
Practical Experience Teaching Embedded Systems

Carlos Almeida
Instituto Superior Técnico - Technical University of Lisbon

Avenida Rovisco Pais
1049-001 Lisboa, Portugal

carlos.r.almeida@ist.utl.pt

ABSTRACT
The area of embedded systems and their interconnection is of
utmost importance nowadays. The technological evolution,
and widespread use, of small electronic devices with process-
ing and communication capabilities, creates the potential for
the development of new applications in several different do-
mains. Areas such as industrial control, automotive, home
automation, surveillance systems, sensor networks applied
to the monitoring of wild life, environment, or buildings, are
examples of such potential and ubiquity.

The importance of this area can not be ignored in an Elec-
trical and Computer Engineering Course. It is important
to make students able to master the technologies related
to embedded systems, including “hands-on” experience de-
veloping and testing real systems, and dealing with specific
application environments with low resources and close hard-
ware/software interaction.

This paper describes the author’s experience teaching a course
of embedded systems in an Electrical and Computer Engi-
neering Course.

Keywords
Embedded Systems Education, Embedded Systems Devel-
opment

1. INTRODUCTION
The area of embedded systems and their interconnection is
of fundamental importance nowadays [1]. The technological
evolution that one has seen in the last few years, in what
concerns electronic devices of small size with processing and
communication capabilities, creates the potential for the de-
velopment of new applications in several different domains.
Devices such as cellular phones, PDAs, control systems with
“smart” sensors and actuators, are examples of those embed-
ded systems.

The improvement of processing and communication capabil-
ities, associated with the reduction of size and cost, allows
the proliferation of an almost infinity of these small embed-
ded systems, that can be interconnected, contributing to a
common global goal. Areas such as industrial control, auto-
motive, home automation, surveillance systems, sensor net-
works applied to the monitoring of wild life, environment,
or buildings, are examples of such potential and ubiquity.

The importance of this area can not be ignored in an Electri-
cal and Computer Engineering Course [5, 3]. It is important
to make students able to master some of the technologies
related to embedded systems. There are several aspects de-
serving consideration. In addition to an overall idea about
the main characteristics and requirements of embedded sys-
tems, it is also important to know how to use the technolo-
gies and have “hands-on” experience developing and testing
real systems. Learning how to use specific development and
test (debug) tools, “feel” specific application environments
with low resources and close hardware/software interaction,
are issues of utmost importance.

This paper describes the author’s experience teaching a course
of embedded systems in an Electrical and Computer En-
gineering Course. It is organized as follows: in the next
section we give an overview of the main areas of interest re-
lated to embedded systems and corresponding problems to
address; in Section 3 we describe the development infrastruc-
ture used; in Section 4 we give an overview of the proposed
laboratory project that addresses some of the previous re-
ferred issues; in Section 5 we discuss the results achieved so
far. The paper ends with the conclusions and references to
future work.

2. MAIN AREAS OF INTEREST AND PROB-
LEMS TO ADDRESS

2.1 Characteristics and limitations of embed-
ded systems

An embedded computational system is characterized by be-
ing a system where the existing computational elements are
integrated with the application, that is, they have a spe-
cific function related to the given application, and are not
computers for generic use [15, 2]. Depending on the specific
application, a given embedded system may present a set of
specific characteristics related to that application. However,
in a generic way, most embedded systems show a set of com-
mon characteristics/requirements. For example, they need
to be concerned with:



• the right functionality and performance desired for the ap-
plication, which may include a combination of real-time,
reliability and fault-tolerance guarantees;

• power consumption management, mainly in situations where
batteries are used, in order to increase autonomy;

• keeping, in many scenarios, system size small;

• ensure that the cost keeps low, mainly in situations where
the number of units is very large.

• and all of this in scenarios of low resources, including CPU
processing power and available memory.

