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ABSTRACT
On today’s sharply competitive industrial market, engineers
must focus on their core competencies to produce ever more
innovative products, while also reducing development times
and costs. This has further heightened the complexity of the
development process. At the same time, industrial systems,
and specifically real-time embedded systems, have become
increasingly software-intensive. New software development
approaches and methods must therefore be found to free en-
gineers from the even more complex technical constraints
of development and to enable them to concentrate on their
core business specialties. One emerging solution is to fos-
ter model-based development by defining modeling artifacts
well-suited to their domain concerns instead of asking them
to write code. However, model-driven approaches will be
solutions to the previous issues only if models evolves from
a contemplative role to a productive role within the develop-
ment processes. In this context, model transformation is a
key design paradigm that will foster this revolution. This pa-
per is the result of discussions and exchanges that took place
within the second edition of the workshop “UML&AADL”
(http://www.artist-embedded.org/artist/Topics.html) that-
was hold in 2007 in Auckland, New Zealand, in conjunction
with the ICECCS07 conference. The purpose of this work-
shop was to gather people of both communities from UML
(including its domain specific extensions, with a focus on
MARTE) and AADL (including its annexes) in order to fos-
ter sharing of results and experiments. More specially this
year, the focus was on how both standards do subscribe to
the model driven engineering paradigm, or to be more pre-
cise, how MDE may ease and foster the usage of both sets of
standards for developing real-time embedded systems. This
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paper will show that, even if the work is not yet finished,
the current results seems to be already very promising.
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1. INTRODUCTION
On today’s sharply competitive industrial market, engi-

neers must focus on their core competencies to produce ever
more innovative products, while also reducing development
times and costs. This has further heightened the complex-
ity of the development process. At the same time, industrial
systems, and specifically real-time embedded systems, have
become increasingly software-intensive. New software devel-
opment approaches and methods must therefore be found
to free engineers from the even more complex technical con-
straints of development and to enable them to concentrate
on their core business specialties. One emerging solution is
to foster model-based development by defining modeling ar-
tifacts well-suited to their domain concerns instead of asking
them to write code. However, model-driven approaches will
be solutions to the previous issues only if models evolves
from a contemplative role to a productive role within the
development processes. Model transformation is the key
design paradigm that will enables this revolution. Indeed,
models will be productive either if one may refine them it-
eratively (e.g., going seamlessly from the requirements to
the code), or if one may abstract models from other models
in order to ease one problem or to focus on a specific con-
cern. Abstraction and refinement are then the two essential
principles of model-driven engineering.

The concept of abstraction is intrinsic to that of model-
ing, which by definition consists of representing a real world
object, called the system, in a simplified form. This involves
two possible types of abstraction – vertical and horizontal.

•Vertical abstraction follows development process flow,
producing models that focus on the pertinent level of detail.
There is a recurrent need, in system development, for mod-
els of standardized software (RTOS and/or middleware) and
of hardware implementation platforms (e.g. POSIX, OSEK)
that identify dependencies between application models and
implementation choices/constraints.



•Horizontal abstraction – takes place at a same level of
definition and emphasizes certain system facets or comple-
mentary viewpoints. Examples include task models for RT
analysis, architectural models centering on system functions
and scenarios models for system testing.

Abstraction relies also on suitable concepts available within
the modeling language used to denote the models depending
on their granularity level and their focused concern.

For refinement purposes, the goal is to master and au-
tomate the process of building one specialized model from
another. This typically means producing executable appli-
cations by for instance model compilation, formalization,
use of design patterns for the domain, etc.

Finally, fast prototyping, evaluation and validation are vi-
tal to the development of real time embedded systems. To
this effect, engineers need models with well-defined execu-
tion semantics, i.e. models whose behavior (i.e. dynamics)
can be analyzed, executed, or simulated. More specifically,
they must also be:
•Predictable behavior models – An RT/E application must

always behave in the same way in a given, same initial con-
text. Typically this behavior is expected to be determin-
istic. In some application contexts stochastic event occur-
rences are expected to be processed in a predictable manner.
The semantics of the models used, and therefore, of the un-
derlying modeling language, must be precisely defined and
unambiguous.
•Complete models – A complete model contains all the

data required to analyze its behavior or to generate an exe-
cutable view of this data.

The model of a real-time embedded system then has pre-
dictable execution semantics if it exhibits both the above
properties – predictability and completeness. It can be ex-
ecuted in different ways, e.g. via automatic code gener-
ation on a given computing platform, either software- or
hardware-based, or by simulating of the generated code, or
through formal model analysis tools that trace system op-
eration and verify behavior, like symbolic execution engine.

This paper will then present some current works that ad-
dress these different issues. The next section presents the
new OMG standard dedicated to complement the UML2
with the required extensions for supporting modelling and
analysis of real-time embedded systems, MARTE [39]. Sec-
tion 3 and 4 are then dedicated to an other modelling lan-
guage AADL language. Section 3 is going about firstly the
usage of xUML to denote executable models independently
of any computing platforms, and secondly how it is possible
to map such models onto a specific AADL-like computing
platform. The third section focusses then on the AADL
standard and specially how a model-driven engineering may
ease its usage. The fourth section introduces the reader to
an automotive emerging architecture description language,
EAST-ADL. This paper is finally concluded within the last
section.

2. MARTE, THE UML PROFILE FOR MOD-
ELLING AND ANALYSIS OF RTES

The Object Management Group (OMG1) is one of the
key international organization promoting standards foster-
ing the usage of model-based paradigm. The Unified Mod-
elling language (UML) [40] standard is maybe one of its

1www.omg.org

most representative success within the software industry but
also in other kinds of domain such as IT and Banking sys-
tems. UML is now the most widespread language used for
modelling among industrials, and academics as well. But,
because UML has been designed to be a general purpose
modelling language, specializations need, and hence are ex-
pected, to be defined in order to suit better to specific
domains or applications. The real-time embedded (RTE)
domain is one of this specific domain for which extensions
to UML are required to provide more suitable concepts re-
lated to the domain area. Previously, the OMG has de-
fined the UML profile for Schedulability, Performance and
Time (SPT, [35]). This latter UML extension was providing
mainly in the one hand concepts for dealing with model-
based schedulability analysis focussed on Rate Monotonic
Analysis and model-based performance analysis focussed on
the queuing theory. In other hand, SPT was also proposing a
rich framework for time and time related mechanisms. How-
ever, experiments on SPT revealed shortcomings within the
profile as for example lacks in terms of concepts to better suit
to model-based development of RTE systems. There was
also a strong need for modifications to comply with the evo-
lution of other OMG standards specially UML2, and to have
a profile with a broader scope. As for example, a support
for both hardware and software aspects design of embedded
systems and a richer support for schedulability and perfor-
mance analysis encompassing additional techniques such as
hierarchical scheduling. This has resulted in a Request For
Proposals (RFP) for a new UML profile named MARTE
(Modeling and Analysis of Real-Time and Embedded sys-
tems, [34]), which should address issues such as compliance
with the UML profile for Quality of Service and Fault Tol-
erance (QoS & FT, [37]), specification of not only real-time
constraints but also other embedded non-functional charac-
teristics such as memory and power consumption, modelling
and analysis of component-based architectures, and the ca-
pability to model systems in different modelling paradigms
(asynchronous, synchronous, and timed).

To cope with this new RFP, OMG members decided to
gather to build a common answer to this new standard re-
quest. This consortium was known as the ProMARTE con-
sortium and was consisting of following companies: Alcatel,
ARTISAN Software Tools, Carleton University, CEA LIST,
ESEO, ENSIETA, France Telecom, International Business
Machines, INRIA, INSA from Lyon, Lockheed Martin, Math-
Works, Mentor Graphics Corporation, No Magic, Software
Engineering Institute (Carnegie Mellon University), Soft-
eam, Telelogic AB, Thales, Tri-Pacific Software and Uni-
versidad de Cantabria. This common work results in a pro-
posal to OMG standardization that was accepted and voted
in June 2007 [39].

The purpose of this section is then to give the reader a
brief overview of the MARTE standard and we invite the
reader who wants to know more about this new specifica-
tion to refer to the OMG web site dedicated to MARTE:
www.omgmarte.org.

2.1 MARTE in a nutshell
The design principles adopted to design MARTE was a

two step processes inspired from usual software engineer-
ing process. This consisted in one hand in specifying the
language by describing the MARTE domain model, and in
other hand in mapping the domain model towards UML2.



