
tuples

e Data tuples are accessed strictly according to the task
structure

e Sensor devices on nodes are accessed using the same
communication methods

These abstractions closely match the data-centric nature
of sensor network applications and alleviates the need for
the programmer to manage network messages. In order to
provide these abstractions, each group, along with individ-
ual sensor nodes, contains its own storage structure. Locally
tasked functions access the storage associated with a particu-
lar group member, while collectively tasked functions access
a separate group storage. Data tuples can only be placed into
the group storage by locally tasked functions using a pub-
lish command. Likewise, collectively tasked functions can
only place data items into the local storage of group members
by performing a push command. These operations abstract
many-to-one and one-to-many communication patterns and
are similar to the patterns explored by Chu et al.[4].

The Kensho architecture also allows interaction with the
underlying sensor devices using the same communication
methods. Each sensor node maintains a list of reserved key-
words that specify particular sensor devices. For instance,
the string magnetometer interfaces with the magnetometer



Function RAM Overhead (bytes)
Group Management 1284
Thread Management 956
Radio Management 84
Total 2324

Figure 1. The table shows the RAM usage for the major
Kensho components.

device. Upon accessing a data tuple with that name, the
Kensho architecture redirects the request to the appropriate
sensor device. The sensor device then returns a data item
containing the sensor reading.

By employing a single abstraction for both sensor data
and stored data, a single function specification is able to
serve multiple roles. A function referring to thermistor ac-
cesses the thermistor device if locally tasked on a node. If the
same function is tasked as a collective function on a group of
nodes, the data is fetched from the group store.

3 Preliminary Implementation

We have implemented the Kensho architecture using an
in-house sensor network system simulator. The purpose of
this implementation is to demonstrate the usefulness of our
architecture and to investigate preliminary memory over-
heads. Measuring detailed communication overhead is a
subject of future work. As such, our simulator provides a
system-level view of the sensor nodes. Each node is simu-
lated by a process linked with the Kensho library. Wireless
communication is handled by a separate broadcast daemon.
An external environmental simulator is used to provide sen-
sory data. Although we could have used other available sim-
ulators, such as NS—2F_-] or TOSSIM[15], the purpose of the
initial implementation justified using our simulator for sim-
plicity.

All user functions, including the admission functions, are
written in C. The Kensho abstractions are implemented as a
set of two C libraries, one for grouping and tasking and an-
other for communication, that can be used by user functions.
Sensor nodes that are responsible for tasking, typically con-
nected to the user’s laptop, employ the grouping and task-
ing library. Otherwise, sensor nodes that are being tasked
are only linked with the communication library. We assume
each sensor node runs an operating system linked with one
of these Kensho libraries.

All code was compiled using gcc 3.4 with the Os compiler
flag for the Pentium architecture. The current implemen-
tation consumes a total of 2.27 kb of data memory (RAM
- BSS and DATA sections). Our implementation also con-
sumes 14.2 kb of static program memory (ROM - TEXT sec-
tion) for individual nodes. Figure[T|breaks down the memory
overhead by major Kensho components. Current platforms
such as the TelosB contains 48 kb of program flash mem-
ory and 10 kb of data memory and can accommodate the
current memory overheads. Further code optimization and
removal of redundant functions and datastructures should re-

lywww.isi.edunsnamns

duce memory overheads.

3.1 Group and Task Implementation

The grouping and tasking library includes methods to cre-
ate both static and dynamic groups. The grouping methods,
new_static_group and new_dynamic_group, accept a pointer
to the admission function, along with the an array represent-
ing the candidate list. This array contains the unique IDs
of the candidate sensor nodes. The library also includes a
method, compute, that provides the tasking capabilities. The
compute method accepts a group ID identifying the group,
an identifier for the function that is to be run on the group,
and a flag indicating whether the function should be tasked
collectively or locally. This API is summarized in the top
figure of Figure

In order to use these methods, the user must construct a
simple C program linked with the grouping and tasking li-
brary. Once compiled, all grouping and tasking instructions
are translated into a series of network messages. These mes-
sages, along with the object files containing the tasked func-
tions, are then propagated onto the simulated sensor network.