Furthermore, when the embedded systems are interconnected,
the aspects related to communications are also very impor-
tant. For example, when the embedded system corresponds
to a small node in a network of sensors, the way the com-
munication is handled has a significant impact in the overall
system. Depending on the used technology, we will have dif-
ferent characteristics in what concerns power consumption,
bandwidth, covered distance, and cost, for example.

2.2 Devices and technologies
Another issue related to small embedded systems concerns
the type of devices that are usually used and the related
technologies. In these type of systems there is a close hard-
ware / software interaction and the need to perform input /
output (IO) operations dealing with several different IO de-
vices. In such scenario, microcontrollers are of extreme im-
portance as they integrate in the same chip a set of different
functional blocks such as: processor, memory (RAM, flash,
EEPROM), IO ports, timers, interrupt controllers, analog
/ digital converters, network / interface controllers (CAN,
I2C, SPI, RS232, ...), etc. This approach makes it possible
to build small embedded systems in an easy way and with a
low cost.

Having an environment with low resources also restricts the
type of user interface that is usually available. Sometimes,
it is simply a few switches, some LEDs, a small LCD and
a buzzer, for example. The application programmer must
deal with this type of interface.

Application developing process can also be a specific issue.
There is the concept of target. The developing environment
runs on a different machine using cross development tools.
After the application is built, it must be transfered to the
target, possibly programming a flash memory. Sometimes,
if even possible, debugging will also be done remotely. Oth-
erwise, one must deal with a very “poor” environment where
a “printf message” may need to be replaced by “a blinking
LED”, for example.

Many times, the application itself must be concerned with
specific issues like: the need to build a clock using available
timers, in order to make it possible to timestamp events;
collect information from sensors; register information in non
volatile memory; use of low power modes to reduce power
consumption.

2.3 System support
Many target applications in the area of embedded systems
are inherently concurrent – they need to perform several
different tasks at the same time. If there is no support for

concurrency, the application programmer must handle di-
rectly that concurrency, by providing every time, for each
application, the functionality usually available in operating
systems, or by coding the application in such way that all
tasks are addressed by the “main” program. These solutions
imply a significant overhead and increase the complexity of
the application. So, depending on the available resources,
at least a minimal support to multiplex several different ac-
tivities is desirable. The problem is that being constrained
by the available resources (including memory size and CPU
power), it is not just to pick an operating system. One must
make sure that there is enough “room” for the application
itself. We need a small memory footprint system.

Anyway, having or not always the support of an operating
system, understanding and dealing with concurrency is an
important issue. Interprocess communication and synchro-
nization must be done with care, in order to achieve the
desired program correction and safety. When there are real-
time requirements, it is also important to understand the
way the scheduler works and how priorities are handled.

3. OVERVIEW OF INFRASTRUCTURE
In order to address the main issues presented above, we
put together an infrastructure composed of several different
parts that can be interconnected. We have two main tar-
gets and the corresponding developing environments. One
of these targets corresponds to the part were there is a more
close hardware interaction, using a microcontroller and sev-
eral devices in an environment with low resources. The other
target is a slightly higher level system that will be used to
run a concurrent application supported by a multitasking
operating system. We also have the developing environ-
ments needed to build the applications that will run on each
of those targets.

For the first target we are using the demonstration board
PICDEM2 [9] from Microchip (see Figure 1).

Figure 1: Aspect of PICDEM2 demonstration

board, from Microchip, used in the experimental en-

vironment



This demonstration board, having a PIC18F452 microcon-
troller [7] that integrates flash program memory, RAM, EEP-
ROM, several timers, an interrupt controller, an ADC con-
verter, an USART, an I2C/SPI controller, also includes sev-
eral IO devices such as LEDS, switches, a buzzer and a LCD.
The board also has a temperature sensor and an external
EEPROM connected by I2C. A prototype area is also avail-
able in case one wants to extend the board functionality. For
this setting, as development environment, we use the inte-
grated development environment MPLAB IDE [13] freely
available from Microchip, together with a C compiler (C18
[12]) also from Microchip, that has a free student edition.
The availability of free software is an important issue in
academic environments, since it allows unrestricted use by
students.

