
An Architecture for Energy Management in
Wireless Sensor Networks

Xiaofan Jiang†, Jay Taneja†, Jorge Ortiz†, Arsalan Tavakoli†, Prabal Dutta†, Jaein Jeong†,
David Culler†?, Philip Levis‡, and Scott Shenker†

†UC Berkeley EECS Dept. ‡Stanford CS Dept. ?Arch Rock Corporation
Berkeley, California 94720 Stanford, California 94305 San Francisco, California 94105

1 Introduction
Sensornets are becoming more widely adopted for com-

mercial and scientific use and, in settings where battery re-
placement or recharging is difficult, it is important that sen-
sornets have long and predictable lifetimes. We thus expect
energy management to play an increasingly important role in
meeting user requirements. Today, system developers seek
a balance between network lifetime and performance, but
recent history shows that unexpected and dynamic environ-
mental conditions often scuttle expected energy budgets.

For example, many nodes in the Great Duck Island de-
ployment were conjectured to have died prematurely be-
cause unexpected overhearing of traffic caused radios to be-
come operational for longer than originally predicted [22].
This pattern was repeated in the Redwoods deployment, but
for a supposedly different reason: some nodes seemingly
died prematurely because they became disconnected from
the wireless network and depleted their batteries trying to re-
connect [24]. Even systems augmented with energy harvest-
ing are still susceptible to this type of problem. In the Trio
Testbed, seasonal and daily variations in solar power, the an-
gle of inclination of the solar cell, the effect of dirt and bird
droppings on the cells, and the inefficiencies in power stor-
age and transfer resulted in node duty cycles ranging from
20% to 100% [5].

The issues with these deployments arise from mistaken
assumptions, unforeseen difficulties, and unpredictable en-
vironmental dynamics. Solutions to these issues take two
extreme approaches. At one extreme, some have proposed
runtime adaptation to meet lifetime requirements [16] or en-
ergy availability [11, 10]. While promising, these efforts
have addressed rather coarse-grained, high-level adaptation
– for example, by adjusting sampling rates or varying the
system-wide duty cycle – but they remain silent on prior-
itizing energy usage in a fine-grained and flexible manner.
At the other extreme, low-level energy management mecha-
nisms that give direct control over the hardware to multiple
entities (e.g. network protocols) can be tedious to implement
and difficult to debug because of the lack of any isolation.
Arbitration can address the isolation problem, but it does not
enable runtime adaptation to varying workloads [12].

We believe that using an energy management architecture
would alleviate or even prevent these types of problems. Sec-

Enforcement
Mechanisms

Energy Manager

Energy
States

Energy Monitor

Component
E. Usages

S
p
e
c
if
ic

a
ti
o
n

E
M

I

A
P

I

A
p
p
lic

a
ti
o
n

EMA

Translation

U
s
e
r

P
o
lic

y

Hardware
Energy Monitor

Figure 1. Energy Management Architecture

tion 3 examines in greater depth how applications might ben-
efit from this architecture.

To provide a basis for energy management, we suggest
an architecture that allows sensornet application writers to
treat energy as a fundamental design primitive. Building
systems that manage energy as a critical resource is not a
new concept; research in a number of areas harnesses this
idea. In fact, our architecture incorporates many of these
concepts, including classifying energy as a first-class OS re-
source [26], prioritizing resource requests [2], accounting
for fine-grained energy consumers [19], allocating resources
based on dynamic constraints [7], and providing quality-of-
service (QoS) guarantees by using feedback [13]. In ad-
dition, we adopt a three component decomposition that is
common for architectures managing scarce shared resources,
seen in Figure 1: (1) a policy interface for user input, (2) a
mechanism to monitor and control system and component
resource usage, and (3) a management module for enforcing
policy directives. Section 2 describes the specific roles of
these components in our architecture.

