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1. ABSTRACT
An important class of deeply embedded systems (DES) involves

interlocking cyber-physical control loops, each with its own dy-
namics and correctness constraints. For instance, in medical sys-
tems which monitor a patient’s vital signs and control drug infu-
sion rates, multiple sensing and control systems may be implicitly
coupled. These systems present new challenges for control theory,
scheduling and verification. What is needed are platforms capable
of precise monitoring and enforcement of diverse executioncon-
straints, and techniques to verify system correctness.

2. INTRODUCTION
Deeply embedded systems (DES) have stringent constraints on

timeliness and other properties whose assurance is crucialto cor-
rect system behavior. These constraints are often imposed by in-
teractions with the real world. To be correct, these systemsmust
maintain these properties invariantly, through all possible system
executions. Consider, e.g., an automated system which monitors
and administers medication to a patient. Correctness of this system
is subject to the real-world constraints of proper dosage and proper
administration rates, as well as patient physiology.

To date, reusable platforms and analysis techniques have not ad-
dressed the kinds of interactions these systems entail. This results
in overly specialized systems built largely from scratch. Traditional
priority based scheduling is also inadequate to capture semantics of
such inter-related control loops. Group scheduling [2] andother hi-
erarchical scheduling techniques [10] show promise, but itmust be
possible to verify correctness of the behaviors they induce.

Model checking can formally verify that a system does in fact
maintain critical properties. Such verification requires that models
of the system have high fidelity to the modeled system and havea
state space whose exploration is decidable and tractable. However,
model checking systems with DES semantics such as preemption,
interval processing times, and tasks that can announce completion
to a dispatching thread, while maintaining fidelity, decidability and
tractability has been shown to be a formidable challenge [9].

Previous research in real-time systems has extended model check-
ing to a restricted but widely used class of scheduling policies (rate-
monotonic scheduling of fixed-period tasks [12]) in which preemp-
tion only occurs at well defined points. However, many DES sys-
tems may have less constrained scheduling semantics, and indeed
in interacting with the real world may require more flexible forms
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of scheduling outside of the fully vetted scheduling policies cur-
rently available.

3. RELATED WORK
Group scheduling [2] and other hierarchical scheduling tech-

niques [10] have been used to implement scheduling decisionfunc-
tions (SDF) for enforcement of higher level policies [14]. Their
composable design allows SDFs in these architectures to address
multiple inter-related system constraints. However, for many pos-
sible SDF hierarchies, no closed form analysis exists.

The most relevant general purpose modeling techniques (stop-
watch automata [4], timed automata [1], and untimed finite au-
tomata) have important limitations for modeling preemptively sched-
uled systems: (1) checking stopwatch automata models may beun-
decidable, (2) the time representation in traditional timed automata
does not model preemption, and (3) the resulting state spacefor
untimed finite automata is intractably large.

The limitations of these general purpose modeling approaches
have given rise to a number of other approaches, which capture and
leverage additional information about the structure of thesystem it-
self. One such approach is to compose automata based on common
interfaces and sets of resources [8, 5]. Another relevant approach is
to identify quasi-cyclic structures in the system’s execution, which
can be used to reduce the memory required for complete state ex-
ploration [7]. A third approach is to use abstract interpretation in
combination with model checking [6] to reason about event inter-
leavings and paths of execution in the system. None of these ap-
proaches provides the combined ability to analyze relativeresource
consumption, timing, and preemption that is needed for verification
of the kinds of deeply embedded systems on which this research fo-
cuses.

4. PLATFORM
A reusable platform for developing DES systems must provide

the following services: (1) flexible and composable SDF design, (2)
precise on-line measurement of system behavior, and (3) explicit
control over all system behaviors.

The Group Scheduling (GS) [2] and Data Streams [3] facilities in
KURT-Linux offer the kinds of platform support needed for DES.
They extend Linux with fine grain mechanisms for measurement
and control of potentiallyall system services, even kernel services.
This approach allows scheduling constraints to be composedhier-
archically in a systematic but flexible way.

However, due to the flexibility with which scheduling constraints
can be composed, existing scheduling analyses only cover a re-
stricted subset of the possible scheduling policies. The remaining
challenge is to develop techniques to verify a wider range ofsys-
tems built upon these precise yet reusable platforms.



5. QUASI-CYCLIC TIMED STRUCTURES
To improve scalability of model checking for real-world systems,

Dwyer, et al., introduced the idea of a quasi-cyclic structure, in
which a predicate over system states produces a projection of the
state space in which a set of sub-states – with the same valuesfor
a subset of the system’s state variables – is visited recurrently [7].
This regularity makes the verification of systems with largestate-
spaces tractable. Our work aims to show that this same regularity,
when exploited in models of real-time preemptively scheduled sys-
tems, can make verification of a much more general subset of these
systems decidable and tractable.

To recognize this structure and exploit it, novel composition tech-
niques are required. The composition technique we use takesas
input (1) system processes modeled as timed automata, (2) their
preemption semantics and (3) the scheduling policy of the system,
and outputs a single automaton we call a time domain automaton
(TDA).

Figure 1: Process Automata P1
and P2

Figure 2: Time Domain
Automaton with Quasi-
Cyclic Structure

In the process models (shown in Figure 1) the clocks are inde-
pendent. However, in systems with preemption this assumption
does not hold. In order to model the processes’ preemption se-
mantics a subset of these clocks must be composed into a common
time domain - representing when the processes are competingfor a
common resource.

The transitions in a TDA (shown in Figure 2) represent distinct
events in the system, the composed process models’ states record
execution times, and the guards on each transition and the invari-
ants in each state represent minimum and maximum bounds on the
demand function [11] of each process.

The system’s scheduling semantics is specified as a set of con-
straints over the composed state space (i.e. precedence or other
event ordering constraints, etc.). These constraints can capture do-
main specific knowledge and allow us to encode this additional in-
formation into a TDA model.

Once we have defined (1) the processes, (2) the subset of depen-
dent clocks, and (3) the scheduling constraints, we can generate the
time domain automaton, which has infinitely many diverging states
that represent all possible interleavings of system eventsas well as
bounds on the time at which these events could occur.

We then search the model for quasi-cyclic structures, as Figure 2
illustrates. If found, each quasi-cyclic repetition is indexed with
an integer value. We can then construct equations for scheduling
induced bounds on system execution as a function of the original
process models and this discovered index variable [13].

Our research to date has shown that for scheduling functions
that restrict event interleavings (as encoded by an finite untimed
automata) scheduling induced bounds can be calculated thatshow
fidelity with empirical system executions and bound system states
in such a way that decidablity is ensured in each bounded region.
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