
NetTopo: Beyond Simulator and Visualizer for Wireless Sensor Networks

Lei Shu1, Chun Wu1, Yan Zhang2, Jiming Chen3, Lei Wang4, Manfred Hauswirth1
Digital Enterprise Research Institute, National University of Ireland, Galway

1{lei.shu, chun.wu, Manfred.hauswirth}@deri.org
2Simula Research Laboratory, Norway email: yanzhang@ieee.org

3Zhejiang University, China email: jmchen@ieee.org
4Dalian University of Technology, China email: lei.wang@dlut.edu.cn

Abstract

Simulators are needed for testing algorithms of

wireless sensor networks (WSNs) for large scale
scenarios. Deploying real WSN testbed provides a
more realistic testing environment, and allows users to
get more accurate test results. However, deploying
real testbed is highly constrained by the available
budget when the test needs a large scale WSN
environment. By leveraging the advantages of both
simulators and real testbed, an approach that
integrates simulation environment and testbed can
effectively solve both scalability and accuracy issues.
Hence, the simulation of virtual WSN, the visualization
of real testbed, and the interaction between simulated
WSN and testbed emerge as three key challenges. In
this paper, we present NetTopo for providing both
simulation and visualization functions to assist the
investigation of algorithms in WSNs. Two case studies
are described to prove the effectiveness of NetTopo.

1. Introduction

Designing and validating algorithms pertaining to
wireless sensor networks (WSNs) are among the most
fundamental focuses of researchers. Simulators are
widely used for the purpose of analysis in these tasks
due to the fast prototyping and tackling large scale
systems. However, even the best simulator still cannot
simulate real wireless communication environment in
terms of completeness and accuracy [1]. Taking this
drawback of simulators into account, using real testbed
to evaluate algorithms of WSNs is essentially
necessary before applying them into commercial
applications.

 Using testbeds allows rigorous and replicable
testing. However, there are two serious limitations on
this approach in the following two conditions: 1) Large
scale. Until today, it is still very expensive to buy a
large number of sensor nodes for a large scale testbed.

Especially, for most academic researches the cost for
building a large scale testbed is not acceptable. 2) Not
replicable environment. For some specific applications,
e.g., monitoring an erupting volcano [1], deploying a
testbed is unwanted since the devices are exposed to
dangerous conditions which can cause serious damage.

Due to the complementary properties of simulators
and testbeds, a better solution can be the integration of
simulation environment and physical testbed. Having
this integrated framework, applications can run
partially in a simulation environment and partially in a
physical WSN testbed which can solve both scalability
and accuracy issues for the evaluation of algorithms in
WSNs. This integration is specially motivated by the
following two concrete scenarios:

 Researchers want to compare the performance of
running a same algorithm in both simulator and
real testbed. The comparison can guide
researchers to improve the algorithm design and
incorporate more realistic conditions. A good
example is the applying of face routing algorithm
in GPSR [2], which is proved to be loop free in
theory but actually is not loop free in realist
situations, due to the irregular radio coverage [3].

 A budget limitation prevents researchers from
buying enough real sensor nodes but the research
work has to base on a large scale WSN. For
example, to evaluate the performance of sensor
middleware [4], a large scale sensor network is
needed. Researchers can actually do the research
work by integrating a small number of real sensor
nodes and a large number of virtual sensor nodes
generated from the simulator.

The integration of simulation environment and
physical testbed brings three major challenges:

 Sensor node simulation. Normally, a number of
heterogeneous sensor devices can be used for
building a WSN testbed. The integrated platform
should not simulate only a specific sensor device,
which means that the heterogeneous problem

requires the integrated platform to be flexible
enough to simulate any new sensor device.

 Testbed visualization. Sensor nodes are small in
size and do not have user interfaces as displays or
keyboards, which is difficult to track the testbed
communication status. On the other hand, the
communication topology in testbed is invisible,
but researchers usually need to see the topology
to analyze their algorithms. For example, when
implementing a routing algorithm in the testbed,
the actual routing path is expected to be visible.

 Interaction between the simulated WSN and
testbed. The simulated WSN and the real testbed
need to exchange information, e.g., routing
packet. Their horizontal interconnection,
communication, interaction, and collaboration are
all emerging difficult problems that need to be
addressed.

In this paper, we present an extensible integrated
framework of simulation and visualization called
NetTopo to assist investigation of algorithms in WSNs.
With respect to the simulation module, users can easily
define a large number of on-demand initial parameters
for sensor nodes, e.g. residential energy, transmission
bandwidth, radio radius, etc. Users also can define and
extend the internal processing behavior of sensor
nodes, such as energy consumption, bandwidth
management. It allows users to simulate an extremely
large scale heterogeneous WSN. For the visualization
module, it works as a plug-in component to visualize
testbed’s connection status, topology, sensed data, etc.
These two modules paint the virtual sensor nodes and
links on the same canvas which is an integration point
for centralized visualization. Since the node attributes
and internal operations are user definable, it guarantees
the simulated virtual nodes to have the same properties
with those of real nodes. The sensed data captured
from the real sensor nodes can drive the simulation in a
pre-deployed virtual WSN. Topology layouts and
algorithms of virtual WSN are customizable and work
as user defined plug-ins, both of which can easily
match the corresponding topology and algorithms of
real WSN testbed. As a major contribution of this
research work, NetTopo is released as open source
software on the SourceForge. Currently, it has more
than eighty java classes and 11,000 Java lines source
codes. Users can freely download the latest version of
NetTopo by accessing the NetTopo website [5].

The rest of the paper is: Section 2 positions our
work with respect to the related work. Section 3
illustrates NetTopo architecture and Section 4
describes features of NetTopo. Section 5 presents two
case studies provided in NetTopo as examples. Section
6 concludes this paper and describes the future work.

2. Related work

A large number of WSN simulators have been
proposed by researchers till today. These simulators
can be classified into three major categories:

 Algorithm level. Simulators [6-8] focus on the
logic, data structure and presentation of the
algorithms. AlgoSensim [6] analyzes specific
algorithms in WSNs, e.g. localization, distributed
routing, flooding, etc. Shawn [7] is targeted to
simulate the effect caused by a phenomenon,
improve scalability and support free choice of the
implementation model. Sinalgo [8] offers a
message passing view of the network, which
captures well the view of actual network devices.

 Packet level. Simulators [9-12] implement the
data link and physical layers in a typical OSI
network stack. The ns-2 [9] is not originally
targeted to WSNs but IP networks. SensorSim
[10] is an extension to ns-2 which provides
battery, radio propagation and sensor channel
models. J-Sim [11] adopts loosely-coupled,
component-based programming model, and it
supports real-time process-driven simulation.
GloMoSim [12] is designed for the parallel
discrete event simulation capability provided by
PARSEC.

 Instruction level. Simulators [13-15] model the
CPU execution at the level of instructions or even
cycles. They are often regarded as emulators.
TOSSIM [13] simulates the TinyOS network
stack at the bit level. Atemu [14] is an emulator
that can run nodes with distinct applications at the
same time. Avrova [15] is a Java-based emulator
used for programs written for the AVR
microcontroller produced by Atmel.

It is clear that none of these simulators has
considered integrating with real WSN testbed. This
point clearly distinguishes NetTopo from them.

In terms of visualization of real WSN testbed, there
is much less related work. Octopus [16] is an open-
source visualization and control tool for WSNs in
TinyOS 2.x environment. It provides a graphical user
interface for viewing the live WSN topology and
allows users to control the behavior of one or many
sensor nodes. The Surge [17] and the Mote-VIEW [18]
are products of Crossbow company to visualize WSNs.
They are capable of logging wireless sensor data to a
database and to analyze and plot sensor readings. They
are designed to support only Crossbow sensor nodes,
thus they are not extensible. SpyGlass [19] visualizes
WSN using a flexible multi-layer mechanism that
renders the information on a canvas. TinyViz [13] is a

GUI tool of TOSSIM package of TinyOS. It visualizes
sensor readings, LED states and radio links and allows
direct interaction with running TOSSIM simulations.
But these interactions are often ad-hoc as well as
laborious and difficult to reproduce.

In short, most of existing visualization tools support
only a single type of WSN and are highly coupled to
the TinyOS. However, NetTopo is targeting at the
visualization and control of WSN testbed where
heterogeneous devices are used, e.g., wireless camera,
Bluetooth based body monitoring sensor devices, and
these devices are generally not TinyOS based.

3. NetTopo architecture

3.1. Modular components

From the high-level point of view, NetTopo

consists of both simulation and visualization functions.
These two functions need to interact with each other
and access/manipulate some common resources. For
focusing on the integration issues of them, we use
component based NetTopo architecture, which is
flexible enough for adding new components in the
future. The basic architecture is illustrated in Figure 1.

