
Compositional Schedulability Analysis for Cyber-Physical Systems

Arvind Easwaran and Insup Lee
Department of CIS, University of Pennsylvania

PA, 19104, USA
{arvinde,lee}@cis.upenn.edu

Abstract

Cyber-physical systems (CPSs) are becoming all-
pervasive, and due to increasing complexity they are de-
signed using component-based approaches. Temporal con-
straints of such complex CPSs are then modeled using hi-
erarchical scheduling frameworks. Therefore, there is a
need to develop compositional schedulability analysis tech-
niques for such CPSs. In this essay, we describe one such
CPS present in air-crafts. We also discuss the hierarchical
frameworks that are found in these systems, and highlight
shortcomings of existing techniques in analyzing them.

Cyber physical systems. Embedded systems are
widely applicable in today’s world largely due to the ever
decreasing cost of resources such as computing power and
communication bandwidth. Of particular interest, are em-
bedded systems that use the discrete and powerful world of
computing to monitor and control the continuous dynamics
of physical and engineered systems. These are known as
cyber-physical systems or deeply embedded systems. There
exist many examples of CPSs in our day-to-day lives such
as medical devices, avionics systems and factory automa-
tion. It is desirable that these systems operate correctly, ef-
ficiently and in real-time.

Composition for CPSs. Typically, CPSs consist of a
combination of different types of resources, programmable
components, sensors, etc. Such re-configurable architec-
tures are essential to adapt these systems to a variety of
applications. With increasing complexity and large scale,
there is a need for advanced design and analysis tools for
CPSs. Component-based engineering, which involves com-
positional system modeling and analysis, is widely used for
this purpose. It is founded on the paradigm that a complex
system can be designed and analyzed by decomposing it
into simpler components, and then composing the compo-
nents using interfaces that abstract complexities.

CPSs interact with the physical world in many safety-
critical domains like aviation, medicine, etc. Hence, they
are subject to certification with respect to government spec-
ified regulations. In addition, these domains also have some

form of timing requirements that must be satisfied by sys-
tems. Component-based real-time CPSs often involve hier-
archical scheduling frameworks that support resource shar-
ing among components under different scheduling algo-
rithms. This framework can be represented as a tree of
nodes, where each node denotes a component comprising of
some real-time workload and a scheduling policy. To help
with certification, it is then essential to develop schedula-
bility analysis techniques for such hierarchical frameworks.
Furthermore, to take advantage of component-based engi-
neering, it is desirable to achieve this analysis composition-
ally, i.e., we should be able to check schedulability of the
system by composing interfaces that abstract component-
level resource demand.

ARINC-653 avionics RTOS. ARINC standards, de-
veloped and adopted by Airlines Electronic Engineering
Committee (AEEC), deliver substantial benefits to airlines
and aviation industry. In particular, the 600 series AR-
INC specifications and reports define enabling technologies
that provide a design foundation for digital avionics sys-
tems. Within the 600 series, the ARINC specification 653-2
part I [2] (henceforth referred to as ARINC-653), defines
a general-purpose Application/Executive (APEX) software
interface between the operating system of an avionics com-
puter and the application software.

As described in ARINC-653, among other things, the
CPS in an aircraft comprises of one or more core modules
connected with one another using switched Ethernet. Each
core module in turn, consists of one or more processors,
memory and network interfaces. An example partial model
of this avionics system is illustrated in Figure 1, where it
shows single redundancy. A core module supports time and
space partitioned execution of one or more avionics appli-
cations. Each independently executing function is called a
partition which in turn comprises of one or more real-time
processes. As shown in Figure 2 (cf. Figure 1.2 in ARINC-
653), the core module software architecture comprises of
(1) application layer software including partitions and pro-
cesses within partitions, (2) APEX (application executive)
interface, and (3) an OS kernel. The APEX interface de-
fines a set of API that applications can use to control their

1

Core Module 1A
Core Module 1B

Network A

ports
I/P

ports

Interface 1A
Interface 1B

O/P

Network B

Core Module 2B
Core Module 2A

O/P I/P
ports ports

Interface 2B
Interface 2A

Figure 1. CPS in an aircraft

Layer

APEX Interface

Hardware

OS Kernel

Partition 1 Partition 2 Partition n.