By employing and adapting concepts from traditional OS,
networking, and architecture literature, we envision an en-
ergy management architecture (EMA) that allows sensor-
net applications to accurately view and efficiently manage
the energy budget of a node. The primary contributions of
this work beyond existing architectural efforts are facilities
for: (1) individual accountability for management of com-

putational units relevant to sensornets, (2) priority of pol-
icy directives to enable graceful degradation and predictable
operation in a dynamic environment, and (3) expression of
network-level policy that can be used by individual nodes
for local optimization and shared among nodes to adjust the
behavior of the network as a whole. In its entirety, the EMA
promotes prioritized enforcement of policy during runtime
operation as well as enables improved system behavior visu-
alization for debugging during application development.

2 Architecture Overview
Our vision of an energy management architecture con-

sists of three basic components, reminiscent of classic OS
resource management architectures: a specification compo-
nent, an energy monitor, and an energy manager, as seen in
Figure 1. The specification component provides a set of in-
terfaces to the programming paradigm and communicates the
energy policy to the monitor and the manager. The moni-
toring component observes granular component energy us-
ages via a set of interfaces to the application. It also moni-
tors overall system energy such as remaining battery energy
and incoming harvested energy. The management compo-
nent uses energy information from the monitoring compo-
nent to enforce user policies conveyed by the specification
component and performs admission control on activities via
interfaces to the application similar to the interfaces used by
the monitoring component. While some of these ideas have
been well-studied in other areas of computer science, they
have not been applied to sensornets effectively due to unique
resource challenges. We highlight some of these challenges
and offer possible solutions.

2.1 Specification of User Policy
Allowing a user to specify a set of directives that are dy-

namically checked and automatically satisfied at run-time by
the system is a powerful idea that exists in many subareas of
OS and networking. Applying this principle, we believe that
empowering the user of a sensornet with the mechanism to
directly specify energy-related requirements is very useful.
Following is an example:
1. Network lifetime of at least one year.
2. Sample all sensors at 1Hz.
3. a. Communicate readings on multihop tree.

b. Store readings locally.
4. Maximize sampling rate.

2.1.1 Expressive Interface
The specification component in our EMA provides an in-

terface (herein, EMI) to the upper layer programming model.
The programming model is responsible for translating user
policy, usually written in a high-level language, through use
of the EMI. The expressiveness of EMI plays a significant
role in both the complexity of EMA and the amount of re-
sponsibility required of the programming model.

There are several benefits of having an expressive EMI. A
rich interface will allow EMA to support a range of program-
ming models and user policies. If a programming model is
relatively simple, it can offload user policy to EMA with-
out performing complicated translation; if a programming
model is complex or if it performs some measures of energy

management internally, it should still be able to use the EMI
effectively while maintaining tight control over resources.

Furthermore, users may desire to specify network-level
directives such as total network lifetime or uniform sam-
pling rate. Therefore, EMI should be expressive enough
for the user to specify a broad range of network behaviors.
Such requirements may be satisfied in a centralized fashion
where a node is selected to translate the network-level policy
into node-level commands and issue them to the rest of the
network, or in a distributed fashion where individual nodes
translate the policy and coordinate with other nodes. We fa-
vor the distributed approach because, by preserving the high-
level policy to the node level, individual nodes have more
flexibility and authority to adjust to the locally optimal oper-
ating point while still retaining the ability to coordinate with
other nodes to reach a global optimum. This is particularly
important in a dynamic environment where energy is chang-
ing and non-uniform.

However, the expressiveness of EMI needs to be bounded
and tractable. For example, we could limit the directives to
contain only one optimization clause (maximize / minimize)
while the rest of the clauses must be binary predicates (true
/ false). This, when coupled with strict prioritization, essen-
tially reduces the algorithm complexity to linear time with
one variable for optimization.
2.1.2 Priority

User policy is composed of a set of directives, all con-
strained by a single shared resource – energy. Furthermore,
availability of this energy is often unpredictable due to non-
uniform communication cost and environmental fluctuations
(e.g. energy harvesting). We need some way of coping with
the inevitable tension between directives. One solution is
to associate directives with priorities, such that the system
can degrade in a predictable fashion. This mechanism allows
EMA to handle situations when a subset of the requirements
cannot be met, which is highly likely.