In our current implementation, each group elects a sin-
gle leader to execute all collective functions. When a sensor
node joins a group, it initiates a leader election protocol. In
our election protocol, each node maintains a record of the
current leader. Initially, each node records its own ID as the
current leader. It then floods an election message that con-
tains its own ID. Upon receiving a leader election message,
the sensor node inspects the message and if the message has
a larger ID value than the current leader, the node updates its
leader value and then retransmits the message with the larger
ID. This continues until all the nodes in the group converge
upon a common answer. Currently, each node assumes that
a common answer has been achieved if it has not received a
new election message in some short period of time. Upon
converging on a common leader, a message is sent to that
node electing it as the leader. Afterwards, the leader floods a
keep-alive beacon to all the members of the group.

When a new leader is selected (old leaders may leave the
group or new sensor nodes may be introduced), the previous
leader is able to initiate a leader-handoff protocol with the
new group leader. This protocol transfers data contained in
the group storage to the new leader, but does not transfer the
current state of the collective function. In our current imple-
mentation, all group members cache the collective functions
associated with their group.

3.2 Storage and Sensor Access

The hierarchical communication and storage library con-
tains methods to access both the local and group storage,
along with the sensor devices. Unlike the grouping and task-
ing instructions, which are concerned with the entire sensor
network, these instructions are used by the tasked functions
to exchange data within defined groups. The API is summa-
rized in the bottom table of Figure 2]

The local and group storage is currently implemented as
a hash table. Data items are accessed via simple string-based
names and stored as arrays. These methods are synchronous
and return a list of data items. If the user attempts to access



Tasking API

Description

new_static_group

Takes in a list of IDs and forms a new static group.

new_dynamic_group

Takes in an admission function and forms a new dynamic group|

compute

Associates groups with a set of functions.

Local API

Description

ublish_data

Stores named data in the group collective store.

collect data

Retrieves named data either from the local store or the sensor devices.

remove data

Removes the named data from the local store.

Figure 2. The collective API describes the methods available for group creation and tasking. The local API describes

the methods available for communication and data access.

non-existent data, the method returns an empty list.

The data access method, collect_data, also accesses the
local sensor devices for locally tasked functions running on
sensor nodes. Each sensor device registers a name during
device initialization. Accessing data with a sensor device
name activates and reads data from the appropriate sensor
device. Collectively tasked functions accessing data with the
name of a sensor device instead accesses the group storage.

3.3 System Requirements

Kensho is not designed as a stand-alone system and re-
quires basic functionality from an underlying operating sys-
tem. We assume that the operating system is capable of
loading and unloading new application modules. Prelimi-
nary work in dynamically linked application modules[L1][15]
demonstrate this as a reasonable assumption. Due to the
abstractions that Kensho provides, operating systems that
export a thread-like interface for application functions are
more suitable[6][2]. The Kensho architecture also assumes
an underlying messaging protocol. Although our simulation
currently employs a flooding protocol, we are investigating
more efficient protocols for data routing[[13[][12] and code
propagation[16].

4 Mobile Object Tracking

We developed a mobile-object simulator and an associ-
ated tracking application using the Kensho architecture. This
application benefits from the Kensho architecture by using
dynamic groups to task functions that continue to execute
even as the group membership changes. The admission func-
tion reads the magnetometer value and returns frue when
the value is positive, otherwise it returns false. The admis-
sion function superficially resembles the left-hand function
in Figure However, instead of publishing the collected
data, the admission function returns true. This admission
function ensures that as the object moves away from a sen-
sor node, the node leaves the group and stops processing.

In our simulation, an object starts at position (5, 5) and
moves in a clockwise, circular fashion at a velocity of 1.35
units per time interval. Sensor nodes are placed in 1 unit in-
crements in a grid layout. When the object is within a prede-
fined radius of a magnetometer sensor, the sensor registers a
positive value. Sensor nodes within the sensor radius employ
a centroid algorithm similar to the one presented by Welsh et
al.[20] to estimate the position of the object. Since our archi-
tecture does not focus on the actual programming methods,

the details of the centroid algorithm are omitted.

The locally tasked function reads the magnetometer sen-
sor (line 1 of Figure [3) and publishes extreme data values to
the group storage (line 3). All sensor nodes within the radius
of detection runs the locally tasked function. The collective
function, in turn, collects the data published by the nodes
(line 1) and performs the centroid algorithm using that data
(line 2). Finally, the collective function publishes the result
to the user (line 3).

Figure ] shows that as new sensor nodes join the dynamic
group, they automatically begin executing the locally tasked
functions. The collectively tasked function also automati-
cally executes on the group leader even as group leaders
change. Although the application was run in simulation, ini-
tial results indicate that dynamic groups can be used to accu-
rately track mobile objects.

