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Abstract

Context-awareness is one of the central characteristics
of pervasive computing applications. We have built a pro-
gramming framework for constructing context-aware ap-
plications from their high-level speci£cations. This frame-
work automatically constructs the runtime environment for
an application to enforce application de£ned policies for
dynamic composition of resources and services based on
context events derived from ambient sensors.

1 Introduction

Recent trend in number of application domains such as,
assisted living [3], hospital information systems [2], tour
guides [1], smart environments [6], is towards integrating
context information to dynamically adapt an application’s
behaviour to provide enhanced functionality to users. Typ-
ical examples of context information include user location,
co-location of users, co-location of a user with a device
or an object, devices being used by a user, and so on.
The typical characteristics of context aware applicationsin-
clude context-based recon£guration, context-triggered ac-
tions, context-based information access, context-based ac-
cess control and multi-user coordination [5].

The main theme of my Ph.D. research has been on de-
veloping a programming framework to support rapid con-
struction of context-aware applications from their high-
level speci£cations. The middleware generates the runtime
environment of the application from the application’s spec-
i£cation. Middleware provides services for resource reg-
istration and discovery, location-independent naming, and
context agents for detecting and aggregating sensor data.
The main advantage of this approach is that the task of de-
veloping context-aware applications is simpli£ed because
of the following reasons. First, the application program-
ming efforts are limited only to developing the design spec-
i£cation and the required application components. Second,
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the runtime environment for the application is automatically
generated and maintained by the middleware, based on the
design speci£cation.

One of the crucial requirements of context-aware appli-
cations is real-time collection and aggregation of sensor
data from sensors distributed in the environment. For this
purpose I have developed a reusable context information
collection and aggregation system using a distributed agent-
based event aggregation system. In this system, one can
de£ne agents for monitoring and collecting context infor-
mation by tracking user Bluetooth devices, RFID tags, and
GPS enabled devices. Also, agents can be de£ned to repre-
sent physical spaces, such as rooms. Such agents maintain
state information associated with the corresponding phys-
ical space. All agents support query and noti£cation inter-
faces and generate context events, which may be subscribed
to by context-aware applications.

2 Hospital Information System

I will discuss in this workshop a medical domain applica-
tion that exhibits novel context-based requirements. It sup-
ports storage, retrieval, and access of patient information.
Doctors and nurses may access this information through
their mobile personal devices. We consider the following
context-based requirements for this application, some of
which have been raised by others [4].

A nurse may access medical records only if some doctor
is also present in the ward where she is present. Moreover,
only those nurses who are on a patient’s medical assistance
team may access the patient’s medical records. We may also
require that a nurse’s mobile device automatically binds to
the patient’s records to whom she is currently attending.
The application also allows nurses to post alerts for other
nurses in a ward. Such alerts are noti£ed to a nurse when
she enters a ward.

For realizing above application, one needs to tackle fol-
lowing interdisciplinary research problems.
• Designing models for real-time sensor data aggregation to
support application-speci£c context detection requirements.
• Mechanisms for policy speci£cation for adapting an ap-
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plication in a given physical space based on ambient condi-
tions.
• Mechanisms for context-based access control policy spec-
i£cation and enforcement for an application.

3 System Architecture

In our programming framework, a context-aware appli-
cation is programmed using an abstraction calledactivity.
An activity de£nes a shared object space, and a set of user
roles. Various resources/services required by the applica-
tion are accessed asobjects within the activity. Operations
are associated with arole, through which a role member
may perform application tasks. Context-based access con-
trol requirements are programmed using two mechanisms,
precondition, andaccess constraint. We provide thereac-
tion mechanism for programming context-triggered actions.
A reaction is similar to a role operation, the only difference
being that it is triggered by an event and executed by the
runtime system, rather than executed by any role member.
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Figure 1. Process of generating a context-
aware application’s runtime environment

In Figure 1 we present the main elements of the middle-
ware. The middleware provides three generic components,
an activity manager, a role manager, and anobject man-
ager. The runtime environment of an activity is constructed
by deriving policies from its XML speci£cation, and inte-
grating them with the generic managers to construct appli-
cation speci£c managers.

The policies that are derived include object binding and
method level access control policies for object managers,
operation execution and event subscription/noti£cation
policies for role managers, and context event subscription
policies for the activity manager. An object manager main-
tains a reference to the service to which the object is cur-
rently bound. These managers are run on a set oftrusted
servers.

4 Lessons Learned

I would discuss the following lessons that emerged as
part of designing this programming framework and imple-
menting a number of context-aware applications using it.
• Distributed agent based architectures can be effectively
utilized for real-time processing of sensor data streams for
detecting context conditions required by an application.
• If a context event triggers dynamic binding of multiple
objects, then the order in which the event is dispatched to
these objects can be crucial for correctness of the applica-
tion’s behavior.
• Concurrent executions of reactions triggered by asyn-
chronous context events can lead to incorrect behavior of
an application.
• During the course of execution of a context-dependent
task, it is possible for the related context condition to be-
come false. This can be crucial for the correct enforcement
of context-based access control requirements. We refer to
this as thecontext invalidation problem.
• The precondition mechanism is inadequate for specify-
ing context-based access control conditions in which a role
member’s access to a resource needs to be restricted based
on the relationship of certain attributes of the resource to
the role member’s current context. We refer to this as the
context-based resource view control problem.
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