
Maximizing Job Benefits on Multiprocessor 

Systems Using a Greedy Algorithm 
 

 Behnaz Sanati and Albert Mo Kim Cheng 
Real-Time Systems Laboratory, Department of Computer Science 

University of Houston, Texas, USA 

 

Abstract 

 

    This project considers a benefit model for on-line 

preemptive multiprocessor scheduling. In this model, 

each job arrives with its own benefit function and 

execution time. The flow time of a job is the time 

between its arrival and its completion. The benefit 

function determines the benefit gained for any given 

flow time. The goal is to maximize the total benefit 

gained only by the jobs that meet their deadlines. In 

order to achieve this goal, a variety of approximation 

algorithms and their applications in multiprocessor 

scheduling were studied. A greedy algorithm with 2-

approximation ratio is proposed to be added to an 

existing benefit based scheduling algorithm, in order 

to reduce the delay of each job, by assigning it to the 

processor with least utilization so far. This method 

will decrease the flow time of the jobs, resulting in 

higher benefits gained by each job. Also, evaluation 

of this approach shows that it uses the CPU cycles 

more efficiently by providing more balanced 

distribution of the jobs between the processors. 

Therefore, more jobs can meet their deadlines and 

add their gained benefits to the total benefit. In 

addition, the proposed method is computationally 

less expensive than the existing benefit based 

method.
*
 

 

  

1. Introduction 
 

     Multiprocessor platforms are widely adopted for 

many different applications in embedded systems and 

server systems. They are becoming even more 

popular since many chip makers including Intel and 

AMD are releasing multi-core chips. Adopting 

multiprocessor platforms can enhance the system 

performance, but scheduling jobs optimally on a 

multiprocessor system is an NP-hard problem.  

There are two major models for this scheduling 

problem. The first is the cost model and its goal is to 

minimize the total flow time. The second model is 

the benefit model which aims to maximize the benefit 

of jobs that meet their deadlines. This research 

                                                 
*
 This work is supported in part by the National Science Foundation 

under Award No. 0720856 and GEAR Grant No. I092831-38963. 

focuses mostly on the benefit model, but also uses 

greedy approximation algorithm to reduce the flow 

time. 

In the following two subsections, approximation 

algorithms in general and greedy algorithms in more 

detail are discussed as an approximate solution to the 

multiprocessor job scheduling. Subsection 1.3 

provides an overview of the previous work on 

maximizing benefit on-line for multiprocessors. 

Section 2 will introduce a new approach using a 

greedy algorithm with 2-approximation ratio, in 

addition to the previous benefit based algorithm. It 

also includes the complexity analysis of the new 

method and an example to illustrate its differences 

from the previous method. The last section concludes 

the results of this project. 

 

 

1.1 Approximation Algorithms 
 

Approximation algorithms are often used to attack 

difficult optimization problems, such as job 

scheduling on multiprocessor systems which is an 

NP-hard problem. An approximation algorithm 

settles for non-optimal solutions found in polynomial 

time, when it is very unlikely to find an efficient, 

polynomial time, exact algorithm to solve NP-hard 

problems, or the sizes of the data sets are so large that 

make the polynomial exact algorithms too expensive.  

The performance of the approximation algorithms 

are measured by comparing them with the optimum 

solution. A ρ-approximation algorithm defines that 

approximation ‘a’ won’t be more (or less, depending 

on situation) than a factor ρ times the optimum 

solution S.  p is the relative performance guarantee. 

 

S ≤ a ≤ ρs, if   ρ >1 

 ρs ≤ a ≤ S,  if   ρ <1 

 

The next subsection will explain the greedy 

algorithm which is used in this project and shown to 

be a 2-approximation ratio algorithm in [1]. A greedy 

algorithm is also used by Chen et al [4] to maximize 

the entire profit of uniprocessor systems under energy 

and timing constraints.   

 

 



 

 

1.2 Greedy Algorithms 
 

A greedy algorithm repeatedly executes a 

procedure which tries to maximize the return based 

on examining local conditions, in the hope that the 

outcome will lead to a desired outcome for the global 

problem. In some cases such a strategy is guaranteed 

to offer optimal solutions, and in some other cases it 

may provide a compromise that produces acceptable 

approximations.  

   Typically, greedy algorithms employ strategies that 

are simple to implement and require a minimal 

amount of resources. Greedy approaches can be 

applied to a wide variety of applications such as map 

coloring, vertex covering, voting districts, Egyptian 

Fractions, Dijkstra’s Single-Source Shortest Paths 

Algorithm, Kruskal’s Minimal Spanning Tree 

Algorithm and also 0/1 Knapsack problem. The next 

section explains the definition of the 0/1 knapsack 

problem which has a guaranteed approximate 

solution using a greedy algorithm. The 

multiprocessor scheduling problem can be considered 

a knapsack problem and a greedy algorithm therefore 

could be adopted to solve it. 

