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Abstract
This paper develops an architecture for task assignment

in wireless sensor networks in support of tactical operations.
Our approach is based on a mathematical framework, which,
based on multi-attribute utility theory, allows mobile end-
users to easily express the value (utility) that they would
attach to sensor information based on features associated
with the data. We have applied the utility-based architecture
framework in the design of a distributed task assignment al-
gorithm for a simple pursuit-evasion (patrol) scenario. Sim-
ulation studies based on this scenario show that in terms
of mission-level objectives utility-based task assignment can
significantly improve upon a baseline solution, in which each
sensor indiscriminately reports all data to all available users.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-

work Architecture and Design; C.2.4 [Distributed Sys-
tems]: Distributed Applications

General Terms
Algorithms, Design

Keywords
Sensor networks, Task assignment, Utility

1 Introduction
The last decade has seen a tremendous amount of research

and development directed toward sensing technologies, sen-
sor development, and the application of wireless sensor net-
works (WSNs). These efforts have targeted applications in
many domains, such as military applications, environmen-
tal applications, health applications, home applications, and
other commercial applications [2, 9].

Tactical operations are an important military application
of WSNs. The features of tactical operations are different
from other applications of WSNs in that (a) distinct end-
users are working amidst sensors in the field and may di-
rectly receive message from individual sensors in a decen-
tralized fashion, (b) end-users are mobile and have dynamic
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features, (c) sensors make decisions about data dissemina-
tion based on both the information they collect and end-
users’ dynamic features, and (d) standard metrics of network
performance, such as data delay and data throughput, may
not appropriately reflect the overall system objectives. These
features for tactical operations thrown into question the ap-
plicability of existing architectures for task assignment.

There have been a number of recent proposals for network
architectures that explicitly take into consideration the appli-
cations and characteristics of WSNs [16, 2, 1, 9]. Lim [11]
proposed an architecture for information dissemination in
self-organizing sensor networks, which involves application
systems, configurable systems, sensor networking, and phys-
ical device layers. Estrin et al. [6] proposed a localized algo-
rithm of directed diffusion to establish flexible and efficient
data delivery paths in WSNs. Subramanian and Katz [20]
proposed a generic architecture for self-configurable systems
where a large number of sensors coordinate amongst them-
selves to achieve a large sensing task.

Despite the diversity of available network architectures,
so far WSNs are mainly used as fixed infrastructures for data
collection for specific applications. Hence, data process-
ing and/or other high-level application functions supports
have to be integrated with the sensor networks [16, 9]. Re-
cent research tends to integrate data processing requirements
with network-level considerations. Ganesan et al. [7] pre-
sented a data handling architecture, DIMENSIONS, a sys-
tem that provides a unified view of data handling in sensor
networks, which has the ability to incorporate the resource
constraints and spatio-temporal interpretation of the physical
world. Madden and Franklin [12] developed the Fjords ar-
chitecture for managing multiple queries over many sensors
and showed that it can limit the sensor resources used while
maintaining high query throughput. Shen et al. [19] intro-
duced a sensor information networking architecture named
SINA, with which users can access information using declar-
ative queries, or perform tasks using programming scripts.

Although various data processing methods are integrated
with network architectures, most current research on archi-
tectures only focuses on the collection of data, with the
flow of information going mainly from sensors to the users
through a fixed gateway. Thus, while there might be a large
set of diverse applications supported by sensor data, the re-
sponsibility of the WSN is mainly to collect and transmit



data. Future sensor networks are likely to be deployed in a
manner that data collection is only part of the overall respon-
sibility of the WSN, such as in tactical operations. In this
case, current architectures may not reflect overall system ob-
jectives leaving significant opportunities for improvement.

In this paper we attempt to establish an architecture that
can reflect overall system objectives for specific applications
of WSNs. In particular, we develop a sensor-centric (de-
centralized), utility-based architecture for task assignment in
wireless sensor networks in which sensors individually make
judicious decisions about what information should be for-
warded to a collection of receivers based on the “value” of
the information encoded within a utility function.