Main Control and Utility are two components
involved in all layers. Main Control is the core
component working as a coordinator in charge of the
interactions of other components. It can be regarded as
an adaptor between input and output interfaces of other
components and enables them to work smoothly.
Utility provides some basic services, e.g., defined
application exceptions, format verification, number
transforms, dialogue wrappers.

File Manager is for the purpose of data persistence,
e.g. logging runtime information, recording statistical
results, keeping references of virtual sensor nodes, etc.
Log information and statistical results are recorded as
character streams into human readable format.
References of virtual sensor nodes are stored as
serialized format for easy recovery and reuse. All these
references are encapsulated in Virtual WSN, which
works like a runtime sensor nodes repository and also
declares interface to allow other components to add
new virtual nodes, delete particular nodes, retrieve the
same type of nodes and their derived children, etc.

Figure 1. NetTopo Architecture

Node, Topology and Algorithm components are
designed as highly extensible modules that can be
regarded as plug-ins. Node represents a virtual sensor
node. Virtual sensor nodes do not have fixed properties
or structures. For example, sensor nodes can have very
different sensing attributes: temperature, humidity,
vibration, pressure, etc. To allow users to create their
own virtual sensor nodes, an abstract interface named
VNode is declared to define several basic methods
representing actions of a real sensor node. Any user
desired node that wishes to run on the simulator must
implement the VNode interface. Topology stands for
the topology to be deployed in Virtual WSN. Network
topology can be various shapes, e.g., line, circle,
triangle, tree. Users can flexibly implement any needed
network topology. Algorithm represents an algorithm
to be applied in the Virtual WSN. The algorithm can be
any routing, clustering, scheduling, controlling
algorithm, etc. Users can freely implement their
needed algorithms for their specific studies.

The graphical user interface (GUI) in Figure 2
consists of three major components: a display canvas
(on the upper left), which can be dragged in case of
viewing a large scale WSN, a property tab for
displaying node properties (on the upper right), and a
display console for logging and debugging information.
Painter is separated from the main GUI due to the
frequent paining tasks. The painter is also designed as
an abstract interface for various painting requirements,
e.g., 2D or 3D. The specific painter used in Figure 2 is
Painter_2D. Additionally, the painter encapsulates the
lower painting API, interacts with the Virtual WSN and
main GUI and provides advanced painting methods,
e.g. it can paint a link between any two nodes by just
using their ID information.

Figure 2. NetTopo main GUI (the TPGF [20]

multipath routing algorithm is executed in the WSN)

Simulator and Visualizer represent the high level
functions in NetTopo. The structure difference
between these two components is that simulator is a
built-in of NetTopo but visualizer is loaded as a plug-
in. This is because different accessing interfaces
(wrappers) are needed for different devices, e.g. the
HTTP based connection is used for getting image
streams from wireless camera and the socket
connection is used for getting Crossbow sensor data.
The common components they all utilize include
Virtual WSN, Painter, Node, Configuration and GUI.
Using these shared resources sometimes can cause
synchronization problem, e.g. when both Simulator
and Visualizer components need to add new sensor
nodes in the graphical display canvas.

3.2. Interaction of components

In NetTopo, components interactively communicate

with each other to achieve the functions of simulation
and visualization. At the beginning, virtual nodes
should be deployed and their attributes should be
configured before the simulation starts. The Algorithm
component loaded as plug-in decides how virtual
sensor nodes will communicate and forward packets.
Users’ command drives the simulation which runs
based on the specification of the loaded algorithm.

Figure 3 shows the interaction between the user and
related components in a simulation scenario. GUI
invokes the simulation interface provided by Main
Control when receive the simulation request. Main
Control directly forwards the task to Algorithm and
wait for the result. Then, Algorithm searches the
Virtual WSN and gets the references of starting virtual
sensor nodes. In Virtual WSN, the nodes cooperatively
behave according to the specified algorithm and return
the results, e.g. searched routing paths. Main Control
notifies the Painter to paint the results on GUI after
receiving the results from the Algorithm.

The Visualizer works as a thread that shares some
common components with Simulator including GUI,
Main Control, Painter and Configuration. Sometimes,
Virtual WSN, Node and File Manager can also be
involved. This depends on the implementations of
Visualizer for different real sensor devices.

