
Incorporating System-Level Concepts into Undergraduate
Embedded Systems Curricula

Kenneth G. Ricks
The University of Alabama

Electrical and Computer Engineering
Tuscaloosa, Alabama 35487-0286

(205)-348-9777

kricks@eng.ua.edu

David J. Jackson
The University of Alabama

Electrical and Computer Engineering
Tuscaloosa, Alabama 35487-0286

(205)-348-2919

jjackson@eng.ua.edu

ABSTRACT
As more and more embedded systems concepts are integrated into
academic curricula, the incorporation of system-level concepts
must keep pace with lower-level topics. However, there are
several challenges faced by educators trying to integrate system-
level concepts into embedded systems curricula. Four such
challenges include: the breadth of the embedded systems field
limits opportunities for system-level content; lack of adequate
laboratory platforms addressing system-level alternatives; limited
student exposure to diverse software tools; and assessment
associated with system-level activities. Each of the challenges is
described in detail and suggestions for overcoming them are
offered.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – computer science education, information
systems education; C.3 [Computer Systems Organization]:
Special-Purpose and Application-Based Systems – real-time and
embedded systems

General Terms
Design

Keywords
Embedded systems education, engineering curriculum

1. INTRODUCTION
Embedded systems education has gained much momentum as
embedded systems concepts are being integrated into many
undergraduate electrical and computer (ECE) engineering
curricula [3, 8, 12, 15, 17, 19]. To create capable embedded
systems engineers, educators must present both low-level material
and high-level system concepts. Low-level and subsystem design
is common and closely associated with most of the course-
specific embedded systems content being delivered. However,
concepts related to system-level design, integration, and
especially testing are often lacking as students progress through
the curricula. In many cases, the system-level concepts are left to
be presented in a project-based course at the end of the
curriculum, such as a capstone design course, or in graduate
courses. This last minute effort to include system-level concepts
in an undergraduate curriculum does not offer students the
appropriate opportunities to become effective at solving
embedded systems problems at the system level.

In this paper, “system-level” concepts are considered to be those
that pertain to the overall functionality of the entire system, as
opposed to low-level or subsystem-level concepts related to
individual parts of the whole system. System-level concepts
include several key ideas that embedded systems designers must
understand to be successful and focus on choices that must be
made when designing the embedded system. Some typical
system-level concepts include: the number and type of processors
required; interconnection networks interfacing processors,
peripherals, and memory; memory organization and its effect on
system performance; types of peripherals needed; software tools
and development environments; various allocations of tasks to
hardware or software; system-level integration; testing, and
verification; and high-level abstraction.
These types of concepts center on design decisions and
operational verification of the whole system and its parts. While
low-level and subsystem-level details are critical aspects of any
embedded systems curricula, it is a mistake to assume that
students can convert their detailed knowledge of subsystem
behavior to the skills necessary to evaluate alternatives at the
system-level and to understand the nuances associated with
system-level integration and verification. In fact, recent research
indicates that more qualitative thinking should be incorporated
into engineering curricula [5]. Thus, it is critical that these
system-level skills be directly addressed in embedded systems
undergraduate curricula. The significance of this is well
documented for several engineering disciplines [4, 7, 20].
In this expanded version of [11], the incorporation of system-level
concepts into embedded systems curricula is discussed. Section 2
describes several challenges educators face when trying to
incorporate system-level activities into the curriculum. Some
possible suggestions for overcoming the challenges are presented
in section 3. Finally, conclusions are presented in section 4.

2. CHALLENGES
Despite the variety of educational approaches used to integrate
embedded systems concepts into ECE curricula, there are several
challenges that seem to be universal when it comes to addressing
system-level concepts.

2.1 The Breadth Problem
Embedded systems is a broad field incorporating topics from
electrical engineering, computer engineering, computer science,
and many application-specific areas. The broad scope of this field
has led to the development of educational aids such as the 2004
IEEE/ACM Computer Engineering Model Curriculum [1]. This

model curriculum includes curricular guidelines for embedded
systems education in the form of a broad set of topics and
learning outcomes addressing both low-level and system-level
concepts. To quantify the scope of the embedded systems
component of the model curriculum, there are 11 knowledge areas
containing a total of 63 topics and 34 learning outcomes.
One common problem faced by embedded systems educators is
the difficulty associated with incorporating such a broad set of
topics and learning outcomes into undergraduate curricula, often
referred to as the breadth problem [6]. Since all concepts cannot
be covered and decisions have to be made, there is a tendency for
curricula to become too focused on the low-level subject matter at
the expense of system-level concepts. The breadth problem can
be mitigated to some degree by having a larger set of course
offerings. However, for smaller programs having fewer courses
in the embedded systems area, the breadth problem is made
worse.