5 Related Work

Kensho builds upon previous work in programming and
communication architectures. The Tenet architecture[9]] sep-
arates mote-level functionality from basestation functional-
ity by restricted the tasking language used on the sensor
nodes. Similarly, the Kensho architecture abstracts the no-
tion of code running on a basestation from code running
on individual nodes. However, sensor nodes are not re-
stricted by a specialized tasking language and users are en-
couraged to employ the idea of collective and local functions
on groups. In this light, the Tenet architecture can be viewed
as a specific implementation of some of the Kensho abstrac-
tions.

EnviroTrack[1] is a programming tool that uses mech-
anisms similar to Kensho’s dynamic group. EnviroTrack,
however, is primarily designed for mobile object tracking ap-
plications while Kensho addresses a wider array of applica-
tions. Kairos[10] is a macroprogramming tool that shares
similarities with Kensho’s collective tasking abstractions.
However, Kairos does not explicitly address tasking and re-
quires user programs to address specific nodes.

SINA[19]] employs automatic clustering of sensor nodes
based on power-level and proximity. Groups of sensor nodes
that rely on other attributes, such as shared sensor readings,
can only be defined implicitly within a query.

Agent-based systems, such as Agilla[[7] also implicitly
defines groups by the nodes that the agents decide to visit.
This makes it difficult to change the set of nodes the agent
should execute on without modifying the code contained



for(;;) {
data = collect_data("magnetometer");
if(data.value > THRESHOLD)
publish_data("location", data.value);
sleep (NODE_INTERVAL);

[1]
[2]
[3]
[4]

}

[1]
[2]
[31]
[4]
[5]

for(;;) {
data = collect_data("location");
centroid = polygon_average(data.value, data.num_data);
publish_data("centroid", centroid);
remove_data("location");
sleep(COLLECT_INTERVAL);

Figure 3. The locally tasked function on the left collects environmental data using a collect_data call to the Kensho Node
APL. It then publishes that data to be consumed by the collective computation. The collective computation, shown on
the right, collects the data from the nodes using a collect_data and calculates the centroid.

Mobile Object Sensor Positions

Mobile Object Tracking

Tracking Accuracy

N 8- |—®—Actual Position
=& Estimated Position

Distance

Time

Figure 4. The circles indicate which sensors are in the dynamic group as the object moves in a clockwise direction. The
horizontal line in the right figure represents the normalized path of the object, while the points indicate how far from

the actual object the algorithm predicted the object to be

within the agent itself.

Hoods[21] and Abstract Regions[20] are both neighbor-
hood based programming abstractions and provide comple-
mentary services to Kensho. While Kensho uses groups to
task the sensor network, Hoods and Abstract Regions are
concerned with the communication and topological structure
of these groups for programming purposes.

Romer et al. have explored frameworks for role assign-
ment in sensor networks[[18]]. Our work operates at a lower
level in the software stack and provides complementary ser-
vices. Finally, Melete[22] is a recent system that supports
concurrent applications. Their work, however, operates at
the node level and is not concerned with higher level tasking
abstractions.

6 Conclusion and Future Work

In this paper, we presented the design and initial imple-
mentation of a communications and tasking architecture for
sensor networks. By extending and combining program-
ming and communication abstractions explored in existing
systems, our architecture is able to task and deploy multi-
purpose sensor networks gracefully. Specifically, our archi-
tecture tasks the sensor network both spatially and tempo-
rally using explicit group specification. Functions can be
tasked to run collectively or locally on these groups; this ab-
stracts the division in labor found in other systems. Our ar-
chitecture takes advantage of a hierarchical tasking scheme
to abstract data storage and communication between collec-
tive and local functions. Results from a mobile object track-
ing application demonstrate that the abstractions provided by
our system are useful and can simplify application tasking.

These initial results indicate that our architecture aids in the
construction and deployment of realistic sensor network ap-
plications.

We are in the process of porting the Kensho architecture to
run on existing sensor network platforms, such as the TMote
Sk The memory overheads from our prototype implemen-
tation indicate that a port to such resource constrained plat-
forms is viable. We expect to test the communication over-
heads associated with tasking and data storage access once
this port is complete.

We are also exploring alternate group leader policies and
distributed group implementations to improve system robust-
ness. Because the user does not specify the sensor node col-
lective functions are executed on, we expect to test these al-
ternate leader policies without affecting the correctness of
user programs.

6.1 Acknowledgments

This paper is supported by the U.S. Department of En-
ergy/NNSA and Los Alamos National Laboratory under con-
tract DE-AC52-06NA25396 and approved for public release
under LA-UR-06-6041.

