
A Hybrid Framework for Resource Verification in Executable Model-based
Embedded System Development

Honguk Woo, Aloysius K. Mok, James C. Browne
Department of Computer Sciences,
The University of Texas at Austin

{honguk, mok, browne}@cs.utexas.edu

Abstract

In this work, we consider the integration of resource
safety verification into a design methodology for develop-
ment of verified and robust real-time embedded systems.
Resource-related concerns are not closely linked with cur-
rent xUML model-based software development although
they are critical for embedded systems. Our work employs
the hybrid verification framework combining static resource
analysis and run-time monitoring schemes.

1 Introduction
Model-based development has focused on verification and
testing for functional or timing aspects, yet embedded soft-
ware also involves para-functional resource-related aspects,
termedresource (bound) properties. These properties en-
force resource limits on CPU time, memory, battery power,
network bandwidth, etc. Unlike functional properties, the
verification and testing for resource bound properties has
not been completely addressed in executable model-based
development. Specifically resource-related language con-
structs are not incorporated in the action semantics of ex-
ecutable models since early design is intended to be plat-
form independent. Accordingly resource bound properties
have not been entirely linked with functional verification
from the beginning of the development cycle. This limita-
tion often renders the process of resource safety verification
(the verification of resource bound properties) non-systemic
or ad hoc at best leading to excessive cost for monitoring
and analysis. Furthermore, resource safety verification is
usually deferred to testing during/after the implementation
phase. Resource safety violations detected during imple-
mentation testing commonly require redesign and reimple-
mentation of the system. Recently we proposed the soft-
ware engineering discipline incorporating resource safety
verification into a design and development methodology for
embedded systems in [8]. This work focuses on how to inte-
grate the verification of para-functional resource properties
into the software development cycle of executable model-
based approaches. As briefly shown in Figure 1, the pro-
posed methodology integrates:

1. Architecture and

Property Specification

2. System Model
in xUML

3. Verified
Functional Model

4. Resource-annotated
Model

5. Executable Program
with Runtime Monitoring

6. Core Control
System

Manual engineering with Objectbench

Verification by ObjectCheck

Resource analysis by ResCheck

Code generation
by CodeGenesis

Testing

Figure 1. Development Cycle

• xUML (eXecutable Unified Modeling Language [2])
modeling and simulation-based model testing pro-
cesses supported by the commercial software model-
ing and simulation environment Objectbench [5]

• Automatic code generation from xUML models by
CodeGenesis code generator [4]

• Formal functional verification by model checking for
xUML models [7]

• Resource bound checking based on efficient dynamic
monitoring [3, 1]

ObjectCheck [7] is used to validate the xUML model with
respect to selected functional properties while the resource
verifier for embedded systems, named ResCheck [8], deals
with resource properties to provide the comprehensive au-
tonomous support for resource safety verification.

Verification for functional or resource properties is done
by combining model checking, resource analysis and run-
time monitoring. Using xUML model checking for func-
tional properties has been well studied by in [7], which is
briefly introduced in the following. In ObjectCheck, de-
signers of the system use the Property Specification Inter-
face and xUML Visual Modeler to specify the properties of

the system and xUML model. An xUML-to-S/R translator
converts them to S/R query and S/R model respectively. The
COSPAN model checker accepts these inputs and checks
whether the query is valid in the model. In case that the
verification fails, COSPAN model checker generates an er-
ror track and then Error Report Generator produces an error
report in xUML from the error track. To help the debug-
ging process, Error Visualizer creates a test case from the
error report and reproduces the error by running the xUML
model with the test case.

The complementary problem,efficient run-time moni-
toring has been recently introduced in [8] where resource
properties are treated as the primary concern on verifica-
tion. Notice that due to their inherently dynamic nature,
resource properties are not usually addressed in the static-
verification-only context. It is also important to note that
resource properties can be translated in the form ofcontin-
uous constraint queriesin [6].

