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Abstract 

 
Simulators are needed for testing algorithms of 

wireless sensor networks (WSNs) for large scale 
scenarios. Deploying real WSN testbed provides a 
more realistic testing environment, and allows users to 
get more accurate test results. However, deploying 
real testbed is highly constrained by the available 
budget when the test needs a large scale WSN 
environment. By leveraging the advantages of both 
simulators and real testbed, an approach that 
integrates simulation environment and testbed can 
effectively solve both scalability and accuracy issues. 
Hence, the simulation of virtual WSN, the visualization 
of real testbed, and the interaction between simulated 
WSN and testbed emerge as three key challenges. In 
this paper, we present NetTopo for providing both 
simulation and visualization functions to assist the 
investigation of algorithms in WSNs. Two case studies 
are described to prove the effectiveness of NetTopo. 
 
1. Introduction 
 

Designing and validating algorithms pertaining to 
wireless sensor networks (WSNs) are among the most 
fundamental focuses of researchers. Simulators are 
widely used for the purpose of analysis in these tasks 
due to the fast prototyping and tackling large scale 
systems. However, even the best simulator still cannot 
simulate real wireless communication environment in 
terms of completeness and accuracy [1]. Taking this 
drawback of simulators into account, using real testbed 
to evaluate algorithms of WSNs is essentially 
necessary before applying them into commercial 
applications. 

 Using testbeds allows rigorous and replicable 
testing. However, there are two serious limitations on 
this approach in the following two conditions: 1) Large 
scale. Until today, it is still very expensive to buy a 
large number of sensor nodes for a large scale testbed. 

Especially, for most academic researches the cost for 
building a large scale testbed is not acceptable. 2) Not 
replicable environment. For some specific applications, 
e.g., monitoring an erupting volcano [1], deploying a 
testbed is unwanted since the devices are exposed to 
dangerous conditions which can cause serious damage. 

Due to the complementary properties of simulators 
and testbeds, a better solution can be the integration of 
simulation environment and physical testbed. Having 
this integrated framework, applications can run 
partially in a simulation environment and partially in a 
physical WSN testbed which can solve both scalability 
and accuracy issues for the evaluation of algorithms in 
WSNs. This integration is specially motivated by the 
following two concrete scenarios:  

 Researchers want to compare the performance of 
running a same algorithm in both simulator and 
real testbed. The comparison can guide 
researchers to improve the algorithm design and 
incorporate more realistic conditions. A good 
example is the applying of face routing algorithm 
in GPSR [2], which is proved to be loop free in 
theory but actually is not loop free in realist 
situations, due to the irregular radio coverage [3]. 

 A budget limitation prevents researchers from 
buying enough real sensor nodes but the research 
work has to base on a large scale WSN. For 
example, to evaluate the performance of sensor 
middleware [4], a large scale sensor network is 
needed. Researchers can actually do the research 
work by integrating a small number of real sensor 
nodes and a large number of virtual sensor nodes 
generated from the simulator. 

The integration of simulation environment and 
physical testbed brings three major challenges:  

 Sensor node simulation. Normally, a number of 
heterogeneous sensor devices can be used for 
building a WSN testbed. The integrated platform 
should not simulate only a specific sensor device, 
which means that the heterogeneous problem 



requires the integrated platform to be flexible 
enough to simulate any new sensor device. 

 Testbed visualization. Sensor nodes are small in 
size and do not have user interfaces as displays or 
keyboards, which is difficult to track the testbed 
communication status. On the other hand, the 
communication topology in testbed is invisible, 
but researchers usually need to see the topology 
to analyze their algorithms. For example, when 
implementing a routing algorithm in the testbed, 
the actual routing path is expected to be visible.  

 Interaction between the simulated WSN and 
testbed. The simulated WSN and the real testbed 
need to exchange information, e.g., routing 
packet. Their horizontal interconnection, 
communication, interaction, and collaboration are 
all emerging difficult problems that need to be 
addressed. 