7 References

[1] T. Abdelzaher, B. Blum, Q. Cao, Y. Chen, D. Evans,
J. George, S. George, L. Gu, T. He, S. Krishna-
murthy, L. Luo, S. Son, J. Stankovic, R. Stoleru, and
A. Wood. Envirotrack: Towards an environmental com-
puting paradigm for distributed sensor networks. In
ICDCS, 2004.

2www.moteiv.com



(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose,
A. Sheth, B. Shucker, and R. Han. Mantis: System
support for multimodal networks of in-situ sensors. In
WSNA, 2003.

N. Carriero and D. Gelernter. Linda in context. Com-
mun. ACM, 32(4):444-458, 1989.

D. Chu, K. Lin, A. Linares, G. Nguyen, and J. Heller-
stein. Sdlib: A sensor network data and communica-
tions library for rapid and robust application develop-
ment. In IPSN/SPOTS, 2006.

A. Dunkels, N. Finne, J. Eriksson, and T. Voigt. Run-
time dynamic linking for reprogramming wireless sen-
sor networks. In SenSys, 2006.

A. Dunkels, O. Schmidt, T. Voigt, and M. Ali. Pro-
tothreads: Simplifying event-driven programming of
memory-constrained embedded systems. In SenSys,
Nov. 2006.

C.-L. Fok, G.-C. Roman, and C. Lu. Mobile agent
middleware for sensor networks: An application case
study. In 7/PSN, 2005.

L. Girod, M. Lukac, V. Trifa, and D. Estrin. The
design and implementation of a self-calibrating dis-
tributed acoustic sensing platform. In SenSys, 2006.

R. Govindan, E. Kohler, D. Estrin, F. Bian, K. Chin-
talapudi, O. Gnawali, R. Gummadi, S. Rangwala, and
T. Stathopoulous. Tenet: An architecture for tiered em-

bedded networks. Technical report, Center for Embed-
ded Networked Sensing, 2005.

R. Gummadi, O. Gnawali, and R. Govindan. Macro-
programming wireless sensor networks using kairos. In
DCOSS, 2005.

C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Sri-
vastava. Sos: A dynamic operating system for sensor
nodes. In MobiSys, 2005.

J. W. Hui and D. Culler. The dynamic behavior of a
data dissemination protocol for network programming
at scale. In SenSys, 2004.

C. Intanagonwiwat, R. Govindan, and D. Estrin. Di-
rected Diffusion: A Scalable and Robust Communi-
cation Paradigm for Sensor Networks. In MobiCom,
2000.

P. Juang, H. Oki, Y. Wang, M. Martonosi, L.-S. Peh,
and D. Rubenstein. Energy-Efficient Computing for
Wildlife Tracking: Design Tradeoffs and Early Expe-
rience with ZebraNet. In ASPLOS, 2002.

P. Levis. Tossim: Accurate and scalable simulation of
entire tinyos applications. In SenSys, 2003.

P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle:
A self-regulating algorithm for code propagation and
maintenance in wireless sensor networks. In NSDI,
2004.

A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler,
and J. Anderson. Wireless Sensor Networks for Habitat

(18]

(19]

(20]

(21]

(22]

Monitoring. In WSNA, 2002.

K. Romer, C. Frank, P. J. Marrén, and C. Becker.
Generic role assignment for wireless sensor networks.
In 711th ACM SIGOPS European Workshop, 2004.

P.-C. Shen, C. Srisathapornphat, and C. Jaikaeo. Sen-
sor Information Networking Architecture and Applica-
tions. IEEE Personel Communication Magazine, Au-
gust 2001.

M. Welsh and G. Mainland. Programming sensor net-
works using abstract regions. In NSDI, 2004.

K. Whitehouse, C. Sharp, E. Brewer, and D. Culler.
Hood: a neighborhood abstraction for sensor networks.
In MobiSys, 2004.

Y. Yu, L. J. Rittle, V. Bhandari, and J. B. LeBrun. Sup-
porting concurrent applications in wireless sensor net-
works. In SenSys, 2006.



	Introduction
	Overview and Abstractions
	Explicit Group Specification
	Hierarchical Task Assignment
	Hierarchical Communication

	Preliminary Implementation
	Group and Task Implementation
	Storage and Sensor Access
	System Requirements

	Mobile Object Tracking
	Related Work
	Conclusion and Future Work
	Acknowledgments

	References