For example, using the policy shown earlier, the line-
item numbers could correspond to the priorities of directives
while the sub-numbering (e.g. 3.a, 3.b) indicates to “do one
of these,” with the higher ones having priority (i.e. a before
b). Using this policy, EMA would first guarantee a lifetime
of one year, then a minimum sampling rate of 1 Hz, followed
by either sending readings up the tree or storing them locally,
depending on whether there is enough energy for sending. If
there is more energy, the sampling rate is increased. If the
available energy is insufficient to meet all of the directives,
the system degrades in the reverse pattern: first lower sam-
pling rate until it reaches 1 Hz; when there is not enough to
satisfy 1, 2, and 3.a, do 1, 2, and 3.b.; and so on.
2.1.3 Exception Handler

It is often important for the user to have visibility of net-
work health, especially when the network begins to degrade.
For example, it may be important to reserve enough energy to
send a packet through the network to the user informing her
each time a directive in the policy can no longer be met. We
incorporate this idea by introducing an exception-handling
mechanism in EMA to include the user in the feedback loop
about its status with respect to the policy. If a constraint

can no longer be met, the node can invoke a predefined ex-
ception handler. Separate handlers can be defined for each
directive, which will be invoked in ascending priority order
(low to high). For example, a reasonable exception handler
might send a status packet to the base station. The user can
then make use of this information by changing the policy or
noting it for later use (when analyzing collected data). The
exception handler could also be more elaborate, such as re-
questing node neighbors to take on increased responsibility
or issue a new policy. A general exception-handling mech-
anism gives the user flexibility to control exactly what hap-
pens when the network degrades.

2.2 Energy Monitoring
An accurate runtime view of the energy states is necessary

for the EMA management component and can be very useful
to applications, routing protocols, MAC protocols, or any
other components performing energy-related optimizations.
Similar to traditional OSes, presenting energy information
at the OS-level usually provides reusability, interoperability,
and efficiency. We divide energy information into two parts:
component energy usage profiles and system energy levels.

2.2.1 Component Energy Usage Profiles
Conceptually different activities, such as temperature

sensing, external storage usage, and radio usage, should be
individually accountable. This provides the system with a
fine-grained view of energy usage and allows for arbitration
and admission control of activities based on user policy. The
separation of activities ideally correlates with the guidelines
in the user policy and therefore provides the energy manage-
ment component with a basic unit for control.

But unlike in a traditional OS, there is often no clear unit
of accounting for energy, such as processes or threads, in
sensornets. This is further complicated by cases when one
component (e.g. the radio) is consuming energy on behalf
of another component (e.g. a light sensor), in which case
the energy used by the radio should be logically accounted
for as light sensing. There have been several research ef-
forts that attempt to provide some notion of grouping. They
may be adapted to providing energy accounting in differ-
ent ways, varying on flexibility, code reusability, and com-
plexity. The suitable choice would depend on the applica-
tion and programming paradigm. For example, we may be
able to group activities by task and manage the tasks through
an energy-aware task scheduler. This grouping is naturally
supported by task-based systems such as TinyOS [15] or
Tenet [8]. However, in the case of TinyOS, even though it
uses task IDs, it does not currently support thread context
and therefore it cannot easily differentiate multiple invoca-
tions of the same task by different activities. The Tenet task
library presents functional blocks at a relatively high level
and could be grouped by activity fairly naturally. However,
some tasks that are used by multiple activities will require
extra attention for differentiation. TinyOS 2 (T2) [14] de-
fines a hardware abstraction layer (HAL) that allows group-
ing by hardware. However, the granularity of HAL is low-
level and may not easily correspond to activities in the en-
ergy policy. Similarly, the resource component [12] in T2

provides a fixed grouping, albeit at a higher level than HAL.
A more flexible approach is to allow arbitrary grouping by
the application via a set of APIs. This approach allows the
application to decide what should be logically grouped into
an activity. However, this will require rewriting existing ap-
plications to use the API.