Currently our work primarily aims at incorporating the
verification process for resource properties into the early
development cycle, thereby lowering development cost
and enhancing the quality of resource critical embedded
software. Resource safety verification requires additional
resource-related specification in the model as input to fur-
ther analysis at the design phase. It is worthwhile to note,
however, the developer’s labor can be reduced by exploiting
the executable semantics of xUML and the autonomous tool
support for resource analysis and monitoring code insertion.
The executable semantics of xUML enables the model spec-
ification to be tested in the simulation environment and to be
automatically translated into an executable program [2, 7],
and furthermore it allows resource-related operations to be
specified as part of state actions in the state model.

Our approach employs a hybrid framework where static
analysis and monitoring techniques cooperatively work to
provide resource safety verification. In the framework, the
run-time monitoring makes explicit use of static analysis
results to cope with the possible performance overhead of
traditional run-time monitoring mechanism. To do so, the
static analysis in the framework first translates a given exe-
cutable model containing resource-related code into a tree-
based resource evaluation structure. The resource evalua-
tion structure may involve statically-unbounded variables
e.g., loop bounds that can only be dynamically determined.
This often renders the verification inherently incomplete at
analysis time and necessitates run-time monitoring support.
For monitoring efficiency, the static resource analysis sim-
plifies run-time operations by having in-lined monitoring
code. The run-time monitoring relies on static analysis and
thus monitors discrete updates of a small set of specific vari-
ables in the program execution, instead of directly tracking
and managing dynamic resource usage information. Since
in practice testing alone cannot completely guarantee sys-

tem correctness, it is natural that a product system employs
run-time monitoring support at the execution environment
as part of exception handling. This would in turn incur
inordinate performance overhead to the execution environ-
ment unless the monitoring algorithm is carefully designed.
The hybrid framework – specifically lightweight monitor-
ing based on static analysis results – addresses this problem
of run-time overhead. More importantly, it can cover a wide
variety of property types in software safety requirements.

The critical functionalities identified in a system design
can be verified by model checking and/or completely tested
in the development cycle above, and then the corresponding
software component can be treated as core segment. The
hybrid, lightweight monitoring technique is also naturally
consistent with desirable extension to the implementation
and integration of non-core segment where the static verifi-
cation may be inherently limited. The monitoring technique
for providing the safe interplay between core and non-core
segments of a control-oriented embedded system is one of
our future directions. Out-stream of unreliable components
and dynamic environmental information can be relatively
unreliable to some extent, thus necessitating probabilistic
approach for handling those information streams.

This research is supported in part by the National Sci-
ence Foundation under Grant Number 0613665 and the au-
thors have been working with Jianliang Yi, Fei Xie, and Ella
Atkins.

References
[1] C. Ajay, E. David, and I. Nayeem. Enforcing Re-

source Bounds via Static Verification of Dynamic Checks.
ACM Transactions on Programming Languages and Systems
(TOPLAS), 29(5), January 2007.

[2] S. J. Mellor and M. J. Balcer.Executable UML: A Foundation
for Model-Driven Architecture. Addison-Wesley, 2002.

[3] A. K. Mok and W. Yu. TINMAN: A Resource Bound Security
Checking System for Mobile Code. InProc. of the European
Symposium on Research in Computer Security(ESORICS),
pages 178–193, Octobor 2002.

[4] SES.Code Genesis Manual. 1996.
[5] SES.Objectbench User Reference Manual. 1996.
[6] H. Woo and A. K. Mok. Real-time Monitoring of Uncertain

Data Streams using Probabilistic Similarity. InProc. of IEEE
Real-Time Systems Symposium(RTSS), December 2007.

[7] F. Xie, V. Levin, and J. C. Browne. ObjectCheck: A Model
Checking Tool for Executable Object-Oriented Software Sys-
tem Designs. InProc. of Fundamental Approaches to Soft-
ware Engineering(FASE), April 2002.

[8] J. Yi, H. Woo, J. C. Browne, A. K. Mok, F. Xie, E. Arkins, and
C.-G. Lee. Incorporating Resource Safety Verification to Ex-
ecutable Model-based Development for Embedded Systems.
Technical report, University of Texas at Austin, 2007.