The other target, used for the development of concurrent
applications, is an old 486 PC (although considered out-
of-date for generic use, is still a powerful platform for em-
bedded systems). As multitasking operating system we use
eCos (Embedded Configurable Operating System) [14], dis-
tributed by REDHAT/eCosCentric, complemented by GNU
tools (C compiler, debugger, libraries).

Both settings previous described are target environments.
Software development is done using a standard PC (Pen-
tium based) with dual boot: Windows XP (to run MPLAB
IDE) and Linux (to run GNU tools and build an eCos appli-
cation). In both cases this host system uses cross compilers
to produce the final application that is downloaded to the
respective target.

4. PROPOSED PROJECT
4.1 Introduction
Many embedded systems are developed using relatively sim-
ple platforms, with low resources, where the utilization of
operating systems to support the application may not be
viable. In these type of systems there is essentially the need
to do some elementary processing and access several input
/ output devices (e.g. access sensors to collect information).
However, in several other cases, the existence of support
at operating system level (even with reduced functionality)
may significantly facilitate the development of applications.

The laboratory project to be implemented (composed of 2
parts) has as main goal the familiarization of students with
the development of embedded systems, both with medium /
low complexity, using microcontrollers and without the sup-
port of an operating system, and using multitasking kernels
for the development of concurrent applications.

In particular, they should acquire some expertise in the uti-
lization of communication and synchronization mechanisms
between tasks, in the context of concurrent applications, and
should familiarize with other embedded systems characteris-
tics such as access devices using the network / bus I2C (Inter
Integrated Circuit), save information in non-volatile memory
devices (EEPROM), utilization of analog-digital conversion,
and use of serial communication RS232.

They should also be aware of aspects related to energy con-
sumption, resorting to operation modes that will allow as
much as possible to increase system autonomy.

4.2 Problem description
The project is decomposed into two distinct parts, that will
be interconnected later.

The first part corresponds to a system (multifunction device,
monitoring system, or alarm system) that has a rudimentary
user interface (switches, LEDs, buzzer, LCD) and no operat-
ing system support. The other part, with a more elaborate
user interface and processing capability, has a multitasking
kernel to support a concurrent application and will allow
remote access (using a RS232 serial line) to the system de-
veloped in the first part (see Figure 2).

RS232
PC

(eCos)
PICDEM2

Figure 2: Part1 and Part2 are interconnected using

RS232 serial communication

Part 1 - Monitoring and alarm system
Overview
The first part of the project is implemented using the devel-
opment board“PICDEM 2 Plus Demonstration Board”

[9], which includes a microcontroller PIC18F452 [7]. The
application is programmed using the C programming lan-

guage (“MPLAB C18 C Compiler” [10, 12, 11]) and the de-
velopment environment “MPLAB Integrated Development
Environment (IDE)” [13] from Microchip. Reading the re-
lated documentation is fundamental for the correct project
implementation.

The main functions to provide are essentially:

• Clock (to keep current time and to allow timestamping
of relevant events).

• Periodic sensor reading (with storing of data and the
possibility of handling alarm situations).

• Basic user interface.

• Incorporation of power-saving mechanisms.

• Remote access support (using RS232 communication)
to allow reconfiguration operations and data transfer
(to be implemented in conjunction with the sec-

ond part of the project).

The clock is built based on one of the timers available in
the PIC, and must provide the current time on the form of
hours, minutes and seconds.

The system will monitor in a periodic fashion (period PMON)
temperature (sensor TC74 [8]) and voltage (potentiometer
available in PICDEM2 developing board) values. Depending
on the values collected, they may be saved in non-volatile
memory (external EEPROM 24LC256 [6]), and associated
with alarm situations as well. If PMON is zero there will
be no information collected. Saving the collected values in



non-volatile memory is only performed if the new value is
“significantly” different from the one previous saved, and is
timestamped with the current time. It is possible to save up
to NREG registers in a “ring-buffer” (when the buffer is full,
new registers replace older registers). When active, alarms
are generated when the new values (temperature or voltage)
reach pre-defined thresholds.

The notification of an alarm situation is done through sig-
nalization on the LCD and generation of a sound signal
(buzzer) of duration TSOM.

The relevant parameters for the correct system operation
(including current time) should be saved in the PIC’s in-
ternal EEPROM, so as to make it possible to recover them
even in a situation of temporary power-down.

The project should be implemented is such a way that the
following parameters are easily configurable. Whenever pos-
sible, they are recovered from the internal EEPROM. Ini-
tially they will have the following values:

NREG 30 maximum number of registers in buffer
PMON 5 sec monitoring period
TSOM 3 sec duration of sound signal
TINA 2 min inactivity time
VART 1 oC significant variation of temperature
VARV 0.5 V significant variation of voltage

User interface
The user interface, in this part of the project, is performed
through the use of 2 switches (S2, S3), a buzzer, and a LCD
(2 lines of 16 characters) [4]. The switches are used for
setting the correct time of the clock, to define alarms, and
to select operation mode.

Switch S3 (RB0) is used to select the desired operation, and
the switch S2 (RA4) is used to change the selected fields,
or activate the desired operation. More precisely, starting
from normal operation mode, pressing S3 will make the cur-
sor blink over the first modifiable field (hours), making it
possible to increment its value by pressing S2. Whenever S3
is pressed the cursor will move to the next field, until reach-
ing normal operation mode again. When S2 is pressed, the
value of the field that is being modified is incremented mod-
ule the range of possible values for that field, or the given
function is activated.

The information presented on the LCD will have the fol-
lowing aspect (some fields only appear in the modification
mode):

hh:mm:ss TV a P

tt C V,vv V

The letter “P” (only in modification mode) allows the acti-
vation of the power saving mode. In that operation mode
the LCD will be off (and the processor will be, whenever
possible, in sleep mode). It will return to normal mode if
the user presses S3, or if an alarm occurs. The LCD should
also be turned off if there is no user activity during a time

greater than TINA (if this parameter is 0, this option will be
ignored).

Letters “TV” (that appear in modification mode, or in case
of occurrence of the respective alarm) allow the definition of
alarms corresponding to temperature and voltage, respec-
tively. When activated, current alarm values can be modi-
fied (or not) using the respective fields (temperature or volt-
age).

The letter “a” (or “A” – it works in “toggle” mode) shows if
the alarms are inactive (or active), and in modification mode
makes it possible to activate / deactivate the alarms.

The characteristics of the IO devices that are used should
be consulted on the manual of the board [9], or on the “Data
Sheets” of the devices.

Part 2 - Remote access and processing

Overview
Intrinsic limitations of some embedded systems make one
desire to have the possibility to remote interact with the
embedded system for data transfer or reconfiguration oper-
ations. In the application developed in the first part of the
project the limitations in what concerns user interface are
an example of such a situation.

In the second part, the application to develop will run in an
environment with more resources (PC) making it possible
to offer to the user a more flexible interface to interact with
the system developed in the first part.

This application will have several tasks/threads (concurrent
application) that will interact among them, and with the
PICDEM-2 board (first part of the project) using a RS232
serial line. More precisely, there should be at-least three
threads responsible, respectively, for the user interface, the
communication with the PICDEM-2 board, and the process-
ing of the information collected from the PICDEM-2 board.

User interface
In this part of the project that runs on the PC, there is a
task responsible for the user interface that makes it possi-
ble to execute a set of commands to interact both with the
PICDEM-2 board (through the communication task) and
the task in charge of information processing. The commands
that should be made available are the following:



Available Commands
cmd args description
rc - read clock
sc h m s - set clock
rtv - read temperature and voltage
rp - read parameters (NREG, PMON,

TSOM, TINA, VART, VARV)
mpm p - modify monitoring period

(seconds - 0 deactivate)
mti t - modify inactivity time

(minutes - 0 deactivate)
ra - read alarms (temperature, voltage)
dt t - define alarm temperature
dv V v - define alarm voltage