Knapsack 

The knapsack problem is defined as follows:            

Given a set of N items (vi, wi), and a container of 

capacity C, find a subset of the items that maximizes 

the value vi while satisfying the weight constraints wi 

< C. This problem is an NP-hard problem, requiring 

an exhaustive search over the 2
N 

possible 

combinations of items, for determining an exact 

solution. A greedy algorithm may consider the items 

in order of decreasing value-per-unit weight vi/wi. 

Such an approach guarantees a solution with a value 

no worse than 1/2 the optimal solution.  

 

1.3 Maximizing Job Benefits On-Line 

 

Previous Work 
      

     Awerbuch et al presented a constant competitive 

ratio algorithm for a benefit model of on-line 

preemptive scheduling [3]. This method can be used 

on both uniprocessor and multiprocessor systems. In 

a multiprocessor system, each processor has a stack 

and a garbage collection, and there is a pool shared 

by all the processors. 

Each job j arrives with its own execution time (wj) 

and benefit density function Bj(t) for (t ≥ wj). The 

benefit gained for any given flow time fj is wj Bj (fj).  

The flow time of a job is the time that passes from its 

release time (rj ), to its completion time (cj) and is 

defined as fj = cj – rj and is at least equal to wj 

(execution time). 

A desired property of the system is the possibility 

to delay jobs without drastically reducing overall 

system performance. Also, this algorithm does not 

use migration on the multiprocessor system. 

The job on the top of the stack is the job that is 

running and all other jobs in the stack are preempted. 

The time that job j is pushed onto the stack is denoted 

by sj and the breakpoint is defined as sj + 2wj. The 

priority of each job in the pool at time t is denoted by 

dj(t) and for t <= sj, is  Bj(t + wj – rj).  For t > sj, it is 

d’k =Bj (sj + wj – rj). The notation d’k  is used for the 

priority of the running job k on the top of the stack. 

Once a new job j is released, if there is a machine 

such that dj(t) > 4d’k or stack is empty, then the 

newly released job is pushed onto the stack and starts 

running, otherwise it will be added to the pool.   

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 1: Three job storage locations for each    

machine (pool, stack, garbage collection) 

 

 

When a currently running job on a machine 

completes or reaches its breakpoint, it is popped from 

the stack. If the job has reached its breakpoint before 

completion, it will not add any benefit to the system 

Machine 
1 

Machine m 

Stack 1 Stack m 

Pool 1 

Garbage 
Collection 1 

Garbage 
Collection m 

Stack 2 

Garbage 
Collection 2 

Pool 2 Pool m 

Machine 2 

A New Job 



 

and is inserted to the garbage collection. Then, the 

processor runs the next job on its stack if dj(t) ≤ 4d’k 

for all j in pool, otherwise, it gets the job with max 

dj(t) from pool, puts it into the stack and runs it. 

 

 

2. A New Approach 
 

The above algorithm only focuses on maximizing 

the total benefit without being concerned about 

minimizing the flow time of each job. In the 

meanwhile, the benefit gained by each job that 

completes before its break point is wjBj(fj). Since the 

benefit density function is a non-increasing, non-

negative function of time, by definition [3], the more 

the flow time, the less the benefit gained. Therefore, 

this paper proposes a new method in order to reduce 

the flow times by distributing jobs between 

processors in a more balanced way.  

This approach is possible if each processor has its 

own pool instead of sharing a pool with other 

processors (see Figure 1). Also, a greedy 2-

approximation algorithm similar to the one used in 

[2] will be deployed as explained in the next section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Software Architecture of the System 

 

2.1 The Algorithm 
 

A greedy algorithm will add a newly released job 

to the pool of a machine with the least work load 

(where sum of wj s of the jobs in its pool and on its 

stack is the minimum). 

 

The greedy algorithm is as follows:  

When a new job j is released, if it can not be 

executed immediately and has to wait in a pool, it 

will be assigned to the processor that has the least 

work load so far. 

If Pm is a set of jobs in the pool of processor m, 

and Um is the utilization of processor m (total 

execution time of the jobs in its pool and on its 

stack), then: 

 

1. Find the smallest Um among m processors 

2. Pm := Pm  U { j } and  Um := Um + wj 

 

If the priority of the new job is so high that it can 

start its execution immediately and also it has more 

than one option, e.g. processors, it will be pushed to 

the stack whose processor has less work load 

(including the new one). This rule will also cover the 

case that more than one job arrives at the same time 

and with high priority enough to be executed 

immediately.  

 

Figure 2 shows the software architecture of the 

system. 

 

 

2.2 The Computational Complexity Analysis 
 

In the original method, at each time step, the 

priority of all jobs in the shared pool must be 

compared with the priority of the running jobs on the 

top of all processor stacks. If there are m processors 

in the system and X waiting jobs in the pool, X times 

m comparisons are  done at each time step to 

determine if any of the waiting jobs can be pushed 

onto any stack and start running.  