In this paper, we present an extensible integrated 
framework of simulation and visualization called 
NetTopo to assist investigation of algorithms in WSNs. 
With respect to the simulation module, users can easily 
define a large number of on-demand initial parameters 
for sensor nodes, e.g. residential energy, transmission 
bandwidth, radio radius, etc. Users also can define and 
extend the internal processing behavior of sensor 
nodes, such as energy consumption, bandwidth 
management. It allows users to simulate an extremely 
large scale heterogeneous WSN. For the visualization 
module, it works as a plug-in component to visualize 
testbed’s connection status, topology, sensed data, etc. 
These two modules paint the virtual sensor nodes and 
links on the same canvas which is an integration point 
for centralized visualization. Since the node attributes 
and internal operations are user definable, it guarantees 
the simulated virtual nodes to have the same properties 
with those of real nodes. The sensed data captured 
from the real sensor nodes can drive the simulation in a 
pre-deployed virtual WSN. Topology layouts and 
algorithms of virtual WSN are customizable and work 
as user defined plug-ins, both of which can easily 
match the corresponding topology and algorithms of 
real WSN testbed. As a major contribution of this 
research work, NetTopo is released as open source 
software on the SourceForge. Currently, it has more 
than eighty java classes and 11,000 Java lines source 
codes. Users can freely download the latest version of 
NetTopo by accessing the NetTopo website [5]. 

The rest of the paper is: Section 2 positions our 
work with respect to the related work. Section 3 
illustrates NetTopo architecture and Section 4 
describes features of NetTopo. Section 5 presents two 
case studies provided in NetTopo as examples. Section 
6 concludes this paper and describes the future work. 

2. Related work 
 

A large number of WSN simulators have been 
proposed by researchers till today. These simulators 
can be classified into three major categories: 

 Algorithm level. Simulators [6-8] focus on the 
logic, data structure and presentation of the 
algorithms. AlgoSensim [6] analyzes specific 
algorithms in WSNs, e.g. localization, distributed 
routing, flooding, etc. Shawn [7] is targeted to 
simulate the effect caused by a phenomenon, 
improve scalability and support free choice of the 
implementation model. Sinalgo [8] offers a 
message passing view of the network, which 
captures well the view of actual network devices. 

 Packet level. Simulators [9-12] implement the 
data link and physical layers in a typical OSI 
network stack. The ns-2 [9] is not originally 
targeted to WSNs but IP networks. SensorSim 
[10] is an extension to ns-2 which provides 
battery, radio propagation and sensor channel 
models. J-Sim [11] adopts loosely-coupled, 
component-based programming model, and it 
supports real-time process-driven simulation. 
GloMoSim [12] is designed for the parallel 
discrete event simulation capability provided by 
PARSEC. 

 Instruction level. Simulators [13-15] model the 
CPU execution at the level of instructions or even 
cycles. They are often regarded as emulators. 
TOSSIM [13] simulates the TinyOS network 
stack at the bit level.  Atemu [14] is an emulator 
that can run nodes with distinct applications at the 
same time. Avrova [15] is a Java-based emulator 
used for programs written for the AVR 
microcontroller produced by Atmel. 

It is clear that none of these simulators has 
considered integrating with real WSN testbed. This 
point clearly distinguishes NetTopo from them. 

In terms of visualization of real WSN testbed, there 
is much less related work. Octopus [16] is an open-
source visualization and control tool for WSNs in 
TinyOS 2.x environment. It provides a graphical user 
interface for viewing the live WSN topology and 
allows users to control the behavior of one or many 
sensor nodes. The Surge [17] and the Mote-VIEW [18] 
are products of Crossbow company to visualize WSNs. 
They are capable of logging wireless sensor data to a 
database and to analyze and plot sensor readings. They 
are designed to support only Crossbow sensor nodes, 
thus they are not extensible. SpyGlass [19] visualizes 
WSN using a flexible multi-layer mechanism that 
renders the information on a canvas. TinyViz [13] is a 



GUI tool of TOSSIM package of TinyOS. It visualizes 
sensor readings, LED states and radio links and allows 
direct interaction with running TOSSIM simulations. 
But these interactions are often ad-hoc as well as 
laborious and difficult to reproduce. 

