
Impact of RTOS Parameters on End-to-End Timing Performance

Antino Kim and Kang G. Shin

Real-Time Computing Laboratory

Department of Electrical Engineering and Computer Science

The University of Michigan

Ann Arbor, MI 48109-2122

email: {kheehyon,kgshin}@eecs.umich.edu

Abstract

 For accurate end-to-end (e2e) analysis of a real-

time embedded system (RTES), we need a method to

precisely reflect the effects of the underlying real-time

operating system (RTOS). In timing analysis, RTOS

can be viewed as a matrix of parameters that could

affect the timing of the RTES. In this paper, we

consider various RTOS parameters that may affect the

temporal behavior of the RTES, and propose RTOS

modeling as a viable approach to account for the

impact of RTOS on e2e timing.

1. Introduction

To better utilize the underlying computing

resources, real-time operating systems (RTOSs) are

widely used in the real-time embedded system (RTES)

field. In an early design phase of RTES development,

the system designers perform rapid prototyping to test

the validity of the system. It is the role of end-to-end

(e2e) timing analysis to aid the system designers in

making a decision on which available RTOS to use.

Therefore, it is important to correctly reflect the tem-

poral effects of RTOS on the overall system. However,

RTOS itself is highly complicated, and it is not

obvious how to account for its impact on e2e timing.

In this paper, we propose RTOS modeling based

on profiling to account for the impact of RTOS on e2e

timing. We view RTOS as a matrix of parameters that

could affect the timing of the RTES. We first discuss

RTOS parameters and how they may affect the

temporal behavior of the RTES, and then describe our

approach in modeling the RTOS along with steps we

plan to take.

2. Problem

There are many parameters of RTOS that have

great impact on e2e timing, including timer granularity,

choice of scheduler, IPC facilities, and so on. Table 1

lists some of the major RTOS parameters. We have

Table 1. List of example RTOS parameters that
 affect the timing of RTES

tried to maintain the description of RTOS as general as

possible while bringing out some of the important

characteristics from the crowd. We will discuss some

of these parameters in more detail.

Scheduler is a mechanism that determines which

task gets to run at a certain instant, and it is usually

done by using some notion of priority. Priority

inversion resolving protocols [3] may cause

unintended change in task priority, and therefore,

affect scheduler’s decision. Moreover, according to [3],

priority inheritance protocol and priority ceiling

protocol have different timing overheads. Also, the

choice of scheduling policy brings different overheads

to the system. For example, it is commonly known

that Earliest-Deadline-First (EDF) scheduling has

higher run-time overhead than Rate-Monotonic (RM)

scheduling, while RM induces a higher schedulability

overhead.

Timer granularity determines how finely the time

can be managed. Together with the choice of a

scheduler, timer granularity may significantly affect

the number of context switches, thus the accumulated

• Scheduler: Scheduling policy, associated timing

overhead, support for task preemption, scheduler

triggering events (e.g., blocking of a task, timer ISR,

etc.)

• Priority inversion resolution protocols: Priority

inheritance protocol, priority ceiling protocol, disabling

preemption during access to shared data [4]

• Timer granularity

• Preemptability & preemption points of kernel services

• Kernel thread priority

• Set of system calls and their duration

• Task synchronization primitives (e.g., lock, semaphore,

mutex, etc.)

• Set of IPC facilities (message passing, barrier, etc) and

their characteristics (i.e., blocking / non-blocking)

• Set of ISRs (Timer ISR, I/O ISR) and their duration

• Effect of splitting I/O interrupt into top/bottom half

overhead. In addition, the timer granularity would

determine the accumulated overhead of timer interrupt

handler.

Other parameters listed in the table are all import-

ant factors to resolve in order to conduct a precise e2e

analysis. Especially, effects of I/O interrupt handlers

would be an interesting issue to study thoroughly. For

a better response time, I/O interrupts are usually

divided into top-half and bottom-half handlers [1].

While it may be a reasonable approach in general

purpose OSs, arbitrary delay of bottom half proce-

ssing introduces another source of timing uncertainty.

While there are many factors in RTOS that affect

e2e timing of a system, it is unclear how to reflect the

effects of those parameters when designing a system.

It would be wasteful to purchase a RTOS and port

applications on it just to see whether the given

implementation satisfies e2e timing requirement. It

would be more useful for the system designers to have

a way to perform rapid prototyping by adjusting the

knobs on numerous RTOS parameters at design time.

3. Proposal

We propose RTOS modeling based on its

parameters as a viable approach to studying the effects

of RTOS on e2e delay. Basically, we abstract the

impact of RTOS on e2e timing as a matrix of

parameters that we mentioned above. While there have

been numerous efforts in modeling RTOS [2, 5], there

has not been a solution that is comprehensive enough

for practical use. In [2], the authors model RTOS by

categorizing RTOS parameters into behavior model

and timing model, where the behavior model is charac-

terized by scheduling policy and preemptability, and

the timing model is represented by scheduling duration

and context switch overhead. These are important

parameters of RTOS, but we need a more compre-

hensive list to make the model fully capture the temp-

oral effects of RTOS. In [5], the authors present a

configurable RTOS modeling tool, and our proposal is,

in principle, similar to their work. However, while [5]

deals with many of the major RTOS parameters, it

ignores essential factors of scheduling such as priority

inversion resolution protocols. The model provides a

generic priority driven scheduler without the policy of

how the priority of a task is resolved in the scheduler

(e.g., RM, EDF). Moreover, only one application is

run in the experiment, so there is no conclusive evide-

nce that their model fully captures the impact of RTOS

in cases where multiple processes run concurrently.

Borrowing the concept of RTOS modeling, we

plan to develop a refined model by conducting a full

study on the parameters that could affect the temporal

behavior of the RTES. The model should be flexible

enough to accommodate new ideas in the future. The

authors of [5] suggest a list of requirements that RTOS

modeling should fulfill. We will investigate on how to

represent the parameters of RTOS. For the scheduler

parameter, we will develop a way to describe its

policy in a systematic yet extensible way. For

parameters such as timer granularity or system call

duration, we may leave them open for users to specify.

This will give users more flexibility. When modeling

an existing RTOS, we may use some of the available

measurements or make additional measurements.

With a constructed model, we will perform a

sensitivity test to see the degree of effect that each

parameter has on the RTES. Sensitivity analysis may

reveal some of the unforeseen effects of RTOS

parameters. Especially, variations in combination of

parameters may produce synergy effects that would be

hard to predict by analyzing each parameters

separately. RTOS modeling will facilitate such multi-

factorial studies. Conversely, sensitivity test will help

us refine the model of RTOS. During the test, we may

come to realization that for some applications, a

certain set of parameters has minimal effect, and there-

fore, is irrelevant to the e2e timing. Such conclusion

would make the model simpler and easier to analyze.

We believe that a model-based approach in

accounting for the impact of RTOS would be effective

in rapid prototyping. The model will enable system

designers to correctly evaluate the behavior of overall

system while considering the impact of RTOS. All

these analyses can be done without having to port the

tasks onto an actual RTOS. Based on the observations,

RTOS model is an effective solution to the problem of

accounting for the impact of RTOS on overall timing

performance.

4. References

[1] Y. Zhang, and R. West, Process-Aware Interrupt

Scheduling and Accounting, Proceedings of the 27th

IEEE International Real-Time Systems Symposium

(RTSS), 2006

[2] R. Moigne, O. Pasquier, and J. Calvez, A Generic

Model for Real-time Systems Simulation with SystemC,

Proceedings of the Design, Automation and Test in

Europe Conference and Exhibition Designers’ Forum

(DATE), 2004

[3] D. Locke, Priority Inheritance: The Real Story, http://ww

w.linuxdevices.com/articles/AT5698775833.html,2002

[4] G. Buttazzo, Hard Real-Time Computing Systems (The

International Series in Engineering and Computer

Science), Kluwer Academic Publishers, ISBN

0792399943, 1997

[5] Z. He, A. Mok, and C. Peng, Timed RTOS Modeling for

Embedded System Design, Proceedings of the 11th IEEE

Real Time and Embedded Technology and Applications

Symposium (RTAS), 2005