Figure 1: Overall architecture of MARTE

The purpose of the first stage is then to formally define
the language constructs by describing a clean and well doc-
umented meta-model for the language specification. The
second stage aims then in designing the language constructs
described in the meta-model in terms of UML2 extensions,
mainly stereotypes with properties and possibly OCL con-
straints. These latter are introduced within the profile to
guide their usages in the context of a more global UML2
model. This process has been a key point to ensure a well-
formed definition of the standard.

The profile has then been structured around two main
concerns, one to model the features of real-time and embed-
ded systems and the other to annotate application models
so as to support analysis of system properties. These are
shown in the following figure through both packages respec-
tively named MARTE design model and MARTE analysis
model. These two major parts share common concerns, as
for example time and the use of concurrent resources, which
are contained in the upper shared package named MARTE
foundations. In addition, MARTE defined complementary
transversal modeling constructs that was decided to gather
in the MARTE annexes package.

The rest of this paper is then dedicated to tackle three
important concerns when modeling real-time and embed-
ded systems. The next section will introduce how MARTE
support modeling of non-functional properties, time and
which are the concepts dedicated to improve architecture
description. After, one outlines respectively how to deal
with platform modeling, and model-based analysis. Finally,
one mentions some of the ongoing experiments on MARTE
and sketches what are the main remaining challenges for
MARTE.

2.2 Non-functional properties, time and archi-
tecture description

One of the main features that make the development of
real-time systems different from general purpose systems de-
velopment is that non functional properties, specially time
aspects, are as much important as functional aspects. To
deal with this concern, MARTE has defined two frameworks,
the non-functional properties framework (NFPs) and the
time framework (Time). The former package consists of a
set of modeling constructs to declare, qualify and apply se-
mantically well-formed non-functional properties into UML
models. The NFPs framework is complemented with the
Value Specification Language (VSL) that defines a textual
syntax to formulate algebraic and time expressions conform-
ing to an extended system of data types. NFP supports the
declaration of the non-functional properties, whereas VSL
is used to describe the values of those properties. The time
package contains both basic concepts to define what is time

and which time model are supported within MARTE, and
also time-related mechanisms such as times event or clocks.

Considering the time aspect, real-time systems are specifi-
cally concerned with two important features: the cardinality
of time (e.g., delay, duration or clock time) and the tem-
poral ordering of behavior activities (e.g. event1 happens
before event2). MARTE proposed concepts for supporting
mainly three different time models: the chronometric time
model, the logical time model and the synchronous logical
time model. This latter is a refinement of the logical time
model with the additional assumption of possible simultane-
ity. This property denotes the possibility for several events
to exist at the same time. Let’s note that the three models
relies on partial ordering of instants.

Within MARTE, two packages are more focused on mod-
eling of system architectures. The former is part of the foun-
dation layer and defines a general component model (GCM).
GCM relies on a refinement of the UML structured classes
and provides a common denominator among various compo-
nent models, which in principle do not target exclusively the
real-time and embedded domain. The purpose was to pro-
vide in MARTE a model as general as possible, that is not
tied to specific execution semantics, on which real-time char-
acteristics can be applied later on. The MARTE GCM relies
mainly on UML structured classes, on top of which a sup-
port to SysML blocks has been added. Aligning GCM with
Lightweight-CCM, AADL and EAST-ADL2 [39] has also in-
fluenced the definition of some refinements of the MARTE
General Component Model.

2.3 Platform modeling
Platform modeling is of course a key aspect in MARTE

which fully subscribes to the MDA [2]. The platform concern
is handled at the several places within MARTE depending
firstly the purpose of the platform model and secondly the
granularity level of the platform description. As depicted
in the following figure, MARTE deals with platform model-
ing concern in its three main parts, foundations, design and
analysis. The foundations part provides a basic framework
for platform-based modeling, the General Resource Model-
ing (GRM). It intends to factorize general concepts required
to platform modeling at a very high-level abstraction, at sys-
tem level. It relies on a clear design pattern considering plat-
forms as a set of resources containing possible sub resources
in hierarchical manner and offering at least one service. Re-
sources may be instantiated and the resulting instance may
execute resource services. As denoted in the following figure,
GRM is then refined for detailed modeling and analysis pur-
poses. The Software Resource Model (SRM, [20]) and the
Hardware Resource Model (HRM, [45] and [46]) are respec-
tively dedicated to describing of software and hardware com-
puting platforms. SRM consists of a set of concepts focussed
on describing model-based API of Real-Time Operating Sys-
tems such as Semaphores and tasks. The MARTE annexes
parts contains some examples of such API describing, as for
example OSEK and Arinc. HRM provides concepts needed
for describing hardware computing platforms at three levels
of abstraction serving mainly the three following use cases:

• Software design and allocation using a high level hard-
ware description model of the targeted platform ar-
chitecture. This abstraction level is intended to be
a formal alternative to block diagrams usual used for
describing hardware platforms of embedded systems.



• Analysis of real-time and embedded properties of soft-
ware-intensive systems on a specialized hardware de-
scription model.

• Simulation of detailed hardware models, the required
level of detail depends on the simulation accuracy.

Platform describing is important for embedded systems de-
sign and analysis, but needs also the ability to denote the
relationships between the platforms model and the func-
tional application model. For that purpose, MARTE pro-
pose the allocation package that defined the allocation and
refinement relationships. Allocation concepts of MARTE is
aligned with the one defined in SysML but whereas SysML
allocation enables to allocate any kind of elements set on
any kind of element sets, MARTE restricts allocation to
describe how application model elements are allocated on
platform model elements. In addition, the allocation spec-
ification may further be refined by defining non-functional
properties.

2.4 Model-based analysis
Finally, model-based analysis is the last main key point

of MARTE. Considering this last concern, the intend of
MARTE was not defined new analysis techniques but to en-
able apply the most popular real-time and embedded anal-
ysis results, mainly coming from both schedulability and
performance analysis domains. But in order to provide a
flexible and reusable model-based analysis framework, both
schedulability and performance analysis packages relies on
a generic one. This latter, called the Generic Quantitative
Analysis Model (GQAM), defines the basic UML extensions
needed to annotate UML model in order to perform any
kind of analysis. It is then expected that GQAM will be
further specialized or refined in order to cope with analysis
techniques that may be not supported by MARTE at the
moment.

The annotation mechanism used in MARTE to support
model-based analysis uses UML stereotypes. These latter
enable to map model elements of application description
into the semantics of an analysis domain such as schedu-
lability, and to give values for properties which are needed
in order to carry out the analysis. We may distinguish “in-
put” properties which are needed to carry out the analysis,
and “output” properties which are results provided by the
analysis. However the modeler may also input required val-
ues of output properties, which can be used to determine
how well a system meets its requirements. Analysis is not
always indeed simply “pass/fail”, and the particular goals of
analysis are specific to their domain. Output properties to
be reported may include details of how and where time and
resources are consumed in order to diagnose problems, and
may include sensitivity studies to explore the importance of
parameters whose values are uncertain.

The profile is intended to provide a foundation for apply-
ing transformations from UML models into a wide variety of
analysis models. The environment for exploiting the profile
would consist of a set of tools, including model transformers
to gap the model technological space (the UML + MARTE
design space in this case) to different possible analysis tech-
nological spaces (e.g., Rate Monotonic Analysis tools). The
forward path of this process intend to denote the way the
model is expected to be transformed (e.g., via the XMI out-
put of the UML model) to the input format required by an

analysis tool. The reverse path will then refer to a poten-
tial feedback path to re-import the analysis results into the
previous UML models.

2.5 MARTE next steps
MARTE is now voted and accepted as a new OMG stan-

dard since end of June 2007. The actual version of the stan-
dard is a Beta1 version. The next step for MARTE w.r.t.
the OMG standardization process is the finalization of the
standard in order to define its version 1.0. This job has to be
done by an OMG Finalization Task Force (FTF) which for
MARTE has been launched in July 2007. Their work is split
mainly into two periods. Firstly, MARTE experimenters are
invited to provide their feedback on the standard by logging
issues where appropriate using the OMG Issue Procedure
(defined in the specification itself). The final deadline for
sending issues to be resolved within this FTF is December
22nd, 2007. After this date, the FTF is not obliged to take
into new issues. Secondly, the FTF members have to solve
all the issues received within the right time frame and will
provide an enhancement of the standard that once voted
and accepted becomes the version 1.0 of the standard.

