
Programming Framework for Sensor-data Driven Context-Aware Applications

Devdatta Kulkarni (dkulk@cs.umn.edu)∗

Advisor: Dr. Anand Tripathi
Department of Computer Science, University of Minnesota Twin Cities MN 55455, USA

Abstract

Context-awareness is one of the central characteristics
of pervasive computing applications. We have built a pro-
gramming framework for constructing context-aware ap-
plications from their high-level speci£cations. This frame-
work automatically constructs the runtime environment for
an application to enforce application de£ned policies for
dynamic composition of resources and services based on
context events derived from ambient sensors.

1 Introduction

Recent trend in number of application domains such as,
assisted living [3], hospital information systems [2], tour
guides [1], smart environments [6], is towards integrating
context information to dynamically adapt an application’s
behaviour to provide enhanced functionality to users. Typ-
ical examples of context information include user location,
co-location of users, co-location of a user with a device
or an object, devices being used by a user, and so on.
The typical characteristics of context aware applicationsin-
clude context-based recon£guration, context-triggered ac-
tions, context-based information access, context-based ac-
cess control and multi-user coordination [5].

The main theme of my Ph.D. research has been on de-
veloping a programming framework to support rapid con-
struction of context-aware applications from their high-
level speci£cations. The middleware generates the runtime
environment of the application from the application’s spec-
i£cation. Middleware provides services for resource reg-
istration and discovery, location-independent naming, and
context agents for detecting and aggregating sensor data.
The main advantage of this approach is that the task of de-
veloping context-aware applications is simpli£ed because
of the following reasons. First, the application program-
ming efforts are limited only to developing the design spec-
i£cation and the required application components. Second,

∗This work was supported by NSF grant 0411961.

the runtime environment for the application is automatically
generated and maintained by the middleware, based on the
design speci£cation.

One of the crucial requirements of context-aware appli-
cations is real-time collection and aggregation of sensor
data from sensors distributed in the environment. For this
purpose I have developed a reusable context information
collection and aggregation system using a distributed agent-
based event aggregation system. In this system, one can
de£ne agents for monitoring and collecting context infor-
mation by tracking user Bluetooth devices, RFID tags, and
GPS enabled devices. Also, agents can be de£ned to repre-
sent physical spaces, such as rooms. Such agents maintain
state information associated with the corresponding phys-
ical space. All agents support query and noti£cation inter-
faces and generate context events, which may be subscribed
to by context-aware applications.

2 Hospital Information System

I will discuss in this workshop a medical domain applica-
tion that exhibits novel context-based requirements. It sup-
ports storage, retrieval, and access of patient information.
Doctors and nurses may access this information through
their mobile personal devices. We consider the following
context-based requirements for this application, some of
which have been raised by others [4].

A nurse may access medical records only if some doctor
is also present in the ward where she is present. Moreover,
only those nurses who are on a patient’s medical assistance
team may access the patient’s medical records. We may also
require that a nurse’s mobile device automatically binds to
the patient’s records to whom she is currently attending.
The application also allows nurses to post alerts for other
nurses in a ward. Such alerts are noti£ed to a nurse when
she enters a ward.

For realizing above application, one needs to tackle fol-
lowing interdisciplinary research problems.
• Designing models for real-time sensor data aggregation to
support application-speci£c context detection requirements.
• Mechanisms for policy speci£cation for adapting an ap-

1



plication in a given physical space based on ambient condi-
tions.
• Mechanisms for context-based access control policy spec-
i£cation and enforcement for an application.

3 System Architecture

In our programming framework, a context-aware appli-
cation is programmed using an abstraction calledactivity.
An activity de£nes a shared object space, and a set of user
roles. Various resources/services required by the applica-
tion are accessed asobjects within the activity. Operations
are associated with arole, through which a role member
may perform application tasks. Context-based access con-
trol requirements are programmed using two mechanisms,
precondition, andaccess constraint. We provide thereac-
tion mechanism for programming context-triggered actions.
A reaction is similar to a role operation, the only difference
being that it is triggered by an event and executed by the
runtime system, rather than executed by any role member.

Application

Object
Manager

Specific

Activity

Specification

(in XML)

Application Runtime
Environment

Role 
Manager

Generic

Activity
Manager

Generic

Object
Manager

Specific

AgentComponent
Application

Object Binding

Context Events

Context

Policies
Sub
Event
Context

Event 
Operation

Sub/Notify
Policies

Application
Policies

Control
Access

Binding & Generic

Role 3

Role 1
UCI

UCI

Manager
Role 

Specific
Activity
Manager

Application

Service
Infrastructure

Role 2
UCI

Discovery Service

Figure 1. Process of generating a context-
aware application’s runtime environment

In Figure 1 we present the main elements of the middle-
ware. The middleware provides three generic components,
an activity manager, a role manager, and anobject man-
ager. The runtime environment of an activity is constructed
by deriving policies from its XML speci£cation, and inte-
grating them with the generic managers to construct appli-
cation speci£c managers.

The policies that are derived include object binding and
method level access control policies for object managers,
operation execution and event subscription/noti£cation
policies for role managers, and context event subscription
policies for the activity manager. An object manager main-
tains a reference to the service to which the object is cur-
rently bound. These managers are run on a set oftrusted
servers.

4 Lessons Learned

I would discuss the following lessons that emerged as
part of designing this programming framework and imple-
menting a number of context-aware applications using it.
• Distributed agent based architectures can be effectively
utilized for real-time processing of sensor data streams for
detecting context conditions required by an application.
• If a context event triggers dynamic binding of multiple
objects, then the order in which the event is dispatched to
these objects can be crucial for correctness of the applica-
tion’s behavior.
• Concurrent executions of reactions triggered by asyn-
chronous context events can lead to incorrect behavior of
an application.
• During the course of execution of a context-dependent
task, it is possible for the related context condition to be-
come false. This can be crucial for the correct enforcement
of context-based access control requirements. We refer to
this as thecontext invalidation problem.
• The precondition mechanism is inadequate for specify-
ing context-based access control conditions in which a role
member’s access to a resource needs to be restricted based
on the relationship of certain attributes of the resource to
the role member’s current context. We refer to this as the
context-based resource view control problem.

References

[1] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper,
and M. Pinkerton. Cyberguide: a Mobile Context-aware Tour
Guide.Wirel. Netw., 3(5):421–433, 1997.

[2] J. E. Bardram, T. R. Hansen, M. Mogensen, and M. Søgaard.
Experiences from real-world deployment of context-aware
technologies in a hospital environment. InUbicomp, pages
369–386, 2006.

[3] S. Consolvo, P. Roessler, B. E. Shelton, A. LaMarca,
B. Schilit, and S. Bly. Technology for care networks of el-
ders.IEEE Pervasive Computing, 3(2):22–29, 2004.

[4] M. Evered and S. B̈ogeholz. A case study in access con-
trol requirements for a health information system. InACSW
Frontiers ’04: Proceedings of the second workshop on Aus-
tralasian information security, Data Mining and Web Intelli-
gence, and Software Internationalisation, pages 53–61, Dar-
linghurst, Australia, Australia, 2004. Australian Computer
Society, Inc.

[5] B. Schilit, N. Adams, and R. Want. Context-Aware Comput-
ing Applications. InIEEE Workshop on Mobile Computing
Systems and Applications, pages 85–90, Santa Cruz, CA, US,
1994.

[6] Y. Shi, W. Xie, G. Xu, R. Shi, E. Chen, Y. Mao, and F. Liu.
The smart classroom: Merging technologies for seamless
tele-education. IEEE Pervasive Computing, 02(2):47–55,
2003.


