
Feedback Scheduling of Real-Time Divisible Loads in Clusters

Duc Luong, Jitender Deogun, Steve Goddard
Department of Computer Science and Engineering

University of Nebraska - Lincoln
Lincoln, NE 68588

{dluong, deogun, goddard}@cse.unl.edu

Abstract

Quality of Service (QoS) provisioning for divisible loads
in clusters can be enabled using real-time scheduling the-
ory, but is based on an important assumption: that the
scheduler knows the execution time of every task in the
workload. Information from production clusters, however,
shows that estimated execution times of tasks are often in-
accurate. Most of the work on scheduling divisible loads on
clusters is based on this information, and therefore maybe
of limited use when applied in practice. In this paper, we
present our ongoing work to develop an EDF (earliest dead-
line first) scheduling algorithm with a feedback mechanism
that is able to solve this problem. The objective of the new
algorithm is to provide QoS provisioning of divisible loads
when estimated execution times of tasks are inaccurate.

1 Introduction

Scheduling of arbitrarily divisible loads represents a prob-
lem of great significance for cluster-based research com-
puting facilities such as the U.S. CMS (Compact Muon
Solenoid) Tier-2 sites [5]. One of the management goals at
the University of Nebraska-Lincoln (UNL) Research Com-
puting Facility (RCF) is to provide a multi-tiered QoS
scheduling framework in which applications “pay” accord-
ing to the response time requested for a job [5].

Previous work on Quality of Service (QoS) provision-
ing for divisible loads in a cluster computing environment,
however, is based on an important assumption: the sched-
uler needs to know the execution time of every task in the
workload in advance. Scheduling decisions may be ineffi-
cient if this information is not accurate. Estimation of task
execution time is a hard problem not only in real-time sys-
tems but also in general cases [6]. Although much work has
been done to improve this estimation, there are always un-
certainties in task execution times. In distributed systems,
this problem becomes even harder because a task might be

executed on multiple processors, and communication time
should also be considered [1, 7]. Usually, the estimated task
execution time is provided to the scheduler along with other
task parameters. In most cases, this estimation is the worst-
case task execution time, which is obtained empirically or
based on expert knowledge of the task. Users who work
with clusters tend to overestimate this value “just in case”
their job runs longer.

We studied one year’s worth of logs for production jobs
submitted to the Red and PrairieFire clusters1 at the Univer-
sity of Nebraska-Lincoln (UNL). We found that among jobs
that finish successfully on both Red and Prairiefire clusters,
the average execution times are only 9% and 18% of the
estimates respectively. In Table 1, we show the number
of overestimated and underestimated jobs. According to
the current practice, most of the jobs exceeding their es-
timated execution times are killed. Log information shows
that about 91% of such jobs on PrairieFire and 98% on Red,
are killed, though these jobs consist of only 3% to 5% of the
total number of jobs in a cluster.

Number of jobs Red PrairieFire
Jobs run longer than estimated 6103 1370

Jobs run less than estimated 188545 26193
Jobs that finish on time 0 0

Jobs that are killed 5963 1240
Total 194648 27563

Table 1. Job statistics from two real clusters

QoS provisioning for divisible loads involves three com-
ponents: an admission controller that decides to accept or
reject an incoming task, a scheduler that schedules and par-
titions admitted tasks into subtasks, a dispatcher that sends
the partitioned subtasks to the processors at their scheduled

1Red is a 111 node production-mode LINUX cluster, with each node
containing two dual core Opteron 275 processors. PrairieFire is a 128 node
production-mode LINUX cluster, with each node containing two (single
core) Opteron 248 processors.



times. The scheduler makes decisions based on task pa-
rameters, such as execution time and deadline. If a task is
admitted, it will be placed into the pending queue as a col-
lection of subtasks and later dispatched by the dispatcher.
One problem with this model is that once the schedule for
a task (and its subtasks) is set, it is not changed. If nodes
become available before the scheduled task start time, they
are not used. The cluster processing capability is, there-
fore, wasted. Another problem is that the scheduler does
not know how long a task will run after it runs past its allo-
cated time. So, such tasks are generally killed to enforce the
schedule. Task killing is, however, undesirable because the
time the cluster spends on killed tasks is completely wasted.