3. FROM PIMS TO PSMS
The development of embedded systems through models

requires the creation of both a platform independent model
(PIM) and a platform specific model (PSM). During the
platform independent modeling phase the focus is on captur-
ing the application domain, the functionality of the system
to be developed and the environment in which it is to be de-
ployed. UML is a modeling notation of choice for platform
independent modeling (PIM). The behavior of the system
is captured in state charts, activity charts, and sequence
charts. xUML is an extension to UML that adds precise
execution semantics to models enabling a full description
of platform independent models and the generation of code
from them. xUML [42] [44] has been successfully used for
the development of multiple systems in the context of Model-
Driven Architecture. Of particular interest to us has been its
use in avionics systems as discussed in [38]. Platform specific
models are critical to gaining insight on runtime properties
of a system, such as timing, fault tolerance, safety-criticality,
and security. For example, control system applications are
sensitive to the age and integrity of data. Latency jitter
due to execution time variation and phase-delay variation
due to non-deterministic sampling are affected by the choice
of scheduling policy, communication mechanism, or system
partitioning. In other words, a control algorithm that is
stable on one hardware platform, such as a federated ar-
chitecture, may become instable when moved to a different
platform, e.g., a partitioned architecture of an Integrated
Modular Avionics (IMA) system. Architecture Analysis and
Design Language (AADL) [6] [5] is an SAE standard specif-
ically designed to model runtime architectures and analyze
their key runtime properties. It enables the creation and
analysis of PSMs by modeling the task and communica-
tion architecture of embedded applications, their interaction
with the physical environment they control, and the execu-
tion platform to which they are bound. In this section we
present the integration of xUML and AADL into a model-
driven development process. The combination of these two
modeling languages provides a powerful synthesis for mod-
eling, analyzing, and implementing embedded system. We



Figure 2: The different MARTE supports for platform modeling

do so by discussing the translation of the xUML concur-
rency model into AADL, the Behavior Annex extension of
AADL as a capability to specify task interaction behavior,
and an algorithmic language extension to describe atomic
component behavior.

3.1 Extracting the concurrency requirements
from xUML into an AADL model

The translation of a PIM expressed in xUML to a PSM ex-
pressed in AADL requires the interpretation of xUML mod-
els written in a certain style. This component concurrency
and interaction model is described in [44]. First the sys-
tem is captured in Domains in a Domain Chart, i.e., sets
of classes with well-defined interactions between them but
with a loose definition of interactions to the outside world.
Inside the domain three aspects need to be defined: data,
the lifecycles of the data and the actions that occur on entry
to each lifecycle state. The data aspect of the domains is
modeled in class diagrams where classes are defined along
with associations between classes. For the lifetime of data,
state machines are used to describe the states of classes and
the transitions between states. To describe the actions that
happen on entry to each state, an action language is used.
Finally to complete the model, domain collaboration dia-
grams or domain sequence diagrams are used to capture
the interaction between domains. Even though the xUML
model does not define a final concurrency structure, it em-
beds some concurrency in its execution semantics. In par-
ticular two sources of concurrency need to be honored in an
xUML model: state machines and object interactions. Both
sources of concurrency are described in the domain collabo-
ration diagram along with the reference to the classes used
in them. In these models, special entities called Bridges
are used to add the detail to how the autonomous domains
need to interact. Although the interface from a component
to other components is expressed through a set of functions,

the code patterns used in the bridge determines the actual
message synchronization semantics. xUML has three differ-
ent message communication contract types: ”

• Closed Blocking. This represents a function call where
the caller sends data and waits for an answer from the
callee before continuing its execution.

• Closed Non-Blocking. In this case the caller also ex-
pects an answer but it will not wait to get it before
continuing its execution. Instead it queries for the an-
swer at a later time, or receives a closure notification
from the callee.

• Open. This involves a transfer of data from the caller
to the callee. The caller does not wait for the comple-
tion of the callee and does not expect any answer from
it.

The semantics of these messages are properly translated into
the following AADL patterns:

• Closed Blocking. In this case the callee is an AADL
subprogram and the message from the caller to the
callee a subprogram call. The callee and the caller
may reside in the same AADL thread (sequential call)
or in different threads (remote call). In the latter case
the caller thread blocks until the call completes.

• Closed Non-Blocking. In this case the callee and caller
are in different threads. The message is an AADL
event data (message) port connection from caller to
callee and an event data port connection from the
callee to the caller to notify the completion of the ex-
ecution and return result data.

• Open. In this case the caller and the callee are both
AADL threads and the message is only an event data
port connection from the caller to the callee.



Figure 3: Domain Collaboration Diagram

Note that AADL supports message communication through
event data ports, as well as communication of continuous
data streams, as found in control systems, through AADL
data ports. In the latter case only the most recent data value
is available to the recipient. These mappings are the basis
to extract the concurrency patterns from the communication
semantics in a xUML model. Figure 3 presents the collabo-
ration diagrams of the xUML system. In this Figure you can
see two domains (top and bottom rectangles) called Sensor
Data Processing and Track Management. These domains
are linked by a Bridge that maps calls to the updateCoun-
terparts required operation of the Sensor Data Processing
domain to the updateAirTrack provided operation of the
Track Management domain. It can be seen that this bridge
makes use of a domain-spanning association that links each
object of the ”Active Sensor Track” class in Sensor Data
Processing to an object of the ”Air Track” class in Track
Management. Such an association is known as a ”counter-
part association”, and is uniquely labeled using the form
”CPR〈n〉”. Domains in xUML are used to organize the de-
sign space. They are mapped to AADL packages that play
the same role. Packages define a container for the AADL
types. Packages define public and private sections, for this
translation we put every definition in the public section. Our
strategy is to map the concurrency represented in an xUML
model directly into an AADL model by representing the ac-
tive objects as logical threads that then get mapped into op-
erating system (OS) threads through a thread optimization
step. An alterative strategy is to let the user describe the
OS thread architecture in AADL and specify a mapping of
active objects of xUML through a set of binding properties.

Any complete xUML model at least includes a thread where
all the code runs, and stimuli from external devices need to
be captured in another thread. In our sample an external
device the Active Sensor Hardware is interfaced through the
Active Sensor Thread, and a state machine in the Air Track
Thread captures the behavior of the stimuli. The communi-
cation between the threads and between the sensor thread
and the hardware is modeled with event data ports to repre-
sent the queuing of events and data that matches the xUML
semantics of the communication with a state machine. The
threads for our model are presented in the listing of Figure
4.

The call sequence is encoded inside the thread implemen-
tation and the connections to parameters and ports (sub-
programs can have both) are encoded as well. Note that in
the ActiveSensorThread.Impl implementation we have three
subcomponents: the reportCollection and the activeSensor-
TrackCollection and airTrackCollection. These subcompo-
nents represent the reports, the active sensor tracks, and
the collection of air tracks (the individual airTracks would
be in independent threads) inside this thread and we will be
sending calls to them. The level of abstraction of the calling
sequence in AADL does not support expression of condition-
als. In this case the action language part of the xUML model
specifies that to create an AirTrackReport we first look to
see if it already exists and we created if not or update if it
exists. However, in AADL we encode this as just two pos-
sible calling paths, i.e., find+create and find+update. This
modal view of a thread allows us to associate mode-specific
runtime properties without having to explicitly model the
logical behavior that drives these logical modes and perform



thread ActiveSensorThread

features

createActiveSensorTrackReport: in event data port

CreateActiveSensorTrackEvent;

initializeAirTrack: out event data port

UpdateActiveSensorTrackEvent;

updateAirTrack: out event data port

TrackManagementDomain::InitializeAirTrackEvent;

updateAirTrack: out event data port

TrackManagementDomain::UpdateAirTrackEvent;

deleteAirTrack: out event data port

TrackManagementDomain::DeleteAirTrackEvent;

end ActiveSensorThread;

thread AirTrackThread

features

initializeAirTrack: in event data port

InitializeAirTrackEvent;

updateAirTrack: in event data port

UpdateAirTrackEvent;

deleteAirTrack: in event data port

DeleteAirTrackEvent;

end AirTrackThread;

Figure 4: Thread Declarations

mode-sensitive timing analysis, for example.. If the condi-
tions need to be explicitly modeled we can utilize the AADL
Behavior Annex which will go into ballot in early 2008. Note
that some of the calls embedded in the bridge component
require special interpretation. Instead of becoming calls in a
call sequence, they get mapped into the appropriate message
communication mechanism in AADL. The logical thread ar-
chitecture expressed in AADL can then be optimized in a
number of ways. For example, we can take advantage of the
fact that multiple logical threads operate at the same rate
and can therefore be executed by a single OS on the same
processor. Another interesting optimization is the use of the
Bin Packing algorithms [14] to assign threads to processors.
This algorithm minimizes the number of processors needed
to run the system while reducing the amount of bandwidth
needed to communicate these processors. A number of run-
time properties may not be part of a PIM. They must be
added by the designer to the resulting AADL model. These
include:

• End-to-end latency requirements (response times)

• Periodicity of events, both external (e.g. sensor inter-
rupts) and internal (timers)

• Period, deadline, worst-case execution time for threads

• Execution time of subprograms

• Processor Speed

• Network Bandwidth

Other properties include security related properties [25] or
fault related properties [23]. This allows us to analyze mul-
tiple perspectives of the PSM from a single architecture
model. Examples of time related analyses include scheduling
analysis to determine whether all threads complete by their
deadline for given deployment configuration [30], and valida-
tion that a required end-to-end latency can be achieved [22].