On the other hand, the greedy method will 

perform (m - 1) comparisons at each job arrival to 

find the least utilized processor and adds the 

execution time of new job j to its utilization for future 

comparisons, resulting in m operations at each job 

arrival. 

Then, at each time step, if x1 is the number of 

waiting jobs in first pool, x2 in the second pool, and 

so on so forth, then X is the total number of waiting 

jobs (X = x1 + x2 + … + xm ). 

 

Since the greedy method only compares the 

priorities of waiting jobs in each pool with the 

Greedy Algorithm 

• Finds a machine with minimum total wj 

• Adds the new job to its pool 

Benefit Based Algorithm 

For each machine decide when to move a 

job from its pool to its stack 

Compute total benefit of the system 

A New Job 



 

priority of the running job on the corresponding 

stack, only X comparisons are done at each time step. 

It is now clear that the greedy method is 

computationally less expensive than the original one. 

In only one condition it can have the same number of 

comparisons and that is when there are m new job 

arrivals at each time step. 

 

 

2.3 An Example 
 

The following examples are provided to illustrate 

the differences between the two methods:  

Consider a system with three processors, when 

five jobs are arriving with rj=(1,1,1,1,3) and 

wj=(3,10,4,5,2), and  are scheduled using both the 

original and the greedy methods. The total benefit 

gained by the original method was 2.11.  However, 

the total benefit was improved by about 6.6% 

resulting in 2.25 by the greedy method. 

If the number of jobs is much higher than the 

number of processors, the original method is more 

likely to miss some deadlines than the greedy 

method.  In the above example no job was missed.  

However, a job that misses its deadline will not 

provide any benefit.  In that case the greedy method 

will show better improvement in the total results. 

The algorithms were tested for a 2-processor 

system and five jobs with  rj=(0,0,1,1,1) and 

wj=(10,15,4,3,1). The benefit gained by the previous 

algorithm was even slightly better, but after adding 

two more jobs to the task set with rj=(1,2) and 

Wj=(2,5), the results were almost the same (2.25 vs. 

2.23). Then the test was repeated with nine jobs, first 

seven jobs exactly the same as the former case and 

jobs 8 and 9 with arrival time 15 and 16, and 

execution time (Wj) of 3 and 5, respectively. This 

time, the results were 2.9 vs. 3.11. Our algorithm 

could improve the benefit by 7.2% approximately. As 

expected a task set with heavier load could be 

handled better with the greedy algorithm.  

 

 

3. Conclusion 
 

The previous work [3] was only a benefit model 

to maximize the benefit gained.  This research project 

uses a greedy 2-approximation algorithm to assign a 

newly released job to the machine with the minimum 

work load (total wj). 

The greedy method is computationally less 

expensive than the original one. In only one condition 

in our experiments, we have the same number of 

comparisons and that is when there are m new job 

arrivals at each time step (when there are m 

processors in the system). 

Also, it is shown that the greedy method has 

improved the performance of the original benefit 

based method specially in the cases with heavier 

work load, by assigning each newly arrived job to the 

machine with less utilization resulting in fewer 

missed deadlines and shorter flow times which will 

increase the total benefits. The greedy method 

distributes the work load between the processors in a 

more balanced way, so that there will be less waste of 

CPU cycles and even in those cases that the previous 

method could gain more benefit, it took longer to 

finish the whole task set.  

This means that the whole task set can be 

executed faster using the greedy method. Therefore, 

the method can be considered as a combination of the 

cost model and the benefit model, which are 

explained in the first section of this paper. In other 

words, the greedy algorithm can be applied to more 

variant types of applications, either those which need 

a more cost effective scheduling method or a benefit 

based method. 

In the ongoing work, the performance analysis is 

being done. More research and a thorough analysis of 

these algorithms using more test cases can result in 

better understanding of how much this new greedy 

algorithm can improve the existing benefit based 

algorithm. 

 

 

References 
 
[1]  R.Graham, “Bounds on multiprocessing timing 

anomalies”, SIAM Journal on Applied 

Mathematics, 17:263-269, 1969. 

[2]   J.J. Chen, C.Y. Yang, and T.W. Kuo, “Real-time 

task replication for fault tolerance in identical 

multiprocessor systems”, Proceedings of the 13
th
 

IEEE RTAS, 2007. 

[3] B. Awerbuch, Y. Azar, and O. Regev, 

“Maximizing job benefits on-line”, Proceedings 

of the third International Workshop, APPROX, 

Germany, September 2000.  

[4]  J.J. Chen, T.W. Kuo, C.L.Yang, “Profit-driven 

uniprocessor scheduling with energy and timing 

constraints”, Proceedings of the ACM 

symposium on Applied computing,Nicosia, 

Cyprus, Pages: 834 – 840, 2004. 

 

 

 