Literature Review
The benefits of decentralization in WSNs are summarized
in several papers [15, 17]. Wen and Sethares [21] proposed
a decentralized algorithm for WSN clustering, with which
each sensor adopts a random waiting timer and local crite-
ria to determine whether to form a new cluster or to join
a current cluster. Makerenko et al. [15] developed an ap-
proach adhering to scalable decentralized algorithms for both
data fusion and the decision-making layers of the system for
an indoor Active Sensor Network (ASN). Makarenko and
Durrant-Whyte [14] presented an algorithm for Bayesian de-
centralized data fusion (BDDF) and its extension to infor-
mation theoretic control. Sadagopan et al. [18] advocated
a systematic decentralized approach to designing networks
based on utility functions to achieve the global optimal load
for data gathering tree. Mainland et al. [13] presented a
self-organizing resource allocation for achieving efficient re-
source allocation in sensor networks based on the decen-
tralized, utility-defined action selections of individual sen-
sors. Ridley et al. [17] described the theoretical and prac-
tical development of a decentralized air and ground sens-
ing network for target tracking and identification with the
information-filter formulation of the Kalman filter algorithm
and information-theoretic methods from Bayes theorem.

Utility theories also have been used in various fields of
WSN to represent the value of information. Chen and Sha [5]
formulated data transport problem in WSN as an optimiza-
tion problem to achieve the maximal amount of utility col-
lected at sinks subject to flow, energy, and channel band-
width constraints. Byers and Nasser [4] presented a model
for numbers of sensors participating sensing to define appro-
priate global objectives based on utility functions and specify
the cost for energy consumption. Zhao et al. [22] introduced
and developed the definition of information utility and sev-
eral approximate measures of the information utility, with
which the paper determined the participants in a sensor col-
laboration by dynamically optimizing the information utility
of data. Kang and Li [8] used the information utility mea-
surement for decision making in sensor selection of cluster-
ing with three key factors: sensing quality, communication
cost and power level. Bian et al. [3] proposed a framework
to select a sequence sensor sets which has the maximal utility
for sensor selection techniques.

2 Architectural Issues
There are two main questions to resolve in designing a

task assignment architecture for WSNs: (1) Where should
the authority for making decisions about consumption of net-
work resources lie? (2) If control authority is decentralized,
what information needs to be exchanged in order to ensure
effective and efficient operation of the network? Here, we
have focused on understanding the performance that can be
achieved with no explicit coordination between sensors. In
Section 2.1 we briefly outline a baseline solution for data dis-
semination derived from existing WSN’s network architec-
tures. In Section 2.2 we develop the Sensor-Centric, Utility-
Based (SCUB) architecture, which is completely decentral-
ized and no explicit information exchanges between sensors.

2.1 Baseline Solution: Send-All-to-All
Given that there are multiple mobile end-users operating

within the sensor network, a straightforward approach to data
dissemination is to require all sensors to send all detections
to all users, up to constraints on network resources including
power, energy, bandwidth, and link availability. This “Send-
All-to-All” architecture for task assignment is simple, and its
main benefit is that sensors do not have to waste resources
by communicating with one another (or with a base station)
to determine whether it is appropriate to send sensor data
to an individual user. On the other hand, all sensor infor-
mation within this architecture is treated as equally impor-
tant, when in reality information from neighboring sensors
may be highly correlated and/or irrelevant to accomplish-
ing mission objectives. In addition, the “Send-All-to-All”
architecture assumes that all information is equally relevant
to all end-users, where in reality some users may find the
data more actionable than others. Implementation of this
approach requires a routing protocol for sensor to end-user
communications, and, in our evaluation of this scheme, we
assume (as described below) that sensors are periodically in-
formed about the positions of end-users.