We want to achieve the following goals when designing
a real-time divisible load scheduling algorithm when execu-
tion times of tasks are different from their estimate. First,
unused idle time when task finishes earlier than expected
must be utilized, so that the system utilization is increased,
and we can accept more tasks. Second, overrun tasks are
killed only if necessary, i.e., when they cause other tasks
to miss their deadline. Task real-time constraints should be
guaranteed as long as their execution times are not under-
estimated. The new scheduling algorithm will be compared
with the previous approaches by using simulations as well
as experiments on a real cluster.

2 Task and System Models

To develop our scheduling algorithm, we use the same task
and system models adopted in [2, 3, 4].

Task Model. A divisible task Ti is denoted by the tuple
Ti = (Ai, σi, Di) where Ai is arrival time, σi is data size
and Di is relative deadline of the task. A workload consists
of a set of independent tasks. A task is arbitrarily divisi-
ble, which means it can be partitioned into a set of subtasks,
each of which processes a portion of the data. We use the
vector α = (α1, α2, . . . , αn) to denote the data distribu-
tion of a task where n is the number of processing nodes
assigned to such a task, and αi is the data fraction allocated
to the ith subtask, which means αiσ unit of data is assigned
to subtask i. We have 0 < αi ≤ 1 and

∑n
i=1(αi) = 1.

System Model. The system consists of a cluster with a
head node, denoted P0, connected to N processing nodes,
denoted P1, P2, ..., PN , via a switch. Every processing
node in the cluster has the same computational capability
and the same bandwidth on its link to the head node. We
call such a cluster homogenous, as apposed to a heteroge-
nous one where computation and transmission capabilities
of processing nodes are different from each other. The head
node does not participate into the computation but takes the
role of the admission controller, the scheduler and the dis-
patcher. By assumption, data transmission from the head
node cannot be done in parallel. Only one processing node

can receive data from the head node at a time.
Applying divisible load theory, transmission and compu-

tation time of a task is represented by a linear model. The
transmission and computation time of σ data units is given
by σCms and σCps. Cms represents the time to transmit
a unit of workload from the head node to a processing node.
Cps represents the time to compute a unit of workload on a
single processing node.

3 Algorithms

3.1 Divisible Load Scheduling with Feed-
back

To develop our algorithm, we adapt the EDF-DLT algorithm
[2]. The primary idea of EDF-DLT is to model a homoge-
neous cluster as heterogeneous and dispatch subtasks at the
estimated available time of a processing node, so that the
idle time in a cluster node can be better utilized. Recall
that P1, P2, . . . , Pn denote n homogenous processors. As-
sume node Pi could start processing task T at time ri, for
i = 1, 2, . . . n. We call ri the available time of Pi. It is
either the time Pi is released by a previous task or the time
task T arrives, whichever is latest. The n nodes are ordered
by their available times: P1 is the earliest at time r1 and Pn

the latest at time rn

Let E denote the task execution time when DLT is ap-
plied. Cpsi represents the unit processing cost on node
Pi and Cmsi denotes the unit transmission cost. Then, as
shown in [2], for the heterogeneous model, we have the fol-
lowing,

Cpsi =
E

E + rn − ri
Cps (1)

Cmsi = Cms. (2)

Tasks in a workload have the same Cms and Cps val-
ues, which are the estimated time to transmit and compute a
single data unit of a task. The actual values, however, may
differ from the estimated values.

When a task Ti arrives, the scheduler calculates the min-
imum number of nodes to be assigned to Ti so that it does
not miss its deadline. As shown in [2], the execution time
of a task, denoted by Ê , is given by Equation (3),

Ê(σ, n) = σCms +

∏n
j=2 Xj

1 +
∑n

i=2

∏i
j=2 Xj

σCps (3)

where

Xi =
Cpsi−1

Cms + Cpsi
, for i = 2, 3 . . . , n (4)

and the minimum number of nodes assigned to a task is
given by:

ñmin = d ln γ

ln β
e (5)



where
γ = 1− σCms

A + D − rn
(6)

and
β =

Cps

Cms + Cps
. (7)