(integer part, decimal part)
aa - activate/deactivate alarms
trc n - transfer registers (curr. position)
tri n i - transfer registers (index)
lr - list registers (local memory)
dr - delete registers (local memory)
cpt - check period of transference
mpt p - modify period of transference

(minutes - 0 deactivate)
dtt t - define threshold temperature
dtv V v - define threshold voltage
pr “t1”“t2” - process registers (max, min, mean)

between instants t1 and t2 (h,m,s)

In the first group of commands the interaction is done with
the communication task, and in the last group of commands
the interaction is done with the processing task. The com-
mands in the central part (lr and dr), corresponding, re-
spectively, to listing and deleting registers that are in the
local memory, are executed accessing directly that memory
region (shared by the several tasks). This memory region
is organized in the form of a ring-buffer, with capacity to
NRBUF=100 registers. Register update in this memory region
is done by the communication task, when registers are re-
ceived. The request for register transference can be done
both by the processing task and by the user interface task,
that transmit those requests to the communication task.

All the commands specified above that imply communica-
tion with other tasks have a reply message (synchronous
interface). In the case when the command execution is not
successful, the reply message will have an error code.

Register transference commands (between PICDEM-2 board
and PC) have two variants. In the first one (trc), only the
number (n) of wanted registers is specified, being them (if
they exist) obtained starting on the first register not yet
transfered. In the second variant (tri), in addition to the
number n, it is also specified the index (i) where the trans-
ference should start. Index zero corresponds to the oldest
register in the board’s ring-buffer, independently of having
been, or not, transfered.

In the interaction with the processing task, the user can
check and modify the period used to start a new regis-
ter transference, and also define temperature and voltage
thresholds to be used in the processing immediately after
register reception. It can also make requests to process a set
of registers belonging to a time interval defined by t1 and
t2 (specified in the form h m s). If these time instants are
missing, it corresponds to consider the totality of registers

(or from t1 to the end, in the case where only t2 is missing).

Processing of collected information
The processing task is responsible both for starting the trans-
ference of registers (if this option is active) and for spe-
cific register processing. Register transference requests are
performed through the communication task that will notify
when the transference is done. At that time the processing
task will analyze the received registers and will print on the
screen the ones exceeding the defined thresholds.

The processing task also accepts requests to process a set
of registers that belong to the time interval defined by t1

and t2 (h1:m1:s1 - h2:m2:s2). It will determine maximum,
minimum and mean values. This processing is done using
the registers that are in the shared memory region, and is
available regardless register transference being active or not.

As stated above, the collected information (registers) should
be kept in a shared memory region accessible by the commu-
nication task and by the processing and user interface tasks.
The consistent access to that memory region by the several
tasks is of extreme importance for the correct operation of
the application.

Communication between PC and PICDEM-2
The communication between the PC and the PICDEM-2
board is done through one dedicated task (or two – reception
and transmission) that will make the interface with the se-
rial port device driver provided by eCos (”/dev/ser0”). The
physical support for the communication is a RS232 serial
line with the following characteristics:

9600 baud, 8 bits, no parity, 1 stop bit.

Using the RS232 serial line a simple message exchange proto-
col is built. A message starts with a specific start of message
code SOM (codes provided as appendix) and finishes with a
specific end of message code EOM:

SOM <MSG> EOM

The “real” message (<MSG>) starts with the command iden-
tifier (also provided as appendix) followed by the given data
associated with that command:

<MSG> := <CMD> <DATA>

Message Types
cmd data description

RCLK [h m s] read clock
SCLK h m s set clock
RTEV [T V v] read temperature and voltage
RPAR [pars] read parameters
MPMN p modify monitoring period
MTIN t modify inactivity time
RALA [T V v] read alarms (temp., voltage)
DALT t define alarm temperature
DALV V v define alarm voltage
AALA activate/deactivate alarms
TRGC n [regs] transfer registers (curr. position)
TRGI n i [regs] transfer registers (index)



In the above table (Message Types), both the command
codes and any of the several data fields, with the excep-
tion of regs, have a size of 1 byte (the parameter VARV is
decomposed into 2 bytes: integer part and decimal part).
Every register has a size of 6 bytes (timestamp: h m s; tem-
perature value: T; integer part of voltage: V; decimal part of
voltage: v).