3.2 From the AADL Behavioral annex to For-
mal semantics of the AADL execution mo-
del in TLA+

3.2.1 Introduction to the behavioral annex
AADL incorporates very restricted form of behaviors: it

is possible to specify mode changes in response to events
and mode dependant sequences of subprogram calls. Actual
behaviors are supposed to be described using the implemen-
tation language. However, AADL can be extended in two
ways: by defining new sets of properties that can be at-
tached to model elements and by defining annex languages
allowing the inclusion of annex specific code to the AADL
model. These two features have been used to attach abstract
behaviors to AADL models. The proposed behavioral annex
allows the expression of data dependant behaviors so that
more precise behavioral analysis remain possible. A behav-
ior can be attached to a subprogram and to a thread. It is
described using an extension of AADL mode automata. For
example, let us consider a sporadic thread sending an event
if its two input data ports have different values:

thread check
f e a t u r e s

i 1 : i n data por t D;
i 2 : i n data por t D;
c : i n event por t ;
o : out event por t ;

p r o p e r t i e s

D i s p a t c h P r o t o c o l => Spo rad i c ;
Pe r i od => 1 ms ;

end check ;

thread implementat ion check . i
annex b e h a v i o r s p e c i f i c a t i o n {∗∗
s t a t e s

s : i n i t i a l complete s t a t e ;
t r a n s i t i o n s

s −[c ?]→ s { i f ( i 1 != i 2 ) o ! ; } ;
∗∗} ;
end check . i ;

3.2.2 Main annex features
The main characteristics of the behavioral annex and of

its link with the AADL execution model are the following:

• On the first dispatch, the execution of the component
starts on an initial state. Several initial states are al-
lowed, as well as several next states through identical
guards: the annex can describe non-deterministic ab-
stract behaviors even if the actual behavior will be de-
terministic. This is particulary usefull to specify the
behavior of the environment of a component.

• A thread completes its execution after reaching a com-
plete state and executing the action part of the transi-
tion. Subsequent dispatches will start from that state.

• A state can be declared composite. A subautomaton
is attached to such states. A transition can exit a sub-
state and have as target a descendant of any ancestor
state of the composite state containing it.

• The annex has access to the content of input ports
as it was at dispatch time. Subsequent received data
are not accessible. The contents of an event data port
is accessible as a queue data structure whose value is
read from the port at dispatch time.



• Data written to output ports is transmitted at com-
pletion.

• Events and event data are explicitely sent by specific
actions.

• Asynchrony is supported through events, access to shared
data via AADL data access declarations and remote
procedure calls.

• Real-time aspects are supported by three primitives:
delay(min,max) specifies suspension during a non--
deterministic amount of time; computation(min,max)
abstracts a computation by its non-deterministic CPU
consumption. A timeout construct can be used within
guards.

The activity of the threads relies on the AADL execution
model. When the thread is dispatched, the automaton starts
on its initial state and does not receive events or data until
completion and next dispatch. Before dispatch, data present
on input ports are copied to internal port variables. Port
variables associated to event or event data ports are seen as
queue data structures.

3.2.3 HRT-HOOD-like synchronization declarations
The behavioral annex also defines properties extending

AADL synchronization protocols. The interface of an AADL
component is defined by a set of ports and by a set of sub-
programs. These subprograms can be called remotely in a
synchronous way: the caller waits for the completion of call.
This protocol corresponds to HRT-HOOD [11] HSER proto-
col and to the default AADL remote procedure call proto-
col. Other protocols can be defined: in the LSER (loosely
synchronous) protocol, the caller waits for the call to be ac-
cepted; in the ASER (asynchronous) protocol, the caller con-
tinue its execution immediately. The later protocol is equiv-
alent to sending a message to an event data port. However,
attaching one of these protocols to a subprogram makes eas-
ier future changes in the protocol.

As in HRT-HOOD, it is possible to attach activation con-
ditions to entry points. These dispatch conditions apply to
subprogram entries as well as to input event (data) ports.
The annex can be used to specify a dispatch condition: the
thread is dispatched if an event or a subprogram call is re-
ceived and if the automaton is in a state where this receipt
is waited for. This property supposes an extension of AADL
execution model where activation conditions are associated
to input ports.

3.2.4 Timed primitives
Most timing features are declared in pure AADL (period,

WCET, . . . ). The annex makes these declarations more pre-
cise using three constructs taking as argument timed values
whose syntax is that of AADL property constants expressed
with a time unit.

• the computation(min,max) call abstracts an action to
its bcet/wcet which can be compared to that of the
subprogram or thread to which the behavior is at-
tached.

• the timeout(delay) predicate can be used in a guard.
It becomes true if the given duration has elapsed since
the last completion. Implementing this primitive also

needs an extension to the AADL run time support: a
thread is dispatched when a given set of events occurs
or at a given date.

• the delay(min,max) call suspends the current thread
during the given (non deterministic) amount of time.
The implementation of this primitive needs specific
support of the AADL run time support: the thread
must be descheduled as if it were waiting for the com-
pletion of a remote procedure call. This primitive
comes from the Cotre project [21]. Its final integra-
tion is still under study because it may require to alter
the AADL execution model.

3.2.5 High level constructs
The features presented in this section have been intro-

duced in the annex in order to represent hierarchical au-
tomata. An alternative would be to use AADL hierarchical
components (systems and thread groups) and modes to rep-
resent them. However, such a solution would identify states
of the hierarchical automata to threads or systems, but their
semantics are different. Thus, the annex allows the declara-
tion of hierarchical states.

Such a refinement of annex states is extended to AADL
modes, which comes to defining mode dependent behaviors.
For this purpose, the annex declares AADL modes as com-
posite and associates sub-automata to AADL modes as well
as extended transitions between modes. Thus, behaviors, as
well as instances, connections and property values can be
mode dependant.

As in statecharts, annex states as well as AADL modes
can be declared concurrent and refined as sets of regions.
Each region contains a possibly hierarchical automaton. The
current state of the concurrent automaton is defined to be
the set of current states of each sub-automata. Sub-automata
become active if a transition targets the concurrent state
or if transitions from a fork state target states within each
region. The concurrent machines terminate if a transition
starting from the concurrent state can be fired, or if all tran-
sitions starting from states of each region and targeting a
join state can be fired. Region automatons are composed
in parallel but, to conform with AADL specification, region
automatons are not associated with threads. They allow a
more compact specification of a non-deterministic sequential
behavior.

3.2.6 Interface with the AADL execution model
The semantic of the behavioral annex is based on the se-

mantics of the AADL execution model. This has an impact
on control and data flows. In this section we describe how
the AADL execution model and the behavioral annex inter-
act.

3.2.6.1 Thread synchronization.
The execution environement gives the control to the annex

when a thread starts its execution. The automaton starts its
execution either in the initial state, or in the last visited com-
plete state. Completion occurs when the automaton reaches
the complete state. At this time the next dispatch condi-
tion is computed. It depends on the guards and events of
the exiting transitions.

Synchronization on a conjunction of events is supported
by several real time operating systems. For example RTEMS
[43] offers a primitive which suspends a thread until all or



some of a set of conditions are satisfied. Such a call could
be added to the AADL API. Such an extension is already
needed to support the dispatch of a thread waiting for one of
the events in guards of transitions starting from the current
state. This new feature would allow to express transitions
with guards containing several receipts. The combination of
the two needs (or-wait, and-wait) leads us to the proposal of
an advanced dispatch condition expressed in AADL using a
boolean condition over ports. It would be possible to go one
step further by specifying a minimal number of messages on
a port.