The data distribution vector is given as

σ1 =
σ

1 +
∑n

i=2

∏i
j=2 Xj

(8)

and,

σi =

∏i
j=2 Xjσ

1 +
∑n

i=2

∏i
j=2 Xj

, for i = 2, 3 . . . , n (9)

The results from [2] show that EDF-DLT is one of the
best known scheduling algorithms for real-time divisible
loads in clusters. This algorithm assumes that the estimate
of task execution time is correct. However, if the actual
values of Cms and Cps do not match the user’s estimate,
tasks would either finish earlier or run past their estimated
execution time. Since there is no feedback mechanism in-
corporated in the above algorithms, the scheduler has no
means of knowing about these situations. This leads to idle
time that is not utilized or tasks being killed because their
allocated time expires.

We propose DLSwF, a DLT-based scheduling algorithm
with a feedback mechanism, to handle these cases. Its goal
is to better utilize the processing nodes and minimize the
number of tasks that are killed. We use the following defi-
nitions to describe how DLSwF works:

• A task is said to “underrun” if its execution time is
smaller than the estimated value. Most of the tasks on
real clusters fall into this category. A task that under-
runs is called an underrun task.

• A task is said to “overrun” if its execution time is
larger than the estimated value. A task that overruns
is called an overrun task.

The general process of the DLSwF algorithm is shown
in Pseudocode 1. It is based on four events in the system.
The NewTaskEvent is invoked when a task arrives. We use
the function Admission Control to check if we can accept
the task or not. If it is accepted, this function generates the
data distribution and the schedule for the task.

Due to the feedback module, the system is able to detect
and handle the two events: OverrunTimerEvent and Termi-
nationEvent. The first event is invoked when a subtask does
not finish at its expected completion time. The second event
is invoked when a subtask finishes its execution. The mech-
anism to handle these two events are described in Section
3.2.

Pseudocode 1 DLSwF(Event)
1: if Event is NewTaskEvent then
2: call AdmissionControl to decide whether the task can be

admitted or not
3: call GenerateSchedule to partition the task if it is admitted
4: else if Event is OverrunTimerEvent then
5: handle overrun and update nodes status
6: else if Event is TerminationEvent then
7: update nodes status
8: else if Event is DispatchTimerEvent then
9: //this event is handled by DispatchTask()

10: end if
11: call DispatchTask()
12: return

The DispatchTimerEvent is invoked when a subtask in
the dispatching queue to be submitted.

After processing any of these events, the system invokes
the DispatchTask function. This function is to dispatch a
subtask in the dispatching queue, if any, to a processing
node in the cluster. After dispatching a subtask, it will reset
the DispatchTimer to the time when the next subtask should
be submitted.

3.2 Handling Overrun and Underrun
Tasks

Since the scheduler is not clairvoyant, it cannot know if
a task underruns/overruns until its subtasks finish. There-
fore, if a task overruns, it will be difficult for the scheduler
to estimate the termination time of such a task in order to
schedule the next tasks correctly. The nodes occupied by
overrun tasks are considered to be blocked, or to have es-
timated finish times at ∞. An overrun task can therefore
severely affect the acceptance of new tasks and result in ac-
cepted tasks missing their deadlines.

Common practice on real clusters is to kill overrun tasks,
the EDF-DLT algorithm also uses such an approach to en-
sure overrun tasks do not cause other tasks to miss deadlines
or new tasks to be rejected. However, killing an overrun
task is costly because the time the system has spent on that
task is wasted and the task would have to be resubmitted
later. Thus, our algorithm tries not to kill overrun tasks if
it is avoidable. Still, deadlines of tasks that do not overrun
should not be missed.

In the DLSwF algorithm, an overrun task is allowed to
continue to run as long as it does not: (i) cause any already
accepted task to miss its deadline or (ii) prevent a new task
from being accepted.

Condition (i) says that when a task overruns, it should
not cause any other tasks to miss their deadline, otherwise,
the overrun tasks will be killed. Condition (ii) says that if
a new task can only be accepted with the nodes occupied



by the overrun tasks then overrun tasks will be killed. Intu-
itively, this method works well in the case where the system
is not heavily loaded. But when the system is very busy, the
algorithm cannot prevent overrun tasks from being killed.
If the two conditions are enforced, an admitted task will not
miss its deadline unless it overruns.