2.2.2 System Energy Levels
System energy levels refer to the actual energy in the

system, such as the remaining battery energy as measured
by a hardware monitoring facility (such as [9]) or through
software estimations. For example, the current energy level
can be calculated in software by assuming an initial energy
and subtracting component energy usages. However, soft-
ware methods usually assume a set of static component en-
ergy profiles that may not be accurate, do not account for all
possible energy consumers, and accumulate error over time.
Hardware monitoring facilities, if available, provide much
more accurate energy measurements.

2.3 Energy Management
Similar to traditional QoS in networking, the energy man-

ager uses some form of admission control to regulate compo-
nent accesses to energy resources, providing QoS based on
user policy. However, unlike traditional energy management
systems, the scope of our manager extends beyond making
local decisions, as there may exist network-wide polices that
require some sort of coordination between nodes. In sensor-
nets, energy management deals with both local and global
resource management.

Locally, we can use system energy levels and component
usage profiles from the energy monitor to make decisions
based on user policy. For example, an average consump-
tion rate can be calculated to estimate the remaining lifetime.
This estimate, coupled with real-time component energy us-
age, allows the energy manager to perform per-activity ad-
mission control. Globally, we can manage resource usage
by sharing system energy levels amongst nodes. This is use-
ful if, for example, the policy requires uniform sampling, as
a network can only sample as quickly as the node with the
lowest sampling frequency. EMA may also borrow manage-
ment strategies from networking, such as rate control proto-
cols used for the Internet. This allows fairness to be consid-
ered among competing energy-consuming activities.

Distributed coordination raises questions about the archi-
tecture. It is unclear where the networking component, used
to send messages among nodes, will reside. It can be part
of the manager, but must closely interact with the network
layer of the system to send and receive coordination pack-
ets. It may also be collected into a library that is imported
into the image at compile-time if a statement in the user pol-
icy requires network-wide coordination. Perhaps it is best
suited as an application-specific implementation that is fa-
cilitated by providing the necessary interface to the energy
states. Since distributed coordination is not always neces-
sary, integrating it into the architecture monopolizes valuable
resources. We will concentrate on the advantages of either
making this component a compile-time library or providing
hooks for implementation in the application layer.

We also consider ways to evaluate user policy in a design-
time “sanity check.” This may be done by collecting infor-
mation from the network and comparing the active state of
the nodes in the network with a known knowledge base or
model to see if the provided user policy is feasible. This
could be helpful to the end user in designing policy and en-
suring, within a reasonable performance bound, that user re-
quirements can be enforced.

3 Application Examples
This section presents two examples of how specific sen-

sornet deployments could benefit from using EMA. We show
that each application is representative of a broad class of ap-
plications and that EMA is flexible enough to meet varied
requirements while providing specific advantages to applica-
tion developers. Additionally, by providing EMA with mul-
tiple degrees of freedom, such as variable sampling rates, re-
porting rates, and the ability to use low-consumption storage
rather than the radio, the application developer can increase
the probability of successful deployments.

3.1 Redwoods
In [24], the authors describe a deployment that sought

to examine the microclimates surrounding Redwoods trees
through measurements of temperature, relative humidity, and
incident and light intensity, taken every five minutes. As is
common for most monitoring applications, this sampling pe-
riod was selected through an iterative evaluation between
environmental and computer scientists based on the char-
acteristics of the phenomena under observation, the battery
size, and the estimated energy consumption of each sense,
log, and send operation. Readings were logged and reported
for a total of 44 days, though some nodes were not func-
tional for the entire duration due to depleted batteries. The
cause of this unexpected energy depletion was a software bug
that kept nodes in an energy-consuming “listening” state if a
communications opportunity (every 5 minutes) was missed.
The energy monitoring component could have been used
during the application development process to provide per
component energy usage statistics. Upon visualizing this
unforeseen energy consumption, the designers might have
tracked down this bug prior to deployment, averting energy
waste and the resulting exhausted nodes and missed data
gathering opportunities.

If, for example, energy usage were not tested in advance,
EMA could still circumvent the faulty behavior. Below is an
example set of user policies for this application.