2.2 Laboratory Platforms
In many cases, the integration of system-level concepts into the
curriculum is hindered by the lack of an appropriate laboratory
platform. Many educational and development platforms offer
only a fixed hardware and software configuration, and laboratory
activities are reduced to using this configuration in different ways.
This could explain the common approach used in many embedded
systems laboratories where students concentrate on the
operational characteristics of a broad set of peripherals and lab
assignments differ only in the peripheral being used.
Such a platform discourages system-level design decisions.
Typically there is only one processor and it has already been
chosen. Similarly, the set of I/O peripherals, the I/O interfacing
design, the memory system, and the software environment are
fixed and static. Students are left with few, if any, system-level
design decisions. There are no opportunities to evaluate different
software allocations to see if multiple processors or hardware
accelerators would improve system performance. Nor can
students look at different processors to determine the best
cost/performance for the application. In the best cases, students
can evaluate the performance of the memory hierarchy by turning
on or off the cache system. However, most of the time the
hierarchy design is fixed and various characteristics such as
mapping and replacement policies cannot be changed.
Simulation and emulators are sometimes used to fill some of the
holes left by these types of platforms. Laboratory activities based
upon simulation are good exercises for students and reinforce the
benefits of simulation such as reduced costs and improved time-
to-market. However, simulation plays only a part in the overall
design cycle of an embedded system and students should be
exposed to other parts of this cycle including prototyping.
Another limiting factor for laboratory platforms that address
system-level concepts is cost. There are platforms available that
map well to the system-level topics and learning outcomes of the
model curriculum. One is the VMEbus [10, 13], and another is
PC/104 [2]. However, these systems are designed for industrial
applications in harsh environments and carry a high price
compared to most educational platforms.

2.3 OS and Software Environments
One of the most significant factors influencing many system-level
design decisions for embedded systems is the operating system
(OS) and the software development environment [18]. Although
there is no shortage of OSs or development environments and
they are generally available at little to no cost for educational
uses, their use and influence at the system-level is somewhat
limited in the curriculum. One reason for this is that educators are
limited in the number of such systems students can be expected to
master. Without detailed knowledge of several software
environments, students are limited in their ability to evaluate
tradeoffs among them.
Efforts to expose students to a larger number of software tools
and environments are susceptible to degrading to a “teach-the-
tool” approach due to the limited time available and steep
learning curves. Thus, educators are often pushed in the opposite
direction where a single tool is used throughout a course sequence
with students gaining additional skills using the tool as they
progress through the sequence. This single tool approach
undermines the ability of educators to integrate high-level
software evaluation concepts into the curriculum.

2.4 Assessment Challenges
The difficulty with the assessment of system-level concepts is
another obstacle to their integration into the average embedded
systems curriculum. Assessment of system-level concepts can be
difficult for several reasons. First, the scope of system-level
problems, especially those that are design related, is significantly
larger than that for component-level questions partially due to the
exploding architecture space [14]. Given the larger solution
spaces associated with such questions, it is more challenging to
devise assessment rubrics capable of accurately capturing student
performance.
Similarly, the scope of system-level questions is often difficult to
integrate into written assignments making them hard to assess in
some courses. This can be less of a problem in courses with labs
or project-oriented courses, such as a capstone design course.
However, students need to be exposed to many system-level
concepts before they encounter the capstone design course. Also,
teaming aspects of a capstone design project or course lab
assignments can make it more difficult to collect assessment data
related to individual student understanding of system-level
concepts.
Another difficulty with assessment is that system-level knowledge
is difficult for students to judge and therefore assessment data
based upon student feedback can be misleading. It is easy for
students to mistakenly equate detailed component-level
knowledge to system-level understanding especially if they have
little system-level experience. For example, consider a memory
hierarchy problem. A student who knows all about the mapping
and replacement policies defining the operation of the hierarchy
may easily assume knowledge of how the memory system effects
overall system performance without ever evaluating the memory
system in that context. This observation is supported by
anecdotal evidence collected from a capstone design course. In
this specific course, it is common for students to report total
surprise at the time required to perform system integration and to
validate system performance even after each subsystem was
independently tested and verified to subsystem requirements.