Meaning of data fields:

h - hours [0 .. 23]

m - minutes [0 .. 59]

s - seconds [0 .. 59]

T - temperature [0 .. 50]

V - integer part of voltage [0 .. 5]

v - decimal part of voltage [0 .. 99]

p - monitoring period (in seconds) [0 .. 99] (0 - inactive)

t - inactivity time (in minutes) [0 .. 99] (0 - inactive)

pars - parameters (NREG, PMON, TSOM, TINA, VART, VARV-
int, VARV-dec)

regs - registers (size 6 bytes each - h, m, s, T, V, v)

In the above table, data fields represented in square brackets
([]) only exist in the reply message and not in the request
(even though the command code is the same). In the case
of commands TRGC and TRGI, the fields n and i are also
part of the reply message but their values may need to be
adjusted to the specific reply.

Messages whose reply has no data, or where an error has
occurred in the remote execution of the command, will have
the following format:

<MSG> := <CMD> <ERROR>

where <ERROR> can take the values CMD_OK or CMD_ERROR (see
appendix).

The specified communication interface must be strictly fol-
lowed so as to make it possible to interconnect components
developed in an independent way, if desired.

All messages received by the communication task are routed
to the task that has made the respective request, that will
be in charge of printing it, if wanted. In the case of reg-
ister transference commands, the task responsible for the
starting of that operation will only receive the notification
of operation conclusion with success or not. The registers
are directly placed by the communication task in the shared
memory region, as said before.

Being the screen a resource shared by more than one task,
its use must be done ensuring consistency.

4.3 Project development
In the development of the project, the utilization of a mod-
ular structure and a phased testing is advised.

In the target board PICDEM-2 there will be no operating
system to support the execution of the application. It is

students responsibility to structure the program in a mod-
ular fashion accordingly to the several tasks that must be
performed. The execution support to those tasks should be
organized in the form of a“cyclic executive”, resorting to the
use of interrupts in the situations where that is justifiable.

Underlying all aspects of project implementation, there should
be the concerning of, without jeopardizing the desired func-
tionality, trying to optimize energy consumption, resorting
to the instruction “sleep” (power saving mode) whenever
possible.

In terms of project development phases, students can/should
take advantage of the availability of a PIC controller simu-
lator in the integrated development environment (MPLAB-
IDE). The direct utilization of the development board can
be postponed until after an initial phase of simulator testing.

The second part of the project is also programmed using the
C programming language (in this case, gcc from GNU). The
development environment is a standard PC running Linux as
operating system. However, the operating system that will
support the application is eCos (Embedded Configurable
Operating System), being Linux only used as development
system. The final application, linked with eCos, will later
run in a native way in the target PC that will be reinitialized
with this application/operating system.

As was suggested for the first part of the project, in the
development of the second part the utilization of a modular
structure with phased tests is also advisable. In that way,
one can take advantage of the existence of a“Linux Synthetic
Target” in eCos for the PC platform, that runs in the context
of the Linux operating system. This way, it is possible to
test several parts of the implementation without the need to
transfer the application to the target PC. It also allows to
locally run the application with the GNU debugger (gdb).

In what concerns the user interface, we do not want to have
anything too much complex (that is not the main goal). In
order to simplify the implementation, students can/should
use a simple command interpreter that is made available by
faculty.

The communication interface between Part 1 (PICDEM-2
board) and Part 2 (486 PC with eCos), using a RS232 serial
line, is specified in more detail, and must be strictly followed,
in order to make it possible to interconnect components from
different students if desired.