3.2.6.2 Accessing data from the annex.
Messages are received through event, data or event data

ports. Event and event data ports are associated to queues.
On dispatch, zero, one, all, or a specified number of elements
of the port queue are transferred to the thread, depending on
the value of the Dequeue Protocol property. If it has the Al-
lItems or MultipleItems value, then all or a specified number
of the queued messages are stored in an internal queue and
can be accessed by the behavioral annex using the dequeue
operator on the port name. The old contents of the queue
is lost. Otherwise, it has the value OneItem and one mes-
sage is popped from the queue and transferred to the thread.
For data ports, zero or one message is transferred. If no new
messages are transferred, the old contents is seen by the an-
nex and the fresh attribute associated to the port is set to
false. Single data is read using the port name. Each access
to internally queued event/data dequeues one message from
the internal queue. Messages are sent through output event,
data or event data ports. A data can be stored in data and
event data ports using the port name as a variable. It is im-
plicitly transferred after deadline or completion. An event
can be sent immediately to an event or event data port.

3.2.7 Formal semantics of the AADL execution model
in TLA+

In this section, we are concerned by setting a formal se-
mantics for the AADL execution model. The goal of such a
semantics can be twofold:

• first it can be used to reason about an AADL design
formally. Actually, since our semantics is stated in
the TLA+ formalism [31], it will be possible to verify
properties through model checking.

• second it can be used as a formal specification for the
development of an AADL execution platform. One
can imagine that an actual implementation would be
certified with respect to the proposed model.

This study follows a first experiment of a partial transla-
tion of AADL and the behavioral annex using UPPAAL as
target language [10], which could not be extended because
of limitations of timed automata.

We are concerned by a subset of the execution model.
We try to select a small enough subset so that it can be
formalized easily, but expressive enough to allow performing
small tests. The only components used in our model are
threads and data. The communication between threads can
be done through ports or shared variables.

We have developed a generic TLA+ architecture easily
customizable (see fig. 5). The Threads and ports mod-
ules specify the execution model described in the AADL

standard. The application thread module contains the
behavior of each thread. The module AADL model is a con-
figuration file which describes the actual AADL model, e.g.,
threads, ports, connections, according to the AADL source
text. The mapping between an AADL model and the con-
figuration file is really easy and can be done automatically.

Figure 5: Architecture of the TLA modules

The behavior of a thread is represented be a relation be-
tween its input and its output: the thread activity updates
private port variables and shared data. Shared data is sup-
posed to be locked while a thread requiring access to it is
dispatched. Thus, we can consider that the thread activ-
ity between dispatch and completion is atomic, even if the
thread can be preempted. Premption acts only on timing
aspects. The transition associated to the thread activity
updates the computation time of the thread as well as the
global clock of the system.

As there is no primitive in TLA+ to handle time we have
to use an explicit time approach, i.e. the evolution of time
is modeled by the evolution of a specific variable. The ex-
ecution model of AADL is expresed in TLA+ by a stop-
watch automaton [4]. This automaton is a simplification
of the description provided by AADL the standard which
does not take into account initialization’s mechanisms and
remote procedure calls.

With this TLA+ model we are able to perform some
schedulability analysis, and to study the dimensions of buffers.

3.2.8 Perspectives
First of all, we plan to extend the coverage of the AADL

language. Then, we want to use the behavioral annex to
produce a TLA+ description of the thread behavior. In
TLA an automaton expressed in the annex formalism would
be translated into a set of transition, each transition of this
set would be a possible path in the automaton. The choice
of the transition would depend on the internal state of the
automaton and on the content of its ports. We could use
the +cal [32] language, an algorithmic language based on
TLA+, as an intermediate language between the behavioral
annex and TLA+. In the presented framework we can verify
standard properties like scheduling or buffer overflow. A
possible evolution of this work is to permit the verification
of application specific properties. For example we could use
AADL flows to specify some timing properties and verify
them using the TLA+ model. To go further, a property
language and the corresponding annex could be defined as
an extension of AADL.



3.3 An algorithm language to describe atomic
components behavior

A state machine is a set of states and a set of commands,
and each command generates a deterministic state tran-
sition. This formalism is interesting for the understand-
ing, but not enough detailed for a formal specification and
verification of non functional properties. In the embedded
real-time critical domain, architectural configurations have
to be formally verified. The construction of these systems
is mostly based on the integration techniques of multiple
domain-specific languages and tools. At the lowest design
level, which is in fact the most detailed, we need dynamic,
functional, set elements and operators to properly design
the atomic components behavior. Leslie Lamport [31] wrote
that “the most important aspect of the level of abstraction
is the grain of atomicity, the choice of what system changes
are represented as a single step of behavior.

Therefore, we present some of the languages that may
answer to the need of atomic component behavior formal
describing.
• Natural language and Controlled natural lan-

guages:

Natural language does not give an entry point to describe
the algorithm complexity we have to handle. Of course,
most of the requirements are still using the Natural lan-
guage, even it is a bit formalized by the way of use cases.
From uses cases, we can easily define scenarios in another
languages (MSC, SDL, UML sequence diagrams, etc). It
would be then a waste of time to go through an intermedi-
ate language, when you can directly express a behavior into
a simple and understanding language, and even more, an-
other opportunity to loose the requirements accuracy, with
the language mappings.

Controlled Languages (RDL, Requirements Description
Language as well) do provide a sufficient formalism to fol-
low the requirements and ensure traceability, but are not
effective considering the need of expressing complex algo-
rithms. They may replace first order logic languages in very
particular situations, with some restrictions.
• Pseudo code :

The simple and usual pseudo code is only interesting to
bring the processing at an abstract level (genericity) with a
minimum effort on the syntax. Usual pseudo code, however,
is not linked to any logic language, and not rich enough to
be able to follow state changes.
• Formal languages, process algebras, for specify-

ing and verifying concurrent aspects :

CSP is a very rich language and perhaps the most adapted
language to describe process behavior. CSP has nondeter-
ministic choice operators, allows model-checking, and facil-
itate parallel composition of numerous primitive processes.
In contrast, CSP is not easy to manipulate from the start of
a project, when defining the requirements with average engi-
neers. It needs complex transformations and mappings from
the AADL specifications and then dramatically reduces the
traceability.
• The +CAL algorithm language :

The problem to solve is we have to consider the right level
of formalization. Meanwhile we choose to work with an semi
formal ADL, at this step of the architecture design, we are
constrained to insert an semi formal algorithm language, if
we want to have an homogeneous level of formalism.

−−a lgo r i thm bake ry
v a r i a b l e s Ex t r a c t i o n = [ k \ i n 1 . .N |−> FALSE ] ,
Rank= [m \ i n 1 . .N|−> 0 ] ;

p roce s s a p r o c e s s \ i n 1 . .N
v a r i a b l e q ;
beg in

Ex t r a c t i o n [ a p r o c e s s ] := TRUE;
Rank [ a p r o c e s s ] := 1 + max(Rank [ 1 ] . . Rank [N ] ) ;
E x t r a c t i o n [ a p r o c e s s ] := FALSE ;
q :=1;
wh i l e q /= N+1 do

wh i l e ( E x t r a c t i o n [ q ] )
do s k i p ;

end wh i l e ;
wh i l e ( ( Rank [ q]/= 0) /\ ( ( Rank [ q ] , q ) <

( Rank [ a p r o c e s s ] , a p r o c e s s ) ) )
do s k i p ;

end wh i l e ;
q:=q+1;
end wh i l e ;

\∗The c r i t i c a l s e c t i o n

Rank [ a p r o c e s s ] :=0 ;
\∗ non−c r i t i c a l s e c t i o n . . .

end p roce s s

end a lgo r i thm

Listing 1: Example of a Mutex Algorithm in the

+CAL algorithm language

Here, we present an example of a mutual exclusion algo-
rithm to show how conflicting access to shared resources by
concurrent processes can be solved. From the usual pseudo-
code, we would not have enough constraint formalism to
generate a formal language. Choosing the +CAL language
brings numerous advantages. First, as all algorithm lan-
guages, it allows to describe algorithms, at the high level of
description they have to be. Second, from the two versions:
p and c, we can easily generate a p-like code (Pascal, Ada)
or a c-like language. Third, this algorithm language is made
to be translated to a formal language TLA+, with a simple
command of the TLC translator (java pcal.trans bakery).
The +CAL language provides the advantages of high-level
code and the precision of a formal language that can be me-
chanically checked [32]. At last but not the least, from a
TLA+, we can also translate a PVS specification, when the
problem is not decidable.