1. Network lifetime of at least 1 month.
2. Sample all sensors every 5 minutes and

a. Send readings to base station.
b. Log readings to local storage.

The notion of priority in EMA user policy permits grace-
ful degradation of these requirements. During the course of
the experiment, if the energy monitor calculates that there
will be insufficient energy to survive for the rest of the de-
sired lifetime (in this case, one month) while sampling and
sending (item 2.a.), the energy manager will abandon item
2.a. and instead enforce items 1 and 2.b. (i.e. sample and

store the readings). In the event that there is not enough en-
ergy to meet either of these policies, the energy manager will
use the remaining energy to perform the exception handler
specified by the user. In this way, priority protects a system
that is unable to meet all the goals of the user by at least sat-
isfying the most important goals. We argue that using EMA
for this application would either allow this fault to be caught
in the development process or prevent it from occurring dur-
ing runtime operation, increasing overall data yield of this
application substantially.

These benefits are broadly applicable to a large class of
environmental monitoring applications where specifications
are strict and static (e.g. sample every 5 minutes) such as
[25, 22, 21, 18]. Essentially, EMA facilitates expressing pri-
ority in user policy and handling the tradeoffs that inevitably
appear in the face of dynamic environmental conditions.

3.2 Arctic Observations
Dr. David Carlson, in his SenSys 2006 keynote speech

about the International Polar Year (IPY), urged the sensor-
net community to develop applications for Arctic observa-
tions. He argued that sensornets are a solution to the chief
requirement of these applications: broad observation over
timescales of an entire season or longer with minimal device
maintenance. This requirement arises from the inaccessibil-
ity of the environment, often either too remote, expensive, or
harsh to visit frequently, and the observation of phenomena
with relatively long durations. In these applications, network
lifetime is the overriding constraint while, perhaps, sampling
and reporting rates may be relaxed.

Consider an application to monitor the melting of glaciers
similar to [17]. With a minimum lifetime encoded as the first
requirement, reporting and sampling rates can be modulated
in order to achieve the foremost requirement of lifetime, as
is shown below.
1. Network lifetime must be at least 1 year.
2. Sample all sensors at least every 4 hours and

a. Send readings to basestation once a day.
b. Log readings to local storage.

Network lifetime as the overriding constraint character-
izes a class of applications where challenging environments
and isolated networks (i.e. no uplink) prevent predictable
communication and sensing patterns. In addition to en-
abling this class of applications, EMA facilitates the class of
lifetime-centric deployments in which the phenomena dic-
tates the duration of the network, such as the life of a rat,
the pollination cycle of a flower, or the extent of a storm sea-
son. Furthermore, by empowering EMA with another degree
of freedom, in this case a variable sampling rate, the energy
manager component is able to make informed decisions re-
garding the tradeoffs presented by the user policy and the
environmental conditions.

4 Proof-of-Concept Exercise
In this exercise we show some potential benefits of an OS-

level energy management service. This is purely a proof-of-
concept exercise written in TinyOS. We want to demonstrate
that by accounting for individual energy-consuming activi-
ties and performing run-time optimizations based on priori-

tized user policy, even a trivial implementation can provide
some amount of assurance and predictability in addition to
better resource utilization in a dynamic environment.

We use a simple request/grant API and provide energy
management as a generic TinyOS component (herein EM).
We use a uniformly-weighted moving average to estimate
current power for a particular activity, hold requests in a 1-
deep queue, and grant only when there is enough energy to
satisfy both the requested activity as well as all other activi-
ties with higher priorities. The application has the flexibil-
ity to specify which energy account to debit and by how
much using the request(account, energy type string) com-
mand and predefined types. Additionally, the application has
the flexibility to group tasks as it desires for the grant() event.

We make the following assumptions: (1) Each mote has
an initial energy of 1100 units; (2) Sensing costs 10 energy
units per sample; and (3) Communication costs 1 energy unit
per packet.

The user policy below is directly encoded in a header file:

1. Network Lifetime >= 100 seconds.
2. Allow all radio traffic.
3. Sense as fast as possible.

Three motes are subjected to different (simulated) envi-
ronmental conditions and their energy states are periodically
reported by radio. The communication rate is initially set to
1 packet per second.