Core
Software

Layer

Application
Software

︸
︷︷

︸
︸

︷︷
︸

Figure 2. Core module software architecture

scheduling, communication or status information. The OS
kernel supports a two-level hierarchical scheduling frame-
work: a global partition-level scheduler and local process-
level schedulers within partitions.

Processes within a partition can be aperiodic or periodic
with pre-period deadlines, and can communicate with each
other using input and output ports either asynchronously
or synchronously. Sequences of such communicating pro-
cesses form dependency chains, and designers can specify
end-to-end latency bounds for them. Also, a process can be
blocked by other lower priority processes in the same parti-
tion due to mutual exclusion requirements.

There are several problems related to the system de-
scribed above, that must be addressed. For scheduling par-
titions, it is desirable to abstract the communication depen-
dencies between processes in the form of process parame-
ters like offsets, jitter and pre-period deadlines. This sim-
plifies a global multi-partition scheduling problem, into sev-
eral local single partition scheduling problems. The process
deadlines must also guarantee satisfaction of end-to-end la-
tency bounds specified by the designer. Given such pro-
cesses, we must then generate scheduling parameters for the
partitions. The resulting partition schedule must provide
sufficient processor capacity to schedule processes within
partitions. Furthermore, all these parameters must also ac-
count for blocking and preemption overheads incurred by
processes and partitions.

Compositional schedulability analysis. Traditionally
the partition scheduling problem described above has been
addressed in an ad-hoc fashion, based on interactions be-

tween the system designer and vendors who provide the
partitions. Although many different ARINC-653 platforms
(cf. [1]) exist, there is a lack of techniques to automate this
scheduling process. One such technique studied by us is
compositional schedulability analysis using resource mod-
els [7, 5].

A resource model represents the characteristics of a re-
source supply, and hence can be used to abstract resource
demand of components in their interfaces (ARINC-653 par-
titions can be regarded as components). A periodic resource
model Γ = (Π, Θ), represents a resource supply that pro-
vides Θ units of resource in every Π time units. Simi-
larly, an explicit deadline periodic resource model Ω =
(Π, Θ, ∆), represents a resource supply that repetitively
provides Θ units of resource in ∆ time units, with period
of repetition Π. In our analysis, we abstract component de-
mands into interfaces using resource models, and then com-
pose these interfaces to check schedulability of hierarchi-
cal frameworks. We have developed these techniques under
deadline-monotonic and earliest deadline first schedulers.

Conclusion and challenges. Although many differ-
ent resource model based compositional analysis techniques
exist [7, 5, 3, 6, 4], none of them accurately account for
preemption and blocking overheads. To efficiently analyze
and schedule ARINC-653 partitions, we must then extend
these techniques in this direction. Another important as-
pect is handling of inter- and intra-component communica-
tion dependencies. Some solutions have been proposed for
compositional analysis in the presence of such dependen-
cies [3, 6, 4]. However, a comprehensive theory address-
ing this problem is still to come. In particular, there is a
need to abstract communication dependencies and end-to-
end latency specifications in component interfaces. Thus
in conclusion, we must extend existing techniques, as well
as develop new techniques to analyze the schedulability of
component-based real-time CPSs.

References

[1] Green Hills Software, ARINC 653 partition scheduler. In
www.ghs.com/products/safety critical/arinc653.html.

[2] Avionics application software standard interface: Required
services (ARINC 653-2). Technical report, AEEC, 2006.

[3] L. Almeida and P. Pedreiras. Scheduling within temporal par-
titions: response-time analysis and server design. In EM-
SOFT, 2004.

[4] R. I. Davis and A. Burns. Resource sharing in hierarchical
fixed priority pre-emptive systems. In RTSS, 2006.

[5] A. Easwaran, M. Anand, and I. Lee. Compositional analysis
framework using EDP resource models. In RTSS, 2007.

[6] S. Matic and T. A. Henzinger. Trading end-to-end latency for
composability. In RTSS, 2005.

[7] I. Shin and I. Lee. Periodic resource model for compositional
real-time guarantees. In RTSS, 2003.

2