If we aim to specify the behavior of each component in
a continuous way, from the smallest granularity component
(thread) behavior specification to the highest (modes config-
uration), we have to integrate the description of the atomic
component behavior with the AADL global system imple-
mentation. The main argument that leads us to expand the
language lies in the fact the real-time distributed systems we
are studying are using complex algorithms to specify their
atomic component behavior which have a huge influence on
the whole of the resulting architecture. Not including con-
struction of algorithms in architecture design represents a
high risk that they will never be totally taken into account
when choosing the final architecture configuration. To en-
sure the requirements traceability in the analysis and design
of the architecture , we consider therefore, that algorithms
must appear as a significant element of the design.

Therefore, we propose to expand the AADL language by
the “annex mechanism” in order to integrate the main algo-
rithmic specifications that play a role in configurations. In-
cluding an algorithm language also provides an opportunity
for automatic proof and clean code generation. Considering



the previous target of encompassing critical system require-
ments, it is necessary to retrieve proof at each level of archi-
tecture design. It is not enough to claim that proofs must
occur during the earliest steps of the design. The final mode
configurations must be chosen using proof argumentations.
This leads us to integrate a formal behavior specification
language right inside the architectural specification.

Although ADLs are more focused on programming in the
large, the behavior of a component is correlated with the
behavior of its subcomponents. Consequently, we have to
build bridges between a strict and static design process that
only focuses on the topology, and a dynamic process that
raises all the design levels to bring the parameters of an
optimal configuration to the upper levels, particularly, when
we choose to implement an algorithm that involves atomic
components.

3.4 Summary
The combination of xUML and AADL enables the cre-

ation of both an executable PIM and its corresponding an-
alyzable PSM. Modelers can therefore carry out functional
testing on the relatively simple PIM, using the increasingly
sophisticated xUML testing environments, and then move
on to assess performance, safety and other non-functional
characteristics using an automatically generated AADL mo-
del. In this section we discussed how to extract the concur-
rency requirements from the xUML model into an AADL
model to enable the analysis of its runtime architecture in
various deployment configurations. We discussed an exten-
sion to AADL, the Behavior Annex, whose objective is to
allow for annotating AADL models with behavioral charac-
teristics, in particular interaction behavior between concur-
rent components. We also discussed an approach for cap-
turing atomic component behavior through an algorithmic
language extension.

4. A GENERAL APPROACH TO IMPROVE
USABILITY OF AADL USING MDD

In recent trends, the Architecture Analysis and Design
Language (AADL) has proven a good candidate as a mod-
eling language for software-intensive systems. At the same
time, Model Driven Development (MDD) is gaining popu-
larity as a development process. This section provides an
assessment of AADL for users with limited experience with
the language. In this assessment, we concentrate on mod-
eling the software aspect of real-time embedded systems,
towards implementation in a procedural or object-oriented
language. Strong component orientation, complex compo-
nent composition and property ambiguity are identified as
three issues in the usability of AADL as a modeling language
for software-intensive systems. For resolving these issues, an
approach is presented through integration of AADL models
in a model driven development process with specifically de-
signed model transformations. This approach enhances the
usability of AADL for software developers.

The structure of this section is as follows. In 4.1 we assess
the use of AADL, and present the three issues we identified.
In 4.2 we propose an approach to ease these issues. Work
related to this approach is stated in 4.3. Finally, in 4.4 we
draw conclusions. 1

1The described work is part of the EUREKA-ITEA SPICES
project, and partly funded by the Flemish government in-

4.1 Usability assessment of AADL
Over the last decade, a number of ADLs have been pro-

posed [33]. From these proposals, the Architecture Analysis
and Design Language (AADL) [1] has received increasing
interest from mission-critical development industries. To as-
sess the strengths and weaknesses of AADL, we have consid-
ered a representative modeling example [26] and identified
a number of issues in the usability of AADL for system de-
velopers.

4.1.1 Strong component orientation
AADL uses the component-based paradigm, in which com-

ponents are the primary modeling concepts. Szyperski [12]
defines a component as follows: a software component is a
unit of composition with contractually specified interfaces
and explicit context dependencies only. Bachman et al. [17]
extend this definition by stating in a component-based sys-
tem (i) components and frameworks should have certified
properties; and (ii) these certified properties should provide
the basis for predicting properties relative to the whole sys-
tem built out of those components. From both these defi-
nitions, we can see that AADL has succeeded in building
the component-based paradigm into a modeling language.
AADL forces developers to describe a system in terms of
hardware and software components, annotating each com-
ponent with specific properties. Analyzing functional prop-
erties of the system and non-functional properties of compo-
nents in the system, enables the prediction of non-functional
properties of the system.

At the same time, AADL implicitly captures a model-
ing methodology, by dividing components into ten cate-
gories. Categories represent functionality of components
rather than concepts in which they are implemented. Hard-
ware-only systems tend to have a limited number of compo-
nents with clearly defined and strictly separated functional-
ity. For the description of hardware systems, AADL is very
appropriate. AADL allows modeling processor components
for processing instructions, memory components for stor-
ing data etc. Software components on the other hand, may
have functionality which is obfuscated or very application-
specific. What is missing, is the possibility to model com-
ponents that do not serve functionality belonging to one of
ten categories supported by AADL. Moreover, components
can be implemented in different paradigms using specific
concepts. As an example, modeling a software system im-
plemented in an object-oriented language comes down to
making a translation from components towards classes. Be-
cause components are at a higher level of abstraction and
have coarser-grained granularity, part of the implementation
of the software system cannot be modeled in AADL. For
the description of software systems, developers using AADL
may face a gap between modeling concepts and implementa-
tion concepts. In these cases, strong component orientation
makes for additional complexity, which increases the entry
level to the use of AADL.

4.1.2 Complex component composition
AADL allows composing components according to legal-

ity rules mentioned in the SAE AADL standard, which adds
hierarchical structure to the description of systems. Le-
gality rules are specific to every component category. Be-

stitution IWT (Institute for the Promotion of Innovation by
Science and Technology in Flanders).



cause these legality rules are different for each component
category, component composition is quite complex. More-
over, components can be extended, which adds complexity
to composition. It may be unclear to AADL users with
limited experience what component can be composed with
other components.

4.1.3 Property ambiguity
Components in AADL can be annotated with properties,

expressing non-functional properties of the component. Le-
gality rules in the AADL standard define which component
categories are allowed to have a certain property, and which
properties apply to each component category. A complete
AADL model annotated with a specific set of properties
makes the analysis of a non-functional property possible on
the system model.

Unfortunately, there is no clearly defined relation between
property sets and model analysis. Tools such as OSATE [47]
provide guidance in user manuals, but are not always com-
plete. Neither does the SAE AADL standard clearly state
what properties need to be annotated in an AADL model, to
analyze the model for a given non-functional property. Un-
clear relations between component categories and properties
on the one hand, and between analyses and properties on the
other hand, make for two causes of property ambiguity.

4.2 Improving usability of AADL using model
driven development

In recent years, a lot of research has been done in the
field of model driven development (MDD). In an MDD ap-
proach, models at different levels of abstraction are used as
primary artifacts throughout the software development pro-
cess. In a typical MDD approach, three levels of abstraction
can be identified. At the highest level, a platform indepen-
dent model (PIM) of the application is built. Through model
transformation, this PIM is transformed into a platform spe-
cific model (PSM). The PSM contains platform-specific de-
tails of the application towards the targeted execution plat-
form. Finally, at the lowest level of abstraction is code in a
platform specific implementation language. In this manner,
platform specific knowledge is shifted from the model to the
model transformations.

4.2.1 AADL as a platform
Issues in the usability of AADL as a modeling language,

identified in section 4.1, increase the entry level for the use
of AADL, and decrease feasibility of the use of AADL in
a development process. If we consider AADL and its run-
time environment as being a platform, this means the use of
AADL requires a considerable amount of platform specific
knowledge. In the OMG MDA guide [29], a platform is de-
fined as a set of subsystems and technologies that provide
a coherent set of functionality through interfaces and speci-
fied usage patterns, which any application supported by that
platform can use without concern for the details of how the
functionality provided by the platform is implemented. We
propose a model driven development approach that reduces
the requirement of this knowledge, and increases feasibil-
ity of the use of AADL by considering AADL as a target
platform in an MDD approach.