As seen in Figure 2(a), when system energy is increased
at t=50 (to simulate energy harvesting), EM automatically
increases the rate of grants for sensing, achieving better en-
ergy utilization. Conversely, in Figure 2(b), EM reduces
the sensing rate when detecting a drop in overall energy at
t=50, whereas the mote without EM dies at around t=70.
Figure 2(c) shows a plausible scenario where the commu-
nication rate increases in the middle of the experiment, pos-
sibly due to environmentally-induced retransmissions or in-
creased forwarding responsibility. With EM, the mote is able
to reduce sensing and satisfy the lifetime guideline, whereas
without EM, the mote dies at t=80. For all EM-enabled
motes, the lifetime is exactly 100 seconds with full energy
utilization, while the sensing rate is adapted to comply with
user-defined policy.

5 Architectural Implications
The push for an overall sensornet architecture is not a new

one. One particular architecture has been outlined in [4],
and a series of architectural components have been pro-
posed in [20, 6, 8]. Additionally, a host of industrial stan-
dards/specifications are being developed for either sensor-
nets in particular or low-power wireless devices in general.

One of the basic design principles for EMA is to remain
as agnostic as possible to the overall sensornet framework
within which it will be situated. As such, rather than cre-
ate an energy management service that is deeply intertwined
throughout the system stack, a cleaner approach is to create
a standalone component that only integrates through clearly-
defined interfaces and is positioned parallel to the rest of the
stack. The important aspect of these interfaces is that they
are simple and powerful, yet general enough to be used by a

 0

 500

1000

1500

2000

 0 20 40 60 80 100

E
ne

rg
y

Time (s)

With EM

Total Energy
Comm Energy
Sense Energy

 0

 500

1000

1500

2000

 0 20 40 60 80 100

E
ne

rg
y

Time (s)

Without EM

Total Energy
Comm Energy
Sense Energy

(a) 1000 units of energy are injected at time t=50, i.e. energy is
harvested.

 0

 200

 400

 600

 800

1000

 0 20 40 60 80 100

E
ne

rg
y

Time (s)

With EM

Total Energy
Comm Energy
Sense Energy

 0

 200

 400

 600

 800

1000

 0 20 40 60 80 100

E
ne

rg
y

Time (s)

Without EM

Total Energy
Comm Energy
Sense Energy

(b) 300 units of energy are subtracted at time t=50, i.e. energy stor-
age malfunction.

 0

 200

 400

 600

 800

1000

 0 20 40 60 80 100

E
ne

rg
y

Time (s)

With EM

Total Energy
Comm Energy
Sense Energy

 0

 200

 400

 600

 800

1000

 0 20 40 60 80 100

E
ne

rg
y

Time (s)

Without EM

Total Energy
Comm Energy
Sense Energy

(c) Communication rate increases to 8 Hz at time t=50, i.e. increased
transmissions due to interference or more forwarding responsibility.
Figure 2. Behavior of motes under simulated environ-
ments. Left columns shows data collected from three
motes written using EM while the right column shows
simulated data without EM

variety of services.
Based on preliminary analysis, we believe our architec-

ture will effectively complement a host of existing architec-
tures and programming paradigms, such as [20, 6, 8, 3, 1].
Although one of our design assumptions is the use of
TinyOS, the architecture is easily portable to additional op-
erating systems. We provide a concrete example as a single
point in the design space.

Our example system is composed of a modular structure,
namely SP [20, 23] and NLA [6], as well as DSN [3], a
declarative programming paradigm. EMA sits parallel to the
rest of the system. SP serves as the narrow waist, decoupling
the network layer from the link layer. NLA is a modular net-
work layer framework that decomposes network protocols
into a routing topology, a routing engine, a forwarding en-
gine, and an output queue. NLA sits directly on top of SP
and exports a narrow send/receive interface to upper layers.
DSN models the sensor node as a query processor, allowing
users to declaratively specify programs using rules and pred-
icates. The declarative high-level nature of the user interface
of DSN provides a suitable mechanism for the interpreta-
tion of user policy, which will consequently by translated
into the EMI. DSN also provides the ability to specify these
requirements both during compile-time as well as dynami-
cally during runtime, fully utilizing the dynamic capabilities
of EMA. Based on these requirements, the energy manager

will determine the admission control policy for the system.
EMA may use NLA to communicate nodal energy levels be-
tween neighbors and coordinate collective actions for satis-
fying network level directives.