5. DISCUSSION OF RESULTS
There are several issues arising from the design and imple-
mentation of these type of projects. One important aspect
is to acquire a global idea about the technologies and envi-
ronments (both development and execution environments)
associated with embedded systems. The direct contact with
the hardware (even if no new hardware is developed) is an
enriching experience that is not usually provided in a more
generic programming course.

On one hand it implies to access specific and detailed infor-
mation about the devices used. This information must be
obtained from “Data Sheets” and manuals, that sometimes



are very large and/or are presented in very specific ways.
Learn how to read this type of documentation is fundamen-
tal.

On the other hand, the debug process constitutes an impor-
tant experience where the right methodology with a system-
atic and modular approach must be followed if one wants to
achieve the desired results and overcome the inherent diffi-
culties. Otherwise, it might be a very time consuming task,
due to the fact that it is performed in a harsh environment.
A “brute-force” trial-and-error approach should be avoided,
and, when necessary, system components should be isolated.
The use of debug tools, when available, is also recommended.

Another aspect concerns concurrency and related problems.
As previous said, most embedded systems are inherently
concurrent. Being able to develop correct concurrent appli-
cations using multitasking kernels is mandatory. Many stu-
dents were mainly used to program sequential applications,
and were not aware of potential problems arising in concur-
rent environments. Understanding and dealing with critical
sections, synchronization, and interprocess communication
is a major contribution to be prepared to develop applica-
tions for embedded systems. In situations where there are
real-time requirements it is also important to be aware of
how scheduling works, being able to choose the right priori-
ties to assign to each task.

The importance of strictly following an interface specifica-
tion was highlighted with the interconnection of Part1 and
Part2 of the project. Being able to interconnect works de-
veloped by different student groups showed its importance.
There were cases where this approach helped in demonstrat-
ing the full functionality of one part when the other part
developed by the same group had some limitations.

In what concerns project development phases, it was also
important to resort to simulation environments using the
simulator in the MPLAB-IDE, and the Linux Synthetic Tar-
get in eCos. This approach allowed students to do some
work outside the laboratory environment without the tar-
gets. This flexibility was very helpful as debugging is a very
time consuming activity and there were some restrictions on
laboratory hours.

Another issue concerns project size and corresponding work
hours needed to develop it. The functionality / complex-
ity that can be demanded must take into account the time
available for development. This implies to address smaller
problems, or provide already some components in order to
make it possible to have bigger projects. Besides access to
library functions available in the Microchip C18 environ-
ment (some of them adapted by faculty to the target used),
other functions, built from scratch or adapted from existing
ones, were made available by faculty to help in this process.
The basic idea is to give more to ask more, having into con-
sideration which are the aspects that are more important
for students to address, and which are the aspects that are
mainly “standard” programming.

During project development, there were also several other
specific issues contributing to the enrichment of students
personal experience. Some examples are:

• being aware of compiler optimizations and special com-
piler directives (e.g. use of volatile and interrupt at-
tributes to deal with low level issues and hardware in-
teraction).

• use of interrupts to improve response time in situa-
tions where there are tight timing requirements (e.g.
timer interrupt to keep global clock accurate, USART
interrupt to ensure that characters are not lost in the
RS232 communication).

• dealing with power consumption management and as-
sociated restrictions (use of sleep mode; timer with ex-
ternal oscillator to keep it working in sleep mode; func-
tionality versus consumption – USART interrupt as-
sociated with RS232 communication does not wakeup
the microcontroller used).

• being aware of scheduling and correct use of task pri-
orities in a concurrent application. Choosing wrong
values could block the full application.

6. CONCLUSIONS AND FUTURE WORK
Embedded systems and their interconnection is an extremely
important area nowadays, both from the point-of-view of
engineering and from the point-of-view of research. We are
surrounded by an almost infinity of quasi-invisible electronic
devices that ensure a multiplicity of functions. The relevance
of these pervasive systems is ever increasing. This is an area
of knowledge that can not be ignored by an Electrical and
Computer engineer. Direct dealing with embedded systems,
discovering their main characteristics and challenges, and
familiarizing with the related technologies, can make a big
difference in acquired experience that will help in problem
solving later on. This has been observed in cases of students
doing their final graduation projects or master thesis: sim-
ilar problems were seen as easy or very difficult, depending
on having had, or not, this previous experience.