At the highest level of abstraction in our approach is an
incomplete AADL model of the software application, which
we will refer to as the AADL PIM. The AADL PIM may

or may not comply with AADL structural and semantic re-
quirements. One level down is an AADL model of the soft-
ware application which does fully comply to AADL seman-
tic requirements. We will refer to this model as the AADL
PSM, which is obtained from the AADL PIM through struc-
tural model transformations. Finally, at the lowest level
of abstraction is an AADL model annotated with all nec-
essary properties to analyze the application for a specific
non-functional property. We will refer to this model as the
AADL analysis model, which is acquired from the AADL
PSM through non-functional model transformations. Our
approach is semi-automatic, in the sense that properties
added through non-functional transformations are given a
proper value by the developer himself.

In the following, obtaining the AADL PIM is explained
first. Next, structural and non-functional model transfor-
mations are explained. Finally, a note is given on how to
integrate these steps.

4.2.2 Obtaining an AADL PIM
The UML has become a widespread modeling language

in software development. Although the UML may not be
specific enough for some purposes, it offers the advantage of
having a lower entry level. To use AADL with UML, the
SAE is currently working on an UML 2.0 profile for AADL
as an annex to the SAE AADL standard.

We propose the usage of an AADL PIM as a UML model
annotated with AADL stereotypes according to the UML
profile for AADL. The obtainment of this model is split into
two phases. First, a UML model is obtained that can be
the result of an analysis or design phase early in the devel-
opment process of the application, or it can be the result
of reverse engineering an existing application. Second, this
model is annotated with UML stereotypes identifying com-
ponent categories for the application, to make a complete
AADL PIM of the application.

4.2.3 Structural transformations
To comply with legality rules for component composition,

the AADL PIM should be transformed. Component compo-
sition rules are related to structural properties of the soft-
ware application. In this section, we use the term struc-
tural transformations for model transformations modifying
structural properties of the application. The result of struc-
tural transformations is the AADL PSM of the application,
which does comply with all SAE AADL standard legality
rules. Platform specific knowledge, in this case enforcing
SAE AADL standard legality rules, is built into structural
transformations. As an example, consider a system with a
network device. The driver for this device will be repre-
sented as a thread component. This thread component can
not be a direct subcomponent of the system, since this is
not in compliance with AADL legality rules. In this case a
structural transformation will add a process subcomponent
to the system, and make the device driver thread a subcom-
ponent of this process. As an AADL PSM is more platform
specific, instead of UML we use a domain-specific language
to denote the PSM. Domain-specific languages allow adding
more detail to modeling concepts. In our approach, we im-
plemented this domain specific language using Ecore [18].
Models complying with an Ecore metamodel are supported
by a XMI-file format representation, which has the advan-
tage that these models are interoperable with tools such as



OSATE [47]. OSATE has a built-in semantic check, which
allows checking compliance of the AADL PSM with AADL
legality rules. Structural transformations consist of a num-
ber of transformation rules. These transformation rules ap-
ply the following:

• Transform UML classes with a component category
stereotype applied, to a component type of the same
category in a domain-specific modeling concept.

• Provide a component implementation for the compo-
nent type according to AADL legality rules, if neces-
sary.

• Transform UML composition links between UML classes
into subcomponent relations between component im-
plementations.

• Transform directed associations between UML classes
into in, out or in out features, and provide connec-
tions between these features.

• Transform dependency relations between UML classes
into required bus access features in the component
type, and bus access connections in the component
implementation.

Structural transformation rules as stated above could be
modified or extended to enrich the transformation process.
We consider extensions of these transformation rules as a
future direction of research.

4.2.4 Non-functional transformations
The AADL PSM obtained through structural transforma-

tions is used as an input for one or several non-functional
transformation steps. Non-functional transformations add
properties to components of the AADL PSM for analysis of
the model towards exactly one non-functional property of
the system. Properties added to component type or imple-
mentation through non-functional transformations, have the
right name and type but do not possess a value. Giving the
newly added properties in this model a value, is left to the
developer. The result of a non-functional transformation is
an AADL analysis model.

As a proof of concept, we designed a non-functional trans-
formation for schedulability analysis. To allow for schedu-
lability analysis of an AADL system model, a number of
properties need to be present on certain components in the
system. These are the following:

• There needs to be at least one thread and at least one
processor component in the system.

• Processors need to specify a scheduling policy.

• Threads need to specify a dispatch policy, period, dead-
line and binding to a processor. If a thread is aperi-
odic, sporadic or background, in event ports and in

event data ports need to have an incoming connec-
tion.

Therefore, the transformation rules which make up the
non-functional transformation for schedulability analysis ap-
ply the following:

• If no processor component type is present in the system
model, add a processor component type.

• If a processor component has no Scheduling Protocol

property, add this property to the processor type or
implementation.

• If no thread component type is present in the system,
add a thread component type.

• If a thread component misses one of Dispatch Protocol,
Period, Deadline or Actual Processor Binding prop-
erties, add this property to the thread component type
or implementation.

• If a thread component has the value of its property
Dispatch Protocol set to aperiodic, sporadic or

background, add a connection for in event ports or
in event data ports which do not have an incoming
connection.

Since not all property sets are standardized and the re-
lation between properties and analyses can vary amongst
analysis tools, non-functional transformations are tool spe-
cific.

4.2.5 Integration of the transformation process
Structural and non-functional transformations make up

a logical sequence of model transformations, which can be
integrated and chained. Transformation chain modeling lan-
guages have been proposed as in [9]. A chain of structural
and non-functional transformations makes up a transforma-
tion process targeted specifically towards model-based anal-
ysis of functional and non-functional properties, allowing an
eased analysis process of both existing and newly designed
software systems.

After a chain of model transformations has been applied to
an AADL PIM, the AADL analysis model can be used with
a tool that implements the AADL runtime environment. An
example of such a tool is OSATE [47], which comes with a
number of built-in analysis plug-ins. A schedulability anal-
ysis plug-in is one of the OSATE built-in plug-ins, as are
semantic check, safety level and other analysis plug-ins.

4.3 Related work
A number of related approaches have been proposed. Dis-

saux [41] presents an approach to model transformation for
AADL in combination with UML. In contrast to the ap-
proach we propose, Dissaux concentrates on the analysis
of components from legacy code aimed specifically towards
use with the HOOD Stood tool [41]. Whereas Dissauxs ap-
proach is comparable to the structural transformations we
propose, our approach offers non-functional transformations
as well. Bertolino and Mirandola [3] propose an approach for
the specification and analysis of performance related proper-
ties of components using the RT-UML profile. Although the
approach also uses a UML profile, it is not targeted towards
model driven development like the approach presented in
this section.

Finally, a number of tools are available that address the is-
sues discussed in this section. Ocarina [28] allows model ma-
nipulation, generation of formal models, to perform schedul-
ing analysis and generate distributed applications. Ched-
dar [19] is a free real-time scheduling tool, providing a simu-
lation engine and feasibility tests. Cheddar provides a num-
ber of features to ease the development of specific schedulers
and task models.



4.4 Conclusion
Although the use of AADL as a modeling language offers

a number of interesting advantages such as the prediction
of non-functional properties, we have identified a number of
usability issues for introducing AADL. First, software de-
velopers may face a gap between modeling concepts and
implementation concepts. Second, component composition
rules in AADL are rather complex and hard to adopt. Third,
the relation between the property mechanism used in AADL
and prediction mechanisms used in analysis tools is unclear.
These issues entail an increased entry level and decreased
feasibility for using AADL in software-intensive embedded
system development.

To ease these issues and facilitate the use of AADL in em-
bedded system development, we proposed a model driven de-
velopment process using AADL models on three levels of ab-
straction. The AADL PIM of an application is at the high-
est level of abstraction, and does not necessarily fully com-
ply with AADL semantic requirements. Through structural
transformations, this model is transformed into an AADL
PSM. Structural transformations modify structural proper-
ties on the model, so that the AADL PSM does comply with
all semantic AADL rules. Finally, using one or several non-
functional transformations the AADL PSM is transformed
into a full AADL analysis model. Non-functional transfor-
mations add non-functional properties to the AADL PSM,
specific for analysis of the model towards one non-functional
property. Using transformation chains, structural and non-
functional transformations can be chained and integrated
into a model driven development process aimed specifically
towards the early verification of non-functional properties of
the system.