6 Future Directions
We have presented our vision of an energy management

architecture that provides energy as a primitive by imple-
menting services for both energy monitoring and manage-
ment at the OS-level. Our vision of an energy management
architecture is by no means conclusive or definitive. Since
there are many differing approaches to managing energy, we
simply advocate the need for an energy-centric architecture
and present our view of how one might look. However, there
remain many open questions; as we continue our work, we
intend to solidify design decisions and eventually present a
concrete energy management component in the near future.
We will evaluate this component by writing representative
applications using EMA and comparing them to their current
instantiations not using EMA, using metrics such as energy
efficiency, robustness, and operation visibility.

An integral part of EMA is the energy monitoring compo-
nent. While software emulation provides an approximation,
hardware will, in most situations, provide much more de-
tailed and accurate energy and power profiles. The SPOT [9]
energy metering module provides fine-grained energy infor-
mation with little software overhead. We plan to release the
MicaZ and Telos versions in the near future as well. We
also encourage others to design similar monitoring hardware
for the myriad platforms available. If our EMA proves to
be effective, we hope to disseminate it by bundling it with
prevalent distributions such as TinyOS.

For the community, an energy management architecture
will aid in future designs of energy-aware application and
enable a class of energy-centric applications where lifetime
and performance requirements can be specified and con-
trolled under a uniform framework. The monitoring com-
ponent exposes two previously unavailable streams of infor-
mation: system energy level and component energy usage.
The application can utilize this information in many ways,
including energy adaptation, fine-grained component level
performance adjustment, intelligent duty cycling, evaluation
of low-power designs, and graceful degradation.

The specification component empowers the user and pro-
grammer with the ability to directly express energy-related
policies such as lifetime and sensing rates. The management
component enables the system to enforce this policy. This
consolidates many variations of energy management under
a unified framework and fuses previous attempts in expres-
sive energy monitoring granularity. An energy management
architecture not only benefits applications during runtime,
but also helps programmers during the debugging phase. As
shown in Section 3.1, the EMA presents increased visibility
into the network allowing effective debugging of potential
problems. We conclude with a call for community involve-
ment in the development of an energy-centric architecture
and applications using such an architecture.

7 References
[1] T. Abdelzaher, B. Blum, Q. Cao, Y. Chen, D. Evans, J. George, S. George, L. Gu,

T. He, S. Krishnamurthy, L. Luo, S. Son, J. Stankovic, R. Stoleru, and A. Wood.
Envirotrack: Towards an environmental computing paradigm for distributed sen-
sor networks. IEEE ICDCS, 2004.

[2] G. Banga, P. Druschel, and J. C. Mogul. Resource containers: A new facility for
resource management in server systems. USENIX OSDI, 1999.

[3] D. Chu, A. Tavakoli, L. Popa, and J. Hellerstein. Entirely declarative sensor
network systems. ACM VLDB, 2006.

[4] D. Culler, P. Dutta, C. T. Eee, R. Fonseca, J. Hui, P. Levis, J. Polastre, S. Shenker,
I. Stoica, G. Tolle, , and J. Zhao. Towards a sensor network architecture: Lower-
ing the waistline. USENIX HotOS, 2005.

[5] P. Dutta, J. Hui, J. Jeong, S. Kim, C. Sharp, J. Taneja, G. Tolle, K. Whitehouse,
and D. Culler. Trio: Enabling sustainable and scalable outdoor wireless sensor
network deployments. IEEE SPOTS, 2006.

[6] C. T. Ee, R. Fonseca, S. Kim, D. Moon, A. Tavakoli, D. Culler, S. Shenker, and
I. Stoica. A modular network layer for sensornets. USENIX OSDI, 2006.