2.2 SCUB Architecture
Instead of indiscriminately reporting all information to all

end-users, the Sensor-Centric, Utility-Based architecture re-
quires that decisions about data dissemination are based on
a common model for the utility that end-users would attach
to data given that it is received. The utility model serves to
quantify the value that users attach to data based on a vector
of features associated with the data (e.g. type of observation,
location, etc.) and on a vector of user-adjustable parameter
values that express the relative importance of data’s features
to users. By introducing a utility model into the framework,
we hope to achieve a common value system for all sensors,
so that, even though they are operating independently, they
still have a means of discriminating between transmission
opportunities and hopefully consuming network resources
by transmitting only high-value observations.

As a more formal description of the utility framework, we
assume that there is a set S of sensors that constitutes the sen-
sor network. Each sensor s∈ S keeps in memory a history Os
of recent observations, and for each observation o ∈Os there
is a set of messages Mso that could be sent based on those ob-



servations. (It may be possible to send a number of different
messages based on the same observation, e.g. imagery with
different levels of compression. In the “Send-All-to-All” ar-
chitecture, the strategy for sending imagery would have to
be predefined.) The set Ms = ∪o∈OsMso represents the col-
lection of all messages that are currently available for sensor
s to send based on its recent history of observations. Let Gs
represent the set of users that are potential recipients of mes-
sages m ∈ Ms where each “user” may actually correspond
to a group of end-users, applications, and/or software agents
that could benefit by receiving the message m. In choosing
which, if any, of the messages m ∈Ms to transmit to user g ∈
Gs, the sensor must compute the utility ug(m) that g would
place on each message m if it were to be received. Mathemat-
ically, the function ug takes the form ug(m) = Ug( f (m);θg),
where f (m) = ( f1(m), f2(m), . . . fF(m)) is a vector of fea-
tures associated with the message, and θg = (w1,w2, . . . ,wW )
is a vector of user-adjustable parameters that help to quantify
the utility of the message m for user g. Features associated
with messages are quantitative characteristics of the data as-
sociated with the message, such as the location of observa-
tion and age of the observation. The user adjustable param-
eters in θg include various scaling coefficients and weights,
which ensure that the overall assessment of utility ug(m) is
normalized to lie between zero (corresponding to no value)
and one (corresponding to maximal value).

Having the ability to compute ug(m) for all possible mes-
sages, sensors have a quantitative means of discriminating
between messages, and any decision rule could be imple-
mented as a policy for determining which message to send
to which user next.

2.2.1 Optimal SCUB Task Assignment
Since the SCUB architecture dictates that sensors act in-

dependently in forwarding observation data to users, what
we mean by “optimal” task assignment is best characterized
in game-theoretic terms. Our goal here is mainly to suggest
a mathematical framework for understanding the general is-
sues in SCUB task assignment.

We assume that each sensor s maintains a history Hs
of messages that have already been transmitted to users in
Gs. Thus, in considering whether to send a given message
m ∈ Mso to a particular user g the sensor can determine from
Hs whether it has already sent a related message to that par-
ticular user, thereby having the ability to avoid self-generated
redundancy in its transmissions.

Since the essence of the task assignment problem is the
allocation of scarce WSN resources, let R denote the set of
common resources associated with the sensor network. Let
Cr denote the capacity of resource r ∈ R, and let xr denote
the current utilization of resource r. For example, if resource
r corresponds to a communications link in the network, then
CR would correspond to the bandwidth associated with the
link and xr would correspond to the percentage of that band-
width that is currently being utilized. In this case, xr natu-
rally characterizes the state of that communications channel,
and the task assignment policy embedded within the sensor
simply will not consider sending any message that would
cause xr to exceed the capacity Cr of the channel. (The mes-

sage may be transmitted later.) For resources like bandwidth,
the utilization level xr may fluctuate up and down accord-
ing to the need for sensors to transmit observation data. For
other resources, like total battery energy, the consumption of
the resource is monotonic.