As future work we plan to also address other subjects and
technologies. For example, we plan to introduce in the
project aspects related to wireless communications. The
communication between Part 1 and Part 2 can be done using
Bluetooth or ZigBee as an alternative to RS232. The use of
RFID is also planned. Furthermore, we also plan to improve
consumption management by switching to another micro-
controller with more power-saving modes and address that
subject in a more integrated fashion. Building an HTTP
server to provide more global remote access capabilities, is
also an issue that might deserve some consideration.

7. ACKNOWLEDGMENTS
This work was partially supported by EU and FCT, through
Project POSC/EIA/56041/2004 (DARIO).

8. REFERENCES
[1] C. Almeida and J. Rufino. Interconnected embedded

systems: Challenges and main problems to solve. In In
Proceedings of the 6th IEEE International Workshop
on Factory Communication Systems (Work in
Progress Sessions), Torino, Italy, June 2006.

[2] A. Burns and A. Wellings. Real-Time Systems and
Programming Languages (third edition).
Addison-Wesley, 2001.



[3] H.-G. Gross and A. van Gemund. The delft MS
curriculum on embedded systems. ACM SIGBED
Review, Special Issue on The Second Workshop on
Embedded System Education (WESE 2006), 4(1),
January 2007.

[4] Hitachi. HD44780U (LCD-II) (Dot Matrix Liquid
Crystal Display Controller/Driver).

[5] W. A. S. Kenneth G. Ricks, David J. Jackson.
Incorporating embedded programming skills into an
ECE curriculum. ACM SIGBED Review, Special Issue
on The Second Workshop on Embedded System
Education (WESE 2006), 4(1), January 2007.

[6] Microchip Technology Inc.
24AA256/24LC256/24FC256 - 256K I2C CMOS
Serial EEPROM, 2002.

[7] Microchip Technology Inc. PIC18FXX2 Data Sheet,
2002.

[8] Microchip Technology Inc. TC74 - Tiny Serial Digital
Thermal Sensor, 2002.

[9] Microchip Technology Inc. PICDEM 2 Plus User’s
Guide, 2004.

[10] Microchip Technology Inc. MPLAB C18 C Compiler
Getting Started, 2005.

[11] Microchip Technology Inc. MPLAB C18 C Compiler
Libraries, 2005.

[12] Microchip Technology Inc. MPLAB C18 C Compiler
User’s Guide, 2005.

[13] Microchip Technology Inc. MPLAB IDE User’s
Guide, 2006.

[14] Red Hat, Inc. eCos Reference Manual, 2003.

[15] W. Wolf. Computers as Components: Principles of
Embedded Computing Systems Design. Morgan
Kaufmann Publishers, 2000.

APPENDIX
A. COMMAND CODES USED IN THE SE-

RIAL COMMUNICATION
/* It is assumed that SOM and EOM values

do not occur in the message */

#define SOM 0xFD /* start of message */
#define EOM 0xFE /* end of message */

#define RCLK 0xC0 /* read clock */
#define SCLK 0XC1 /* set clock */
#define RTEV 0XC2 /* read temperature and voltage */
#define RPAR 0XC3 /* read parameters */
#define MPMN 0XC4 /* modify monitoring period */
#define MTIN 0XC5 /* modify inactivity time */
#define RALA 0XC6 /* read alarms (temp., voltage) */
#define DALT 0XC7 /* define temperature alarm */
#define DALV 0XC8 /* define voltage alarm */
#define AALA 0XC9 /* activate/deactivate alarms */
#define TRGC 0XCA /* transfer registers (curr. position)*/
#define TRGI 0XCB /* transfer registers (index) */

#define CMD_OK 0 /* command successful */
#define CMD_ERROR 0xFF /* error in command */