3. OVERCOMING THE CHALLENGES
The previous section outlines several challenges to the integration
of system-level concepts into embedded systems curricula. This
section discusses some possible ways to overcome these
challenges.

3.1 The Breadth Problem
As discussed earlier, because of the breadth problem, there is a
tendency for many embedded systems curricula to focus on the
low-level concepts instead of system-level concepts. In some
cases, this concentration occurs accidently as a side effect of how
the curriculum is constructed and maintained. If each course in
the curriculum is designed and maintained individually, it is easy
for each course to focus only on the details for that course, often
heavily weighted toward low-level concepts. If the curriculum is
designed and maintained as an associated set of courses so that all
the courses work together, then it is easier to see where system-
level concepts can be integrated into the course sequence. For
example, it may be difficult to design several complex
components and integrate them into a larger system in a single
one-semester course. Therefore, the instructor for such a course
may decide to limit the course to the design of the components.
However, if the course is closely aligned with other courses
within the curriculum, the components designed in the first course
can be used and integrated into a larger system in subsequent
courses. This approach requires that educators view their
curricula from both high, curricular-levels and low, course-levels.
This approach also requires coordination among faculty teaching
the different courses so that related projects can extend across
course boundaries.
On the other hand, the concentration on low-level concepts may
occur intentionally as educators are faced with making decisions
regarding topics to include and omit in the curriculum.
Concentration on the low-level concepts is often justified by
educators that believe the system-level concepts are merely
extensions of the lower-level material and by those that consider
the low-level concepts to be more fundamental, therefore more
important. However, the breadth problem and the abundance of
low-level topics should not prevent the integration of system-level
concepts into a curriculum. The first step is to realize that
system-level and low-level concepts do not have to be mutually
exclusive. If the proper approach is taken, a given set of topics
can be presented in such a way as to emphasize both low-level
and system-level concepts.
In the remainder of this section, several examples are presented
describing how common topics and learning outcomes from the
model curriculum can be presented to enhance a system-level
understanding. This approach works well with existing topics and
learning outcomes from the model curriculum making it easy to
integrate the approach with existing curricular guidelines.

3.1.1 Input/Output Interfacing
One of the general knowledge areas in the embedded systems
component of the model curriculum is CE-ESY1 Embedded
Microcontrollers. This knowledge area includes a topic related to
the understanding of input/output (I/O) peripherals and another
topic related to polled and interrupt-driven I/O [1]. Both of these
concepts rightfully belong in an embedded systems curriculum.
However, there are two completely different skill sets that

students can gain from a series of lectures and labs covering these
concepts.
The first possible skill set is mastery of the operation and the
required interfacing to various I/O peripherals. Often presentation
of this material focuses on the operational specifics of the popular
peripherals of the day whether it is an A/D converter or an LCD.
Students learn the operational details with the unrealistic
expectation that they will interface to the same peripherals
throughout their careers.
The second skill set is the mastery of the interfacing from the
processor to the peripherals, whatever they may be. The lecture
and lab materials to achieve this skill set are different from that
used to achieve skill set one. Specifically, students are presented
with polled I/O techniques and interrupt-driven I/O techniques
including the various ways interrupt vectors are obtained, the use
of multiple levels of interrupts, and contention among interrupting
peripherals. In this approach, the peripheral is a secondary
concern since the students are focusing on the interfacing
techniques. Popular and complex peripherals can be used, but
their complexity will likely pose an obstacle to the student
learning the interfacing concepts.
From a system-level perspective, interfacing and evaluating the
benefits of polled vs. interrupt-driven I/O is more significant than
detailed knowledge of several different peripherals. Peripherals
will come and go and likely students will be interfacing to
peripherals in the future that have not even been conceived yet.
However, the basic skills of interfacing have not changed in years
and are not likely to change dramatically in the near future.
Students having these skills are more likely to be able to make
system-level decisions and evaluate tradeoffs associated with
different I/O designs to achieve stated performance goals of any
embedded system.