[7] J. Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile applica-
tions. ACM SOSP, 1999.

[8] O. Gnawali, B. Greenstein, K.-Y. Jang, A. Joki, J. Paek, M. Vieira, D. Estrin,
R. Govindan, and E. Kohler. The tenet architecture for tiered sensor networks.
ACM Sensys, 2006.

[9] X. Jiang, P. Dutta, D. Culler, and I. Stoica. Micro power meter for energy moni-
toring of wireless sensor networks at scale. In submission.

[10] X. Jiang, J. Polastre, and D. Culler. Perpetual environmentally powered sensor
networks. IEEE SPOTS, 2005.

[11] A. Kansal, D. Potter, and M. B. Srivastava. Performance aware tasking for envi-
ronmentally powered sensor networks. ACM Sigmetrics, 2004.

[12] K. Klues, V. Handziski, D. Culler, D. Gay, P. Levis, C. Lu, and A. Wolisz. Dy-
namic resource management in a static network operating system. In submission.

[13] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R. Fairbairns,
and E. Hyden. The design and implementation of an operating system to support
distributed multimedia applications. IEEE JSAC, 1996.

[14] P. Levis, D. Gay, V. Handziski, J.-H. Hauer, B. Greenstein, M. Turon, J. Hui,
K. Klues, C. Sharp, R. Szewczyk, J. Polastre, P. Buonadonna, L. Nachman,
G. Tolle, D. Culler, and A. Wolisz. T2: A second generation os for embedded
sensor networks. Technical Report TKN-05-007, Telecommunication Networks
Group, Technische Universitat Berlin, 2005.

[15] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, and D. Culler. Tinyos: An operating system for
wireless sensor networks. Ambient Intelligence, 2005.

[16] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tinydb: An acqusi-
tional query processing system for sensor networks. ACM TODS, 2005.

[17] K. Martinez, P. Padhy, A. Elsaify, G. Zou, A. Riddoch, J. K. Hart, and H. L. R.
Ong. Deploying a sensor network in an extreme environment. IEEE SUTC, 2006.

[18] R. Musaloiu-E., A. Terzis, K. Szlavecz, A. Szalay, J. Cogan, and J. Gray. Life
under your feet: Wireless sensors in soil ecology. EmNets, 2006.

[19] R. Neugebauer and D. McAuley. Energy is just another resource: Energy ac-
counting and energy pricing in the nemesis os. USENIX HotOS, 2001.

[20] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, and I. Stoica. A
unifying link abstraction for wireless sensor networks. ACM Sensys, 2005.

[21] N. Ramanathan, L. Balzano, M. Burt, D. Estrin, T. Harmon, C. Harvey, J. Jay,
E. Kohler, S. Rothenberg, and M. Srivastava. Rapid deployment with confidence:
Calibration and fault detection in environmental sensor networks. CENS Tech
Report #62, 2006.

[22] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler. An analy-
sis of a large scale habitat monitoring application. ACM Sensys, 2004.

[23] A. Tavakoli, J. Taneja, P. Dutta, D. Culler, S. Shenker, and I. Stoica. Evaluation
and enhancement of a unifying link abstraction for sensornets. In submission.

[24] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess,
T. Dawson, P. Buonadonna, D. Gay, and W. Hong. A macroscope in the red-
woods. ACM Sensys, 2005.

[25] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh. Fidelity and
yield in a volcano monitoring sensor network. USENIX OSDI, 2006.

[26] H. Zeng, C. S. Ellis, and A. R. Lebeck. Experiences in managing energy with
ecosystem. IEEE PerCom, 2005.

	Introduction
	Architecture Overview
	Specification of User Policy
	Expressive Interface
	Priority
	Exception Handler

	Energy Monitoring
	Component Energy Usage Profiles
	System Energy Levels

	Energy Management

	Application Examples
	Redwoods
	Arctic Observations

	Proof-of-Concept Exercise
	Architectural Implications
	Future Directions
	References