Figure 4 shows the components interaction in a
visualization scenario. Once the Visualizer thread is
created, it runs concurrently with the Simulator thread.
It then works in a loop to update the testbed
information on GUI e.g. logging and painting added
sensor nodes and connections, refreshing sensed data
of each node, etc. until users manually interrupt this
thread. This simple scenario only focuses on the

Figure 3. Component interaction in simulation

Figure 4. Component interaction in visualization

visualization of testbed, in which visualization and
simulation components are running concurrently, but
they actually do not interact with each other because
no common virtual sensor nodes are used by both
components. A further example of interaction between
both components is presented in case study section.

4. Features of NetTopo

Features of NetTopo in current version can be
classified in the following four categories.

1) Platform independent.
 NetTopo is implemented in Java language, which

makes it portable between different operating
systems.

2) Extensibility.
 Configurable sensor nodes with defined attributes.

Users can define their own virtual sensor nodes
with expected attributes. New type of nodes will
be loaded as a plug-in, which provides an extra
choice when users plan to deploy a WSN.

 Customizable sensor network topology layout.
Users can define their own topology based on the

API described in the Topology component. This
is helpful when users focus on studying a
particular topology of the network.

 User-defined algorithms and functions. An
algorithm can be composed of several functions,
each of which acts for a particular purpose. User
can debug a single function or add a new function
without influencing others in the same algorithm.

 Device based wrappers for visualization. A
wrapper is used to get information from sensor
device. To visualize different hardware devices,
users can create different wrappers to set up the
connection for extracting information.

 Integrating with GSN middleware. GSN [3] is a
sensor network middleware developed by us. It
provides a large number of wrappers (currently
more than 25 wrappers) for extracting data from
heterogeneous sensor devices. This can help to
reduce the workload to implement new wrappers
for some GSN supported sensor devices.

3) Flexibility.
 Single node deployment. Users can deploy a

single node in a given location. This is useful for
a slight modification to the virtual WSN or
placement for a sink node or source node.

 Single node movement. Users can move any node
to any place in the WSN field (graphical display
canvas) after deploying the sensor nodes. This is
useful for updating some specific sensor node’s
location, e.g. move the sink node for several tests.

 Random multi-node deployment. Users can
randomly deploy a specified number of sensor
nodes. The random seed can be the irreproducible
current time point of the running computer or any
specified reproducible integer.

 Specific multi-node deployment. Users can deploy
a specified number of sensor nodes based on pre-
defined topologies to form some special shapes,
e.g., users can deploy a circle by specifying the
location of circle center, radius, and node number.

 Repeated node deployment. Users can repeatedly
deploy different kind of sensor nodes in the
Virtual WSN. This allows the deployment of
heterogeneous sensor networks.

4) Practicability.
 Data persistence for virtual WSN. The network

deployment state can be saved in a specific type
of file using “.wsn” as the postfix. Users can base
on these files to reuse the deployed virtual WSN
or share these files with friends to discuss a
common problem.

 Snapshot for virtual WSN. Users can capture a
snapshot for a virtual WSN and save it as “.bmp”
picture. This feature allows users to further

analyze the simulation results and use the saved
picture for sharing or writing papers.

 Node manipulation. Users can delete specified
nodes, view the current properties of the nodes,
modify the property values of a node before
starting a simulation, search a node by its ID and
disable nodes or kill nodes in a specified region
to make a hole in the WSN or make an irregular
WSN field.

 Recording of simulation results. NetTopo can
save the simulation results in a specific type of
file using “.report” as the postfix. Users can use
normal text editor software to open it and read the
simulation result. The simulation results are
formulated into a unified format that allows users
to further import them into Microsoft Office
Excel to get the graphical results, e.g., curves and
charts.

5. Case studies

To demonstrate the usability of NetTopo we present
two case studies on simulation and visualization
respectively as user examples. For simulation, two
routing algorithms, GPSR [2] and TPGF [20], are
implemented and compared based on the statistical
results.

For visualization, a testbed composed of Crossbow
Mica2 sensor nodes is visualized. Additionally, these
real sensor nodes are considered as source nodes in a
pre-deployed virtual WSN: when the sensed
temperature value of any real node exceeds a threshold,
which means an event is detected, it then automatically
starts a simulation for exploring one/multiple routing
paths in the integrated virtual WSN.