Optimal SCUB resource management involves each sen-
sor sending messages to users, subject to resource con-
straints, so as to maximize the expected aggregate accumu-
lated utility associated with the information that is transmit-
ted. To account for the independent operation of each sensor,
we assume that each sensor s ∈ S implements a Strategy

µs(Ms,Gs,Hs,(xr)r∈R )

that prescribes the message m ∈ Ms to be transmitted to user
g ∈ Gs next (if any) depending on the current consumption
of resources (xr)r∈R and on the history Hs of messages sent
so far. Thus, we seek to compute a profile of strategies
(µs1 ,µs2 , . . . ,µsS) that maximizes:

F(µs1 , . . . ,µs|S|) = E
{∫ T

0
gµs1 ,µs2 ,...,µs|S|

(t)dt
}

, (1)

where T is the random time horizon of the problem and
gµs1 ,µs2 ,...,µs|S|

(t) is the random impulse train associated with
discrete chunks of utility associated the transmit-decisions
that are made by sensors in the network under the strate-
gies µs1 ,µs2 , . . . ,µs|S| . Note that, in addition to accounting
for the possibly randomized behavior of the sensors in the
network, the expectation Equation (1) involves uncertainty
over the random nature of observations made by individual
sensors, which in turn depends on the randomness associated
with the environment. F(µs1 , . . . ,µs|S|) can be thought of as
a mission-level utility function, representing the collective
goals and objectives of all end-users for the duration of the
systems lifetime. Optimal SCUB task assignment, can thus
be thought of as an identical-interests game, in which each
sensor s∈ S is a player implementing a strategy µs to achieve
a high-value global equilibrium.

2.2.2 Sub-Optimal SCUB Task Assignment
Realistically, a complete mathematical specification of

probabilistic model of Equation (1) can only be made in
the context of specific applications built around prohibitively
specific scenarios. Moreover, even if the were available, the
computation of an optimal profile of task assignment strate-
gies most likely be intractable. Consequently, in the remain-
der of the paper (as a first cut analysis), we only consider a
heuristic strategy designed to improve the chances of achiev-
ing system-level objective, while falling short of constitut-
ing an optimal solution. We refer to the strategy as “My-
opic Utility Maximization,” in which, at every transmission
opportunity, each sensor will send the message m∗ that of-
fers the highest utility to a corresponding user g∗. In other
words, the message/user pair (m∗,g∗) for the next transmis-
sion is a maximizing solution to the optimization problem
maxg∈Gs,m∈Ms ug(m).

We emphasize that myopic utility maximization is not the
only task assignment strategy admitted by the SCUB archi-
tecture. For example, in on-going work, we are evaluating
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other heuristics that incorporate a notion of cost or disutility
associated with the consumption of WSN resources that off-
sets the raw utility that end-users perceive in receiving sensor
data. The trick to such an approach is to adaptively adjust re-
source costs to reflect long-term objectives.

3 Numerical Evaluation
To illustrate the application of the SCUB architecture, we

have built a simulation test bed, which allows us to compare
SCUB with the “Send-All-to-All” architecture for task as-
signment. We briefly describe the test bed in Section 3.1 and
utility models in Section 3.2. We present representative sim-
ulation results in Section 3.3, referring the reader to [23] for
more details and additional simulation results.

3.1 Patrol Scenario Test Bed
We have developed a simulation test bed based on the

“patrol scenario” of Figure 1, which involves (a) soldiers pa-
trolling subregions within a larger Area of Interest (AOI),
(b) a network of sensors reporting detections of intruders to
soldiers, and (c) the pursuit and capture of intruders that tra-
verse the AOI. The scenario is coded in JAVA as a discrete
simulation event with a simulation interval of 1 second.