The HandleOverrun function is described as follows.
Assume that an overrun task occurs at time t, we need to
gather the following information in order to handle the sit-
uation:

NOR: Number of nodes that have an overrun subtask.

DT : Number of subtasks waiting to be dispatched at
time t.

NAV : Number of available nodes at time t.

It may be noted that NOR > 0, DT ≥ 0 and NAV ≥ 0,
since it is assumed that at least one overrun task exists.

Based on DT and NAV , we evaluate the available time
t′ of blocked nodes to ensure that the schedule is being en-
forced. In other words, we need to determine when these
nodes must finish their jobs. There are two cases:

- Case 1: 0 ≤ DT ≤ NAV .
In this case, there are subtasks that must be dispatched
at time t, and sufficient nodes are available. Therefore
overrun tasks can continue to execute.

- Case 2: DT > NAV .
In this case, a sufficient number of nodes are not avail-
able. However, we see that all subtasks do not start at
the same time and thus some have to wait until others
finish their data transmission. Therefore, if we order
the subtasks in increasing order of their start time, we
can let the overrun jobs continue to run until the kth

subtask starts, with k = DT −NAV .

As opposed to the overrun case, the solution for under-
run tasks is relatively straightforward. The system knows
immediately when a task underruns because of the feed-
back mechanism, i.e., TerminationEvent is detected before
the expected completion time of a task. Therefore, it is able
to update nodes status and if there is a pending task in the
dispatching queue, this task will be dispatched immediately.

4 Conclusions and Future Work

In this paper, we address the problem of inaccuracy in the
estimated execution times in the context of real-time divisi-
ble load scheduling. We present an approach to identify and
handle overrun and underrun tasks. QoS and real-time con-
straints of the system are enforced by integrating the feed-
back mechanism into the scheduling algorithm. Our algo-
rithm is expected to significantly improve the system perfor-
mance with different levels of uncertainty in tasks execution

time. We plan to consider the following issues when devel-
oping the algorithm: (i) applying historical knowledge of
the workload to improve the admission control of the sched-
uler and (ii) detecting failure nodes in the cluster and recon-
figuring the scheduler when nodes are added/removed from
the cluster.

References

[1] M. Drozdowski. Estimating execution time of distributed ap-
plications. In Proceedings of the Parallel Processing and
Applied Mathematics : 4th International Conference, PPAM
2001 Naleczow, Poland, September 9-12, 2001. Revised Pa-
per, pages 593–596. Springer Berlin / Heidelberg, 2002.

[2] X. Lin, Y. Lu, J. Deogun, and S. Goddard. Real-time divisible
load scheduling with different processor available times. In
Proceedings of the 2007 International Conference on Parallel
Processing (ICPP 2007).

[3] X. Lin, Y. Lu, J. Deogun, and S. Goddard. Enhanced real-
time divisible load scheduling with different processor avail-
able times. In 14th International Conference on High Perfor-
mance Computing, December 2007.

[4] X. Lin, Y. Lu, J. Deogun, and S. Goddard. Real-time divisi-
ble load scheduling for cluster computing. In Proceedings of
the 13th IEEE Real-Time and Embedded Technology and Ap-
plication Symposium, pages 303–314, Bellevue, WA, April
2007.

[5] D. Swanson. Personal communication. Director, UNL Re-
search Computing Facility (RCF) and UNL CMS Tier-2 Site,
August 2005.

[6] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckman, T. Mitra,
F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Sten-
strom. The worst-case execution time problem - overview of
methods and survey of tools. In ACM Transactions on Em-
bedded Computing Systems (Accepted January 2007).

[7] C.-T. Yang, P.-C. Shih, C.-F. Lin, C.-H. Hsu, and K.-C. Li. A
chronological history-based execution time estimation model
for embarrassingly parallel applications on grids. In Proceed-
ings of the Parallel and Distributed Processing and Applica-
tions, pages 425–430. Springer Berlin / Heidelberg, 2005.