In short, most of existing visualization tools support 
only a single type of WSN and are highly coupled to 
the TinyOS. However, NetTopo is targeting at the 
visualization and control of WSN testbed where 
heterogeneous devices are used, e.g., wireless camera, 
Bluetooth based body monitoring sensor devices, and 
these devices are generally not TinyOS based. 
 
3. NetTopo architecture 

 
3.1. Modular components 

 
From the high-level point of view, NetTopo 

consists of both simulation and visualization functions. 
These two functions need to interact with each other 
and access/manipulate some common resources. For 
focusing on the integration issues of them, we use 
component based NetTopo architecture, which is 
flexible enough for adding new components in the 
future. The basic architecture is illustrated in Figure 1.  

Main Control and Utility are two components 
involved in all layers. Main Control is the core 
component working as a coordinator in charge of the 
interactions of other components. It can be regarded as 
an adaptor between input and output interfaces of other 
components and enables them to work smoothly. 
Utility provides some basic services, e.g., defined 
application exceptions, format verification, number 
transforms, dialogue wrappers. 

File Manager is for the purpose of data persistence, 
e.g. logging runtime information, recording statistical 
results, keeping references of virtual sensor nodes, etc. 
Log information and statistical results are recorded as 
character streams into human readable format. 
References of virtual sensor nodes are stored as 
serialized format for easy recovery and reuse. All these 
references are encapsulated in Virtual WSN, which 
works like a runtime sensor nodes repository and also 
declares interface to allow other components to add 
new virtual nodes, delete particular nodes, retrieve the 
same type of nodes and their derived children, etc. 

 

 
Figure 1. NetTopo Architecture 

Node, Topology and Algorithm components are 
designed as highly extensible modules that can be 
regarded as plug-ins. Node represents a virtual sensor 
node. Virtual sensor nodes do not have fixed properties 
or structures. For example, sensor nodes can have very 
different sensing attributes: temperature, humidity, 
vibration, pressure, etc. To allow users to create their 
own virtual sensor nodes, an abstract interface named 
VNode is declared to define several basic methods 
representing actions of a real sensor node. Any user 
desired node that wishes to run on the simulator must 
implement the VNode interface. Topology stands for 
the topology to be deployed in Virtual WSN. Network 
topology can be various shapes, e.g., line, circle, 
triangle, tree. Users can flexibly implement any needed 
network topology. Algorithm represents an algorithm 
to be applied in the Virtual WSN. The algorithm can be 
any routing, clustering, scheduling, controlling 
algorithm, etc. Users can freely implement their 
needed algorithms for their specific studies. 

The graphical user interface (GUI) in Figure 2 
consists of three major components: a display canvas 
(on the upper left), which can be dragged in case of 
viewing a large scale WSN, a property tab for 
displaying node properties (on the upper right), and a 
display console for logging and debugging information. 
Painter is separated from the main GUI due to the 
frequent paining tasks. The painter is also designed as 
an abstract interface for various painting requirements, 
e.g., 2D or 3D. The specific painter used in Figure 2 is 
Painter_2D. Additionally, the painter encapsulates the 
lower painting API, interacts with the Virtual WSN and 
main GUI and provides advanced painting methods, 
e.g. it can paint a link between any two nodes by just 
using their ID information. 

 

 
Figure 2. NetTopo main GUI (the TPGF [20] 

multipath routing algorithm is executed in the WSN) 



Simulator and Visualizer represent the high level 
functions in NetTopo. The structure difference 
between these two components is that simulator is a 
built-in of NetTopo but visualizer is loaded as a plug-
in. This is because different accessing interfaces 
(wrappers) are needed for different devices, e.g. the 
HTTP based connection is used for getting image 
streams from wireless camera and the socket 
connection is used for getting Crossbow sensor data. 
The common components they all utilize include 
Virtual WSN, Painter, Node, Configuration and GUI. 
Using these shared resources sometimes can cause 
synchronization problem, e.g. when both Simulator 
and Visualizer components need to add new sensor 
nodes in the graphical display canvas. 

