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Abstract

Micro-Electro-Mechanical (MEMS) sensing and actua-
tion devices are poised to reinvent the cyber-physical world
by providing environmental connectivity in unprecedented
ways. MEMS accelerometers and transducers open the
door to sensor networks embedded in physical structures,
armed with the ability to monitor structural integrity. Such
applications are the hallmark of deeply embedded systems,
where autonomy, communication, and cyber-physical inter-
action play pivotal roles in system effectiveness. Realization
of these next-generation embedded systems will require ex-
pertise spanning a variety of domains, further exacerbating
the already significant integration effort of modern design.
To this end, we propose a system-level design methodology
that promotes functional correctness through specification
of latency-insensitive (or event-based) behavior.

1 Motivation
Micro-Electro-Mechanical-Systems (MEMS) are posi-

tioned to be fundamental components in future cyber-
physical systems, by allowing deeply embedded systems to
interact with the physical environment. Widespread avail-
ability of devices such as accelerometers, gyroscopes, pres-
sure transducers, and even complex arrays of thousands of
micromirrors[1], enables system miniaturization and mobil-
ity at unprecedented levels. Despite the promise of MEMS
devices, realizing practical, portable, and autonomous sys-
tems is remarkably difficult given the effort to actuate, inter-
face, and control with current digital controller technology.
This is largely due to scaling of physical time constants,
which can be several orders of magnitude faster than macro-
scale devices; in addition to ensemble behaviors including
communication, power management, and computation, all
at vastly lower power levels than conventional design.

Existing platforms designed around commercially avail-
able microcontroller devices have provided the means for
exploring new areas in network sensors. While valuable
demonstrations, these architectures do nothing to directly
address the growing complexity of system-level design or

the specific issues of MEMS. Rather, system complexity
has been pushed to the software abstraction level, where
real-time operating systems and clever programming are ex-
pected to fill the gap. In this space, sporadic, environment-
driven execution are often well represented by event-based
models. In our work, we propose to address the growing
complexity in specifyingcorrect system behavior through
use of latency-insensitive, or event-based, semantic mod-
els. Such models are applicable at hardware, software, and
system architecture levels of abstraction. We argue that an
applicative, rule-based language[4] is a natural fit for this
semantic model and that this flow enables a single specifi-
cation to target a range of hardware implementations that
tradeoff power and performance without sacrificing behav-
ioral correctness.

2 Architecting Systems
Meeting system-level constraints in modern embedded

environments has become a daunting task, and in the
field of MEMS, requires high-performance custom ASIC
implementations[2] to support control functionality. Novel
architectures offer viable alternatives to commodity offer-
ings by exploiting characteristics of both the applicationen-
vironment and execution patterns[5]. Unfortunately, archi-
tecture exploration is a costly and complex task which of-
ten mitigates extensive use of custom architectures. Much
of the difficulty in the architectural design process lies in
temporal integration of components. Interfaces tend to be
both physically and temporally diverse, requiring signifi-
cant effort to construct candidate designs meeting perfor-
mance goals and to validate design correctness.

2.1 IP Integration

With the advent of true systems-on-chip came the need
for retargetable IP solutions that provide common function-
ality with drop-in simplicity. Unfortunately this dream is
far from the reality of current IP solutions, where the end-
designer is responsible for correctness across design spaces
that he has no direct influence on. This makes behavioral
closure (correctness) challenging since a variety of ad-hoc
methods may be employed for interfacing and communica-
tion. Moreover, such interfaces are typically built with in-



trinsic temporal constraints that must be satisfied. Latency-
insensitivity, on the other hand, allows interface function-
ality to be decoupled from time, allowing arbitrary delays
without affecting behavioral correctness. In this model, de-
sign correctness is insulated from temporal behavior, allow-
ing composition of functionality and simplified debugging.

As a specification medium, rule-based languages are a
natural fit since the description format closely represents
the behavior of the underlying execution model[4]. Un-
fortunately, current synthesis techniques target conventional
machine organization with global control and data accessi-
bility, resulting in artificial critical paths and unnecessary
communications. As an alternative to this, we propose the
use of a set of tiny, composable connector circuits that im-
plement a 2-signal communication protocol preserving elas-
ticity throughout the control network[3]. In this format,
control and data are tightly coupled, allowing distributed
implementations where all interfaces are guaranteed to be
composable. This composability exists at all levels of de-
sign abstraction, allowing system composition that is guar-
anteed to be behaviorally correct and thus significantly re-
ducing the effort of system integration.

In software, this execution model is not a large departure
from event-based methodologies currently employed. The
latency-insensitive model can be realized as transaction-
process or thread-based software implementations where
functional tasks are dynamically scheduled for execution
on available resources. The inherent parallelism available
at the software abstraction level is typically more limited
than in hardware, thus requiring a centralized mechanism
for resource allocation. Despite this, it is the case that pro-
cesses are always safe to run in parallel, and therefore take
advantage of as much physical parallelism is made avail-
able by the architecture. A key aspect of this is the ability
to identify data dependencies during synthesis and optimize
inter-process communication and shared state.

The commonality between hardware and software mod-
els opens the door for a variety of implementation tradeoffs
that are not available to conventionally composed systems.
Elasticity in the interfaces of both hardware and software
provide a common mechanism for communication, obviat-
ing the need for complex device drivers. The symbiosis of
these technologies offers the potential for scalable system
design in ways presently infeasible and offers opportunities
for architectural exploration to identify efficient architec-
tures with minimal effort. Consider the ability to automat-
ically synthesize behavioral components to hardware in an
effort to meet system constraints, all without rewriting any
of the system specification.

2.2 Meeting System Constraints

Latency-insensitive design relies on the decoupling of
temporal constraints and behavioral functionality. This is
a contrarian view to conventional embedded design where

system correctness is frequently tied to real time con-
straints. Here we emphasize that design correctnessshould
be paramount throughout the specification processes, while
system timing and power constraintsshouldbe optimization
criteria and constraints. This allows a large number of im-
plementations to be realized from a single specification, all
with equivalent behavior. Powerful optimizations are possi-
ble via localized transformations which can reduce resource
execution and communication, and lower power consump-
tion. At the hardware level, power savings are also possi-
ble through selective clocking controlled by the token-based
composition protocol.

3 Research Directions
Realizing cyber-physical systems that couple next-

generation MEMS technology requires expertise spanning
a multitude of disciplines from embedded systems to con-
trol theory. While our proposed methodology provides a
feasible path to reach design constraints and eases much of
the design burden, there are open issues related to execution
modeling, efficient control partitioning, and physical inter-
facing. RTL synthesis provides an accurate foundation for
modeling system latency and throughput in hardware. In
software, however, the ability to model execution latency
is more complicated. To this end, we must have mecha-
nisms for establishing execution bounds by which to direct
optimizations. In the world of MEMS, many are skepti-
cal that all-digital solutions can provide the required per-
formance while meeting system power and size constraints.
While novel architecture have shown that it is feasible to
achieve such constraints, software opportunities also exist
for control partitioning and efficient resource-based execu-
tion strategies. And at the low-level, novel physical in-
terfaces need to be developed for plug-in connectivity be-
tween high-voltage MEMS drivers (30V), low-current sen-
sors (1nA), and practical integrated digital logic.
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