5.1. Simulation of two routing algorithms

Users who do simulation of testing an algorithm not

only expect to see visual results on the canvas but also
need to gather related statistic information that can be
used to analyze the algorithm performance. For
example, users want to know how many paths can be
searched by repeatedly using a same algorithm in the
WSN and how many hops each path has.

However, providing such information of a single
test on a specific WSN deployment is not enough,
because to evaluate the algorithm performance, users
generally need to simulate the same algorithm for
many times while changing several input parameters to
get the more convincible average results.

Following the above example, users also want to
know the average paths number by applying the same

algorithm in 100 runs with different random network
deployment. And users even want to know the
variation of the paths number along with the variation
of value of input parameters such as network size,
node number, and transmission radius. NetTopo
provides an easy way for users to configure their input
parameters for the purpose of simulating the same
algorithm for many times.

Two routing algorithms TPGF and GPSR are
implemented in NetTopo as examples. When applying
them respectively in the network layer of WSN,
different performance can be compared in various
aspects. The major concentrated measurement metrics
include: 1) the average number of paths by repeatedly
using this same algorithm in the WSN; 2) the average
path length from the source node to the sink node.

(a) Running TPGF in the virtual WSN with 4 routing

paths when TR is set as 60 meters

(b) Running GPSR in the GG virtual WSN with 4

routing paths when TR is set as 60 meters

(c) Running GPSR in the RNG virtual WSN with 4

routing paths when TR is set as 60 meters
Figure 5. An example of the simulation of TPGF

and GPSR

(a) TPGF: average number of paths vs. number of

nodes

(b) GPSR on GG virtual WSN: average number of

paths vs. number of nodes

(c) GPSR on RNG virtual WSN: average number of

paths vs. number of nodes
Figure 6. Average number of paths vs. number of

nodes

As an example, Figure 5 shows the visual results on

the canvas when running both TPGF and GPSR in the
virtual WSN. In Figure 5, the red color node is the
source node and the green color node is the sink node.
Pictures (a), (b) and (c) give a direct impression to
researchers that TPGF can have shorter average path
length than that of GPSR in a single WSN deployment.
However, having a single test result is not convincible;
we need to do the test for many times. We would like
to know the variation of these two metrics in the case
of different conditions in terms of network density and
transmission radius of sensor nodes.

In order to simplify this case study, the network size
is fixed in 600 × 400 (1 pixel on the canvas is
considered as 1 meter). For each fixed number of
sensor nodes (network density) and transmission radius
(network degree), the average number of paths and the
average path length are computed from 100 simulation
results using 100 different random seeds for network
deployment. Then, we change the node number (from
100 to 1000) and transmission radius (from 60 to 105)
to obtain different values. By gathering all these
average values together, lots of chart and figures can
be drawn to reflect the execution performance of the
algorithms. Figures 6 (a), (b) and (c) are the simulation
results on the average number of paths that found by
applying TPGF and GPSR respectively.

(a) TPGF: average path length vs. number of nodes

(b) GPSR on GG virtual WSN: average path length vs.

number of nodes

(c) GPSR on RNG virtual WSN: average path length

vs. number of nodes
Figure 7. Average path length vs. number of nodes

Figures 7 (a), (b) and (c) are the simulation results
on the average path length that found by applying
TPGF and GPSR respectively.

It is more convincible to use the statistical
simulation results to reflect the impact on the
execution performance of both GPSR and TPGF
routing algorithms when using different transmission
radius and number of sensor nodes for simulation.

5.2. Crossbow WSN testbed visualization

Crossbow WSN testbed consists of six Mica2 nodes.

Figure 8 shows the whole network structure and flow
of sensed data. The Crossbow driver called xServe is
installed in gateway for converting sensed data into
XML stream and providing a TCP/IP service on port
9005. NetTopo can be located on gateway or another
computer that can communicate with the gateway.

Figure 8. Crossbow WSN testbed visualization flow

The sink node collects packets sent from sensor

nodes. Each packet of any node includes lots of
properties, e.g., its node ID and its parent node ID. By
using a wrapper to set up a TCP/IP connection on port
9005, NetTopo can read the XML stream from the
gateway, extract the node ID information and draw
some round circles representing virtual sensor nodes
on the canvas.

In addition to using Painter to update the GUI, this
particular Visualizer component also creates virtual
sensor nodes in the virtual WSN, which allows the
references of these nodes to be obtained by Simulator
for using in the simulation. Consequently, by getting
the node ID and parent ID mapping information in the
XML packet, NetTopo can easily draw the topology of
the network connection. Nodes’ latest properties and
sensed data, e.g., voltage, temperature, humid, pressure.
can also be periodically captured from the XML
stream by setting a specific sampling rate. The values
of all these properties are presented on the property tab
of the main GUI and refreshed when new data arrive.

Furthermore, these six virtualized Mica2 nodes are
considered as source nodes in the virtual WSN. When
the temperature reading of any Mica2 node exceeds a
threshold, the Simulator is involved to explore multiple

routing in a pre-deployed virtual WSN, which include
many other deployed simulated virtual sensor nodes.

(a) Six Crossbow nodes are virtualized as source

nodes in the virtual WSN

(b) One Crossbow node explored 4 routing paths

by using TPGF
Figure 9. An example of the integration of the testbed

and the simulation environment

Figure 9 (a) shows the visualization of the six
Crossbow nodes in the pre-deployed virtual WSN.
Figure 9 (b) shows that one of the Crossbow nodes
explored four routing paths by using TPGF.

6. Conclusion

In this paper, we present NetTopo, an integrated
framework of simulation and visualization for WSNs.
The friendly GUI makes it easy to use and the modular
components enable it to be flexibly extended. NetTopo
can support an extremely large scale network
simulation by integrating simulated sensor networks
and visualized testbed. It is very useful for a fast rapid
prototyping of an algorithm.

All in all, currently NetTopo gets the first step into
the whole vision where network simulators, visualizers
and real physical testbeds are expected to be integrated
to test and validate algorithms in WSNs.

7. Acknowledgement

The work presented in this paper was supported by
the Lion project supported by Science Foundation
Ireland under grant no. SFI/02/CE1/I131.

8. Reference

[1] C. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo, J.
Johnson, M. Ruiz, J. Lees, “Deploying a Wireless Sensor
Networks on an Active Volcano”, in IEEE Internet
Computing, Vol. 10, No. 2, pp. 18-25, 2006.

[2] B. Karp, H.T. Kung, “GPSR: greedy perimeter stateless

routing for wireless networks”, in Proceedings of the
Annual International Conference on Mobile Computing
and Networking (MobiCom 2000), Boston, USA, August.

[3] K. Seada, A. Helmy, R. Govindan, “Modeling and

Analyzing the Correctness of Geographic Face Routing
Under Realistic Conditions. Ad Hoc Networks”,
doi:10.1016/j.adhoc.2007.02.008, pp. 855-871, 2007.

[4] K. Aberer, M. Hauswirth, A. Salehi, “Infrastructure for

data processing in large-scale interconnected sensor
network”, in 8th International Conference on Mobile
Data Management Mannheim, Germany, 2007.

[5] http://lei.shu.deri.googlepages.com/nettopo

[6] http://tcs.unige.ch/doku.php/code/algosensim/overview

[7] http://shawn.sourceforge.net/

[8] http://dcg.ethz.ch/projects/sinalgo/

[9] http://www.isi.edu/nsnam/ns/

[10] http://nesl.ee.ucla.edu/projects/sensorsim/

[11] http://www.j-sim.org/

[12] http://pcl.cs.ucla.edu/projects/glomosim/

[13] http://www.cs.berkeley.edu/~pal/research/tossim.html

[14] http://www.hynet.umd.edu/research/atemu/

[15] http://compilers.cs.ucla.edu/avrora/

[16] http://csserver.ucd.ie/~rjurdak/Octopus.htm

[17] http://www.cmt-gmbh.de/surge_network_viewer.htm

[18] http://www.xbow.com/Products/

[19] C. Buschmann, D. Pfisterer, S. Fischer, S.P. Fekete, A.

Kröller, “SpyGlass: A Wireless Sensor Network
Visualizer”, in ACM SIGBED Review. Vol. 2, No. 1,
2005.

[20] L. Shu, Z. Zhou, M. Hauswirth, D. Phuoc, P. Yu, L.

Zhang, "Transmitting Streaming Data in Wireless
Multimedia Sensor Networks with Holes", in
Proceedings of the Sixth International Conference on
Mobile and Ubiquitous Multimedia (MUM 2007),
December 12-14, 2007. Oulu, Finland.