 
3.2. Interaction of components 

 
In NetTopo, components interactively communicate 

with each other to achieve the functions of simulation 
and visualization. At the beginning, virtual nodes 
should be deployed and their attributes should be 
configured before the simulation starts. The Algorithm 
component loaded as plug-in decides how virtual 
sensor nodes will communicate and forward packets. 
Users’ command drives the simulation which runs 
based on the specification of the loaded algorithm.  

Figure 3 shows the interaction between the user and 
related components in a simulation scenario. GUI 
invokes the simulation interface provided by Main 
Control when receive the simulation request. Main 
Control directly forwards the task to Algorithm and 
wait for the result. Then, Algorithm searches the 
Virtual WSN and gets the references of starting virtual 
sensor nodes. In Virtual WSN, the nodes cooperatively 
behave according to the specified algorithm and return 
the results, e.g. searched routing paths. Main Control 
notifies the Painter to paint the results on GUI after 
receiving the results from the Algorithm.  

The Visualizer works as a thread that shares some 
common components with Simulator including GUI, 
Main Control, Painter and Configuration. Sometimes, 
Virtual WSN, Node and File Manager can also be 
involved. This depends on the implementations of 
Visualizer for different real sensor devices. 

Figure 4 shows the components interaction in a 
visualization scenario. Once the Visualizer thread is 
created, it runs concurrently with the Simulator thread. 
It then works in a loop to update the testbed 
information on GUI e.g. logging and painting added 
sensor nodes and connections, refreshing sensed data 
of each node, etc. until users manually interrupt this 
thread. This simple scenario only focuses on the  

 
Figure 3. Component interaction in simulation 

 

 
Figure 4. Component interaction in visualization 
 

visualization of testbed, in which visualization and 
simulation components are running concurrently, but 
they actually do not interact with each other because 
no common virtual sensor nodes are used by both 
components. A further example of interaction between 
both components is presented in case study section. 

 
4. Features of NetTopo 
 

Features of NetTopo in current version can be 
classified in the following four categories. 

1) Platform independent.  
 NetTopo is implemented in Java language, which 

makes it portable between different operating 
systems.  

2) Extensibility.  
 Configurable sensor nodes with defined attributes. 

Users can define their own virtual sensor nodes 
with expected attributes. New type of nodes will 
be loaded as a plug-in, which provides an extra 
choice when users plan to deploy a WSN.  

 Customizable sensor network topology layout. 
Users can define their own topology based on the 



API described in the Topology component. This 
is helpful when users focus on studying a 
particular topology of the network.  

 User-defined algorithms and functions. An 
algorithm can be composed of several functions, 
each of which acts for a particular purpose. User 
can debug a single function or add a new function 
without influencing others in the same algorithm. 

 Device based wrappers for visualization. A 
wrapper is used to get information from sensor 
device. To visualize different hardware devices, 
users can create different wrappers to set up the 
connection for extracting information. 

 Integrating with GSN middleware. GSN [3] is a 
sensor network middleware developed by us. It 
provides a large number of wrappers (currently 
more than 25 wrappers) for extracting data from 
heterogeneous sensor devices. This can help to 
reduce the workload to implement new wrappers 
for some GSN supported sensor devices. 

3) Flexibility.  
 Single node deployment. Users can deploy a 

single node in a given location. This is useful for 
a slight modification to the virtual WSN or 
placement for a sink node or source node.  

 Single node movement. Users can move any node 
to any place in the WSN field (graphical display 
canvas) after deploying the sensor nodes. This is 
useful for updating some specific sensor node’s 
location, e.g. move the sink node for several tests. 

 Random multi-node deployment. Users can 
randomly deploy a specified number of sensor 
nodes. The random seed can be the irreproducible 
current time point of the running computer or any 
specified reproducible integer.  

 Specific multi-node deployment. Users can deploy 
a specified number of sensor nodes based on pre-
defined topologies to form some special shapes, 
e.g., users can deploy a circle by specifying the 
location of circle center, radius, and node number.  

 Repeated node deployment. Users can repeatedly 
deploy different kind of sensor nodes in the 
Virtual WSN. This allows the deployment of 
heterogeneous sensor networks. 

4) Practicability.  
 Data persistence for virtual WSN. The network 

deployment state can be saved in a specific type 
of file using “.wsn” as the postfix. Users can base 
on these files to reuse the deployed virtual WSN 
or share these files with friends to discuss a 
common problem.  

 Snapshot for virtual WSN. Users can capture a 
snapshot for a virtual WSN and save it as “.bmp” 
picture. This feature allows users to further 

analyze the simulation results and use the saved 
picture for sharing or writing papers. 

 Node manipulation. Users can delete specified 
nodes, view the current properties of the nodes, 
modify the property values of a node before 
starting a simulation, search a node by its ID and 
disable nodes or kill nodes in a specified region 
to make a hole in the WSN or make an irregular 
WSN field.  

 Recording of simulation results. NetTopo can 
save the simulation results in a specific type of 
file using “.report” as the postfix. Users can use 
normal text editor software to open it and read the 
simulation result. The simulation results are 
formulated into a unified format that allows users 
to further import them into Microsoft Office 
Excel to get the graphical results, e.g., curves and 
charts. 

 
5. Case studies 
 

To demonstrate the usability of NetTopo we present 
two case studies on simulation and visualization 
respectively as user examples. For simulation, two 
routing algorithms, GPSR [2] and TPGF [20], are 
implemented and compared based on the statistical 
results.  

For visualization, a testbed composed of Crossbow 
Mica2 sensor nodes is visualized. Additionally, these 
real sensor nodes are considered as source nodes in a 
pre-deployed virtual WSN: when the sensed 
temperature value of any real node exceeds a threshold, 
which means an event is detected, it then automatically 
starts a simulation for exploring one/multiple routing 
paths in the integrated virtual WSN. 
 
5.1. Simulation of two routing algorithms 

 
Users who do simulation of testing an algorithm not 

only expect to see visual results on the canvas but also 
need to gather related statistic information that can be 
used to analyze the algorithm performance. For 
example, users want to know how many paths can be 
searched by repeatedly using a same algorithm in the 
WSN and how many hops each path has.  

However, providing such information of a single 
test on a specific WSN deployment is not enough, 
because to evaluate the algorithm performance, users 
generally need to simulate the same algorithm for 
many times while changing several input parameters to 
get the more convincible average results.  

Following the above example, users also want to 
know the average paths number by applying the same 



algorithm in 100 runs with different random network 
deployment. And users even want to know the 
variation of the paths number along with the variation 
of value of input parameters such as network size, 
node number, and transmission radius. NetTopo 
provides an easy way for users to configure their input 
parameters for the purpose of simulating the same 
algorithm for many times.  

Two routing algorithms TPGF and GPSR are 
implemented in NetTopo as examples. When applying 
them respectively in the network layer of WSN, 
different performance can be compared in various 
aspects. The major concentrated measurement metrics 
include: 1) the average number of paths by repeatedly 
using this same algorithm in the WSN; 2) the average 
path length from the source node to the sink node.  

 

 
(a) Running TPGF in the virtual WSN with 4 routing 

paths when TR is set as 60 meters 
 

 
(b) Running GPSR in the GG virtual WSN with 4 

routing paths when TR is set as 60 meters 
     

 
(c) Running GPSR in the RNG virtual WSN with 4 

routing paths when TR is set as 60 meters 
Figure 5. An example of the simulation of TPGF 

and GPSR 

 
(a) TPGF: average number of paths vs. number of 

nodes 
 

 
(b) GPSR on GG virtual WSN: average number of 

paths vs. number of nodes 
 

 
(c) GPSR on RNG virtual WSN: average number of 

paths vs. number of nodes 
Figure 6.  Average number of paths vs. number of 

nodes 
 
As an example, Figure 5 shows the visual results on 

the canvas when running both TPGF and GPSR in the 
virtual WSN.  In Figure 5, the red color node is the 
source node and the green color node is the sink node. 
Pictures (a), (b) and (c) give a direct impression to 
researchers that TPGF can have shorter average path 
length than that of GPSR in a single WSN deployment. 
However, having a single test result is not convincible; 
we need to do the test for many times. We would like 
to know the variation of these two metrics in the case 
of different conditions in terms of network density and 
transmission radius of sensor nodes. 