3.1.2 Processor Organization
Distributed across multiple knowledge areas in the model
curriculum, there are several topics and learning outcomes
specifically related to basic processor organization, operation, and
interaction within the context of the overall system. These topics
are specified for basic systems as well as more complex
multiprocessor systems [1]. These topics can be presented in
many different ways leading to many different skill sets for the
students.
For example, it is easy for the internal architecture and the
performance evaluation of a processor to become the central
theme for curriculum materials covering processor-related topics.
In fact, anecdotal evidence collected over several years through
conversations with colleagues at various universities suggests that
the processor performance is the main reason to select a processor
for an embedded application with little thought given to the
overall system performance. While this approach will produce
students having in-depth knowledge of the organization and
performance of one processor, it will not address any of the
system-level concerns including the role of the processor within
the overall system and how other system components affect
overall system performance.
Another example concerns multiprocessor systems. In many
cases, the interconnection network topology is the centralized
theme. Students evaluate the benefits of different topologies and
analyze communication routes utilizing skills from networking

theory, communications, and queuing theory. This addresses
many of the multiprocessor related topics and learning outcomes
of the model curriculum, but it limits the students’ view of the
overall system in which the multiple processors exist. A more
system-level approach should include discussions of hardware
and software allocation decisions that might lead to the need for
multiple processors. Once multiple processors are deemed
necessary, the interconnection network needs to be chosen. This
is where the network topology information plugs into the puzzle.
However, from a system-level perspective, students would benefit
more from understanding the effects of topology decisions rather
than knowing every detail related to a set of popular topologies.
The choice of interconnection topology influences
communication mechanisms for inter-processor communication as
well as shared and distributed memory designs. A good
embedded system designer should understand these relationships
and be able to make educated decisions related to overall system
design as opposed to being exposed to low-level details of one or
more topologies.

3.1.3 Memory Hierarchy Design
Another example is related to memory system design. Memory
hierarchies and caches are specifically listed as a topic in the
model curriculum and understanding how memory system design
affects program design and performance is listed as a learning
outcome [1]. However, the presentation of this material can be
memory system-centric targeting the topic mentioned in the
model curriculum. Or, this material can be presented having a
system-level focus helping to achieve system-level design skills.
For example, memory hierarchies and caches can be presented
with an emphasis on the mechanical details of replacement
policies, write-back policies, and mapping policies. Students can
then be evaluated on their ability to demonstrate their
understanding of the operation of the memory system. On the
other hand, these same concepts can be presented with overall
system-level performance in mind. In the latter case, students
should be evaluated on their ability to choose memory hierarchy
design characteristics to optimize system performance given a set
of memory access patterns that are part of the standard workload.
This second skill requires in-depth knowledge of the operation of
the memory system. However, the focus is to use this knowledge
to address system-level performance questions. In both cases,
students gain a useful set of skills. However, students with the
ability to make system-level design decisions and to perform
system-level evaluation are more valuable as embedded systems
designers.

3.1.4 Verification and Testing
One final example is related to verification and testing, an area of
critical need in embedded systems education. Verification and
testing is included in one of the 11 knowledge areas (one of the
seven core areas) in the model curriculum, CE-ESY5 Reliable
System Design. This particular knowledge area concentrates on
teaching students how to find hardware and software faults, and
the overall benefits of design verification [1]. However, it does
not differentiate among component-level, subsystem-level, and
system-level testing and verification. Thus, educators can choose
the context within which to place these concepts. It is important
to include testing and verification at the lower levels for each
component and subsystem. But, it is just as critical for students to

understand the potential problems encountered during system
integration. Furthermore, students should be able to relate
component-level testing and system-level testing for the same
project. This provides students with a global understanding of
how testing at one level can impact the other, and helps students
to identify potential problems and the corrective actions needed to
address errors encountered at both levels.

3.2 Appropriate Laboratory Platforms
Future work should focus on the development of more system-
friendly laboratory platforms. The importance of laboratory
assignments in an embedded systems curriculum is well
documented. Without laboratory support for system-level
concepts, there are fewer opportunities to integrate these concepts
into the curricula. There are three possible approaches to solving
this problem.

3.2.1 System-on-a-Chip Platforms
The eventual solution to the platform problem could lