
Work in Progress – WiSeR Distributed File System for Heterogeneous Sensor

Platforms

Jatindera S. Walia, Rong Zheng

Department of Computer Science, University of Houston,

Houston, TX 77204 jwalia@uh.edu, rzheng@cs.uh.edu

Abstract

Pervasive computing is on the horizon with ever

shrinking device form factors and increasing

computation power. Sensor devices such as those used

to monitor temperature, pressure, humidity, flow,

audio, video etc. allow acquisition of information

regarding the physical environments, which can be

utilized in actuation and visualization. Traditionally,

sensing data is either stored locally or transported to a

centralized location at the perimeter of the network.

We argue that the information producers and

consumers in a cyber physical system are likely to be

distributed and with different capabilities. This

necessitates a uniform abstraction that can hide

device/platform dependent characteristics, intricacies

of communication and networks, and utilize distributed

heterogeneous storage among different devices. A

distributed storage solution also has the benefit of fault

tolerance in events of disasters, such as infrastructure

failure or natural calamities, wherein remnants of

information stored over the distributed storage system

from the destroyed devices can be invaluable. In this

paper, we propose a Distributed File System that is

agnostic to platforms and operating systems of deeply

embedded devices.

1. Introduction

Pervasive computing is quickly moving from

scientific and industrial domain to application domain.

These deeply embedded systems will integrate and

work in synergy to provide a smart environment. The

applications of such systems are limitless from smart

surgical rooms to rapidly deployed first-response

systems in event of a disaster.

Heterogeneous devices, such as those shown in

Figure 1, with different processing powers, energy

requirements, and storage capacity will participate in

such systems. This heterogeneity significantly adds to

the complexity in building applications for such

systems as application developers have not only to

worry about the specifications of the applications but

also need to deal with complexity of heterogeneous

platforms and network intricacies.

A Distributed File System in such a scenario will

help tackle some of the problems faced. Our goals in

developing such a file system are to share local storage,

sustain device failure, and provide redundancy and

some level of scalability in addition to achieving

platform independence and small memory footprint.

Figure 1: Deeply Embedded Systems

2. Background

Files are binary patterns that make sense to the

corresponding applications. File Systems break these

bit patterns into smaller data blocks of some optimum

size; create metadata blocks to store information about

the attributes of the files and the location of the data

blocks. In addition, they try to minimize the energy

consumption as well as the access time to the files.

Since writes are always more expensive than reads, log

based file systems, journal file systems and hash based

file systems are some of the solutions that have been

proposed.

 Local file systems are susceptible to failure and in

addition require the device to own some sort of storage

hence increasing the initial and maintenance cost of the

device. Distributed File Systems transparently provides

fail safety, redundancy and robustness to the file system

and allows storage constrained clients to be deployed.

In sensor motes running TinyOS, Matchbox, ELF

and Capsule are some of the current local File Systems.

Since, these devices use flash based permanent storage;

efforts have been made to optimize the file system to

fully utilize the physical characteristics of the flash

based memory. Distributed File Systems in the case of

motes are severely penalized because of high cost of

communication that decreases the life time of the

deployment of such motes.

 In other sensor devices such as surveillance

cameras Linux is the de facto operating system.

Network and Distributed file systems in UNIX and

Linux are often optimized for disk drives parameters to

reduce seek and rotational latency.

3. Design

In our initial design of Wiser Distributed File

System (wDFS) shown in Figure 2, we have the

following major components:

Figure 2 : wDFS Architecture

• CAL: Client Access Layer runs on the client and

provides access to the wDFS. It provides cache to

reduce traffic and communicates with the FOAM

using SOAP.

• FOAM: File Operation Access Manager runs on

the Metadata nodes and interacts with the CAL and

handles clients’ requests. It forwards those

requests to MOM.

• MOM: Metadata Operations Manager handles

metadata operations such as resolving file names

to associated metadata blocks that contains

attribute and data block information. It also

interacts with the SAM and GOD to provide File

semantics to the clients.

• GOD: Global Operations Data maintains

information regarding the physical characteristics,

space availability, reliability and availability of the

storage nodes.

• SAM: Storage Access Manager handles the

storage of the blocks over various distributed

storage nodes. It interacts with DISL, GOD and

MOM.

• DISL: Device Independent Storage Layer

provides a consistent interface to the SAM.

• DDSL: Device Dependent Storage Layer is

specific to the storage device and tries to optimize

the block read and write as per the physical

characteristics of the device.

Figure 3 : Logical Interaction

Figure 3 depicts the logical interaction between the

clients and various providers of the wDFS. Clients

contact Lookup node to get information about

Metadata nodes and then interact with them to store

their files. Metadata nodes in turn interact with storage

nodes to store the Meta as well as the data blocks of the

files.

4. Summary

We propose a Distributed File System to allow

easier deployment of storage constrained

heterogeneous sensing devices. Initial attempt will be

to build a stateless, flat DFS for homogeneous platform

and then extend it to heterogeneous platforms followed

by hierarchy, redundancy and security add-ons. We

plan to implement such a system over TinyOS motes

and then extend them over to wrap boards and Linux

laptops in our implementation phase that is underway.