In order to simplify this case study, the network size 
is fixed in 600 × 400 (1 pixel on the canvas is 
considered as 1 meter). For each fixed number of 
sensor nodes (network density) and transmission radius 
(network degree), the average number of paths and the 
average path length are computed from 100 simulation 
results using 100 different random seeds for network 
deployment. Then, we change the node number (from 
100 to 1000) and transmission radius (from 60 to 105) 
to obtain different values. By gathering all these 
average values together, lots of chart and figures can 
be drawn to reflect the execution performance of the 
algorithms. Figures 6 (a), (b) and (c) are the simulation 
results on the average number of paths that found by 
applying TPGF and GPSR respectively. 

 

 
(a) TPGF: average path length vs. number of nodes 

 

 
(b) GPSR on GG virtual WSN: average path length vs. 

number of nodes 
 

 
(c) GPSR on RNG virtual WSN: average path length 

vs. number of nodes 
Figure 7.  Average path length vs. number of nodes 

Figures 7 (a), (b) and (c) are the simulation results 
on the average path length that found by applying 
TPGF and GPSR respectively.  

It is more convincible to use the statistical 
simulation results to reflect the impact on the 
execution performance of both GPSR and TPGF 
routing algorithms when using different transmission 
radius and number of sensor nodes for simulation.  

 
5.2. Crossbow WSN testbed visualization 

 
Crossbow WSN testbed consists of six Mica2 nodes. 

Figure 8 shows the whole network structure and flow 
of sensed data. The Crossbow driver called xServe is 
installed in gateway for converting sensed data into 
XML stream and providing a TCP/IP service on port 
9005. NetTopo can be located on gateway or another 
computer that can communicate with the gateway. 

 

 
Figure 8. Crossbow WSN testbed visualization flow 

 
The sink node collects packets sent from sensor 

nodes. Each packet of any node includes lots of 
properties, e.g., its node ID and its parent node ID. By 
using a wrapper to set up a TCP/IP connection on port 
9005, NetTopo can read the XML stream from the 
gateway, extract the node ID information and draw 
some round circles representing virtual sensor nodes 
on the canvas.  

In addition to using Painter to update the GUI, this 
particular Visualizer component also creates virtual 
sensor nodes in the virtual WSN, which allows the 
references of these nodes to be obtained by Simulator 
for using in the simulation. Consequently, by getting 
the node ID and parent ID mapping information in the 
XML packet, NetTopo can easily draw the topology of 
the network connection. Nodes’ latest properties and 
sensed data, e.g., voltage, temperature, humid, pressure. 
can also be periodically captured from the XML 
stream by setting a specific sampling rate. The values 
of all these properties are presented on the property tab 
of the main GUI and refreshed when new data arrive. 

Furthermore, these six virtualized Mica2 nodes are 
considered as source nodes in the virtual WSN. When 
the temperature reading of any Mica2 node exceeds a 
threshold, the Simulator is involved to explore multiple 



routing in a pre-deployed virtual WSN, which include 
many other deployed simulated virtual sensor nodes. 

 

 
(a) Six Crossbow nodes are virtualized as source 

nodes in the virtual WSN 
 

 
(b) One Crossbow node explored 4 routing paths 

by using TPGF 
Figure 9. An example of the integration of the testbed 

and the simulation environment 
 

Figure 9 (a) shows the visualization of the six 
Crossbow nodes in the pre-deployed virtual WSN. 
Figure 9 (b) shows that one of the Crossbow nodes 
explored four routing paths by using TPGF. 
 
6. Conclusion 
 

In this paper, we present NetTopo, an integrated 
framework of simulation and visualization for WSNs. 
The friendly GUI makes it easy to use and the modular 
components enable it to be flexibly extended. NetTopo 
can support an extremely large scale network 
simulation by integrating simulated sensor networks 
and visualized testbed. It is very useful for a fast rapid 
prototyping of an algorithm.  

All in all, currently NetTopo gets the first step into 
the whole vision where network simulators, visualizers 
and real physical testbeds are expected to be integrated 
to test and validate algorithms in WSNs. 
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