We assume that all sensors within the AOI are tripwire
sensors with 360 degree field of view and given detection ra-
dius, evenly distributed within the AOI and powered by two
AA batteries. Each sensor has the ability to make detections
of intruders, to receive, transmit, and forward messages, and
to engage in antenna idling. Such function consume differ-
ent amounts of power and energy. The sensors have ability
to detect the intruders with a fixed detection probability once
the intruders are within their detection ranges. Intruders ran-
domly appear at the boundary of the AOI and then randomly
cross the AOI until captured or until from the system by leav-
ing the AOI. Soldiers are assigned different sub-areas (rect-
angular) within the AOI and randomly patrol within their
sub-areas until they are cued as to the presence of intrud-
ers by sensors, at which time they will commence to pursue
the intruders, moving at a faster speed than the intruders.
Soldiers in pursuit of intruders may require more than one
detection report before the intruder is within visual range,
in which case the soldier will pursue the intruders without
needing (or wanting) additional messages. If a soldier re-
ceives multiple messages from different sensors, the soldier

only moves in the direction of the nearest intruder. Upon
capturing an intruder or upon concluding that the targeted
intruder has escaped, soldiers become idle and proceed to
patrol randomly until they cued by another detection report
from one or more sensors. While in pursuit, soldiers are al-
lowed to leave their assigned sub-areas.

3.2 SCUB Utility Model
We model the utility of a message m for soldier g as a

multiplicative function of predefined marginal utilities that
are associated with three features of interest as follows.

- Feature 1: Age of Associated Observation - We assume
that the marginal utility that soldier g attaches to this
feature is linear and saturates at zero, i.e.

u1
g( f1(m)) = [1−w1 f1(m)]+,

where f1(m) is the age of message m in seconds; w1 is a
g-specified coefficient that describes the maximum age
a message can have and still be of any value. We set
w1 = 1/5 for all soldiers in the scenario.

- Feature 2: Distance to sub-Patrol Area - We assume
that the marginal utility associated with the distance to
the patrol area of soldier g, u2

g( f2(m)) = 1, when the
observation m is made within the patrol area of soldier
g. Otherwise, it is linear, saturating at zero, i.e.

u2
g( f2(m)) = [1−w2 f2(m)]+,

where f2(m) refers to the shortest Euclidean distance
from the observation position to the upper left or lower
right coordinates of the solider’s sub-patrol area (rect-
angular); w2 describes the largest Euclidean distance
that a detection can have and still have value. We set
w2 = 1/5000 for all soldiers in the scenario.

- Feature 3: Distance to Soldier Location - We assume
that the marginal utility for this feature is also linear,
saturating at zero, i.e.

u3
g( f3(m)) = [1−w3 f3(m)]+,

where f3(m) is the Euclidean distance from the obser-
vation position to solider’s position; w3 describes the
largest distance to soldier g that a detection can have
and still have value. We set w3 = 1/14000 for all sol-
diers in the scenario

Drawing upon insights from decision theory (see, for ex-
ample, [10]), we model soldier-g’s overall utility for message
m as a multiplicative function of his marginal utilities, i.e.

ug(m) =
1
k0

[
−1+

3

∏
i=1

(
1+ k0kiui

g(m)
)]

,

where (a) the number 3 denotes the number of features, (b)
the parameters k1,k2,k3 are weighting parameters set by g to
reflect the importance of each feature, and (c) the parameter
k0 is a constant set to be a solution to the equation

1+ k0 =
3

∏
i=1

(1+ k0ki) .



Each weighting parameter ki (i = 1,2,3) should be chosen to
reflect the overall utility of a message where the i-th feature
has its best possible value and all the other features have their
worst possible values. In this scenario, we arbitrarily set k1 =
0.3,k2 = 0.3,k3 = 0.3,k0 = 0.36 for all the soldiers within
the entire mission period.