5. DEFINITION OF A STANDARDIZED ADL
FOR THE AUTOMOTIVE DOMAIN

The EAST-ADL is an architecture description language,
dedicated to automotive embedded electronic systems, de-
veloped in the context of the ITEA cooperative project EAST-
EEA [15] finished in 2004. This language is intended to
support the development of automotive embedded software,
by capturing all the related engineering information. The
scope is the embedded system (hardware and software) and
its environment. On top of the formal description of the el-
ements, the language defines several abstraction levels that
reflect different views and details of the architecture. They
implicitly reflect different stages of an engineering process,
but the detailed process definition is company specific. The
EAST-ADL language constructs support:

• vehicle feature modeling including variability concepts
to support product families,

• vehicle environment modeling to define context and
perform validation,

• structural and behavioral modeling of software and
hardware entities supporting refinement to code and
binaries in the context of distributed systems,

• requirements modeling and tracing with all modeling
entities,

• other information part of the system description, such
as a definition of component timing and failure modes,

Figure 6: The structure of EAST-ADL system mod-

els.

necessary for design space exploration and system ver-
ification purposes.

The language is structured in five abstraction layers (see
Figure 6), each with corresponding system representation
(in parenthesis):

• Operational Level supporting final binary software de-
ployment (operational architecture),

• Implementation Level describing reusable, platform in-
dependent code and AUTOSAR-compliant software and
system configuration for hardware deployment (imple-
mentation architecture),

• Design Level for detailed functional definition of soft-
ware including elementary decomposition (design ar-
chitecture),

• Analysis Level for abstract functional definition of fea-
tures in system context (analysis architecture),

• Vehicle Level for elaboration of electronic features (ve-
hicle feature model).

Note that the environment model spans all abstraction lev-
els, and that requirements and variability constructs apply
to modeling elements regardless of abstraction level.

The European project ATESST [7] is aimed at refining the
EAST-ADL language in the context of dependability con-
cerns, supporting OMG standard alignment and the new au-
tomotive domain standardization effort AUTOSAR [8]. To
harmonize the EAST-ADL language with the AUTOSAR
modeling approach, the lower levels of the language are be-
ing reworked to support software and hardware model enti-
ties standardized in the AUTOSAR templates.

In order to better support the development of complex
automotive systems, the EAST-ADL does not only include
means to create analysis and design models of the system to
be developed (at varying abstraction levels), but also lan-
guage means to

• specify required properties of the system at varying
degrees of abstraction,

• trace requirements between system refinement and sys-
tem decomposition levels,

• refine the specification of requirements by behavioral
models,



• manage information related to verification and valida-
tion activities.

Methodically, EAST-ADL differentiates between functional
requirements, which typically focus on some part of the
“normal” functionality that the system has to provide (e.g.
“ABS shall control brake force via wheel slip control”), qual-
ity requirements, which typically focus on some external
property of the system seen as a whole (e.g. “ABS shall have
an MTTF of 10.000 hours”), and safety requirements. Safety
requirement attributes, for example, include safety integrity
level (SIL), operation state, fault time span, emergency op-
eration times, safety state, and functional redundancy to
record dependability characteristics [27]. A requirement can
be traced from the abstract vehicle model all the way to its
derived requirements allocated to the final hardware and
software components. Depending on abstraction level, some
or all of a requirement’s attributes are applicable.

Furthermore, EAST-ADL offers detailed means to explic-
itly model central artifacts of verification and validation ac-
tivities (V&V) and to relate these artifacts to requirements.
This allows for explicitly and continuously planning, track-
ing, updating and managing important V&V-activities and
their impact on the system in parallel to the development
of the system. The combination of a V&V-case, its environ-
ment and its target object is described as a V&V context.

Another important focus of the ATESST project is to
augment the EAST-ADL with means to support variability
management and product-line oriented development. Vari-
ability has a growing significance in the automotive do-
main. Its complexity arises out of variation resulting from
inevitable product differentiation as well as technically mo-
tivated variation due to the distribution of a variety of in-
teracting functions over a number of hardware components
from different suppliers. To rigidly analyze, define and evolve
an automotive system’s variability is the purpose of the vari-
ability management concepts provided by the EAST-ADL.
On top of that, the notion of product-line oriented develop-
ment means that the products offered by a certain manufac-
turer are not developed independently from one another but
instead a single, variable product is developed from which
the individual members of the product line are derived, thus
shifting the focus of development from the individual prod-
uct to the product line as a whole. In this sense, a product
line can be defined as follows: “A software product line is
a set of software-intensive systems sharing a common, man-
aged set of features that satisfy the specific needs of a par-
ticular market segment or mission and that are developed
from a common set of core assets in a prescribed way” [13].

The industrial applicability of a modeling technique relies
heavily on tool support and mature concepts. Tool availabil-
ity and validation of concepts is fostered by standardization
or alignment with existing standards. Standardization of the
EAST-ADL is ensured in mainly two contexts: AUTOSAR
and the OMG.

The AUTOSAR platform is a future de-facto standard
for automotive embedded systems. It defines a set of mid-
dleware components that provides a standardized platform
for application software. The modeling approach for ap-
plication software components and hardware architecture
contains the details necessary for correct integration. In
ATESST, the entities corresponding to software and hard-
ware components are taken from the AUTOSAR standard,
but put in a context where the EAST-ADL system model-

ing concepts can be used. AUTOSAR-compliant software
architecture can thus be modeled with support for e.g. vari-
ability, requirements, traceability and verification and vali-
dation. In this sense the EAST-ADL language complements
the AUTOSAR initiative by providing higher-level abstrac-
tion means of modeling and analysis.

The OMG standards in the scope of EAST-ADL include
UML2, SysML [36] and Marte [16, 24]. The refined EAST-
ADL will be aligned with these approaches. Alignment
with UML2 is done by construction because EAST-ADL
is designed as a UML2 profile. SysML concepts are being
reused wherever applicable, for example regarding require-
ments and plant modeling constructs. Many of the EAST-
ADL concepts are thus reused SysML concepts, or special-
izations of these. Marte, on the other hand, is an ongoing
effort to define a standard UML profile for Modeling and
Analysis of Real-Time and Embedded systems. Harmoniza-
tion with Marte is done by integrating Marte concepts in the
EAST-ADL where real-time and embedded system proper-
ties are modeled. Furthermore, as members of the ATESST
project are taking part in the elaboration of the Marte pro-
file, it is planned that the EAST-ADL profile could be issued
as an annex to the subsequent version of Marte.

Another important objective of the ATESST project is
the development of a prototypical modeling environment.
Based on Eclipse, it features a UML modeling tool with
support for profile editing and application as well as various
customizations to meet the need of a particular modeling
approach. Ongoing development includes several additional
plugins to be connected to this core platform so as to provide
additional means of analysis, model checks and editing. This
is also intended as being a validation platform for the EAST-
ADL language as a whole.

6. CONCLUSIONS
The previous example on the use of MDE, and specially

its two key principles abstraction and refinement, shows that
it may already provides adapted and satisfying solutions to
some of the issues the engineers have to face today to de-
velop their real-time embedded systems. We show in this
paper that dedicated languages were existing, some of them
being standard, for instance MARTE, AADL or also EAST-
ADL. These domain specific languages are good examples
of how providing the right abstraction level within one lan-
guage may be so helpful to ease system development. But
it has been also shown that suitable abstractions are neces-
sary but not enough. Refinement, and moreover assisted or
automatic refinement, is also required to fully enable mod-
els to hold its active role in the new emerging model-driven
development processes.

But do not forget that the transition from code-oriented
to model-oriented development will not alleviate the need
for answers to the usual problems of traceability, configu-
ration and version management, etc. Therefore, if MDE is
intended to be successful in industry, solutions to these is-
sues will have to be available for all tools claiming to be
MDE-compliant.

Finally, let’s notice that definitions and developments of a
set of MDE artifacts for development, validation, exploita-
tion and maintenance of real-time embedded systems lies
at the core of new large-scale joint research programs in
the one hand, such as for example the Software Factory
project of the System@tic French competitiveness cluster



(http://www.systematic-paris-region.org) that federates mo-
re than 40 partners coming from both research and indus-
try domains. In other hand, a lot of powerful open-source
project dedicated to MDE are available, a lot of them being
developed in the context of the Eclipse project, as the OS-
ATE/Topcased toolkit (http://www.topcased.org), the Pa-
pyrus tool for UML2 (http://www.papyrus.org), the ATL
language for model transformations, or also the Ocarina tool
suit which is an AADL model processing suite written in
Ada (http://ocarina.enst.fr ).
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