3.3 Simulation Experiments
In this section, we present preliminary experimental re-

sults that validate the assertion that SCUB architecture can
outperform the baseline “Send-All-to-All” approach, at least
in terms of system-level performance metrics.
3.3.1 Experimental Metrics and Variables

In our preliminary experiments we have focused on two
main performance metrics: (i) success rate and (ii) number
of sensors alive, both plotted as a function of time for the
duration of the network. Success rate is computed according
to the following equation:

SRti,t j =
N

ti,t j
captured

Nti
atLarge +N

ti,t j
generated −N

t j
atLarge

,

where SRti,t j denotes the average success rate in time period
(ti, t j]; N

ti,t j
captured denotes the total number of intruders cap-

tured in time period (ti, t j]; Nti
atLarge represents the number of

intruders at large in time ti; N
ti,t j
generated denotes the total num-

ber of intruders generated in time period (ti, t j]. We com-
puted the averages above within windows of 28,800 seconds.

For the other metric, number of sensors alive, we sampled
the number of sensors that have sufficient energy remaining
to continue making detections throughout the lifetime of the
network. We computed average number of sensors alive over
time windows of 200 seconds.

With the two metrics in mind, we designed an experimen-
tal study to show the effect of two important scenario pa-
rameters: (i) number of soldiers within the system and (ii)
intruder arrival probability (i.e. the likelihood that a new in-
truder appears on the boundary of the AOI in any discrete
time step of the simulation- akin to intruder arrival rate). We
conducted 20 independent trials, each time initializing each
sensor with full battery power and then running the system
until all energy from all sensors is depleted. Representative
results from this experiment are shown in the next section.
3.3.2 Preliminary Results

Figures 2-5 illustrate the relative performance of SCUB
with myopic utility maximization and the baseline “Send-
All-to-All” solution. Figure 2 shows that, for both archi-
tectures, higher success rates can be achieved by deploying
larger numbers of soldiers, although the magnitude of im-
provement associated with adding one more soldier is sig-
nificantly larger for SCUB than for “Send-All-to-All.” Fig-
ure 3 shows that, for “Send-All-to-All” but not for SCUB,
larger numbers of soldiers in the system result in more rapid
depletion of sensor-energy. For the ”Send-All-to-All” archi-
tecture, energy load increases dramatically with the number
of receivers; however, for SCUB, the more soldiers there
are, the shorter the routes are from individual sensors to the

Figure 2. Success rate as a function of number of soldiers

Figure 3. Number of sensors alive as a function of num-
ber of soldiers

receivers with highest utility. Figures 4 and 5 show that
SCUB continues to outperform “Send-All-to-All” for vary-
ing rates at which intruders arrive, both in terms of success
rate and numbers of sensors alive. We note from Figure 4
that for increasing intruder arrival probabilities, the success
rates for “Send-All-to-All” decrease more dramatically than
for SCUB. From Figure 5, we see that larger intruder ar-
rival probabilities cause both architectures to deplete sensor
energy more rapidly, since higher intruder arrival rates pro-
vide sensors with more opportunities to detect intruders. We
point out that success rates in both Figures 2 and 4 (espe-
cially for ”Send-All-to-All”) decrease rapidly toward the end
of the experiment due to fact that fewer sensors are alive, and
intruders are more likely to escape without detection.

4 Conclusions
Our work on architectures for task assignment in tacti-

cal WSNs, particularly on the SCUB architecture, is at a
very preliminary stage. SCUB itself seems to represent a

Figure 4. Success rate as a function of intruder arrival
probability



Figure 5. Number of sensors alive as a function of in-
truder arrival probability

reasonable approach to the problem of allocating the scarce
resources of sensor networks for tactical operations, being
highly decentralized and yet cognizant of the diverse infor-
mation requirements of multiple users. Tactical operations
bring into focus the notion that a wireless sensor network
is far more than just a highly constrained data communica-
tions infrastructure, and an important point of departure in
our work is our focus on application-layer (mission-level)
performance metrics, rather than on lower-level performance
metrics, such as the throughput and message delay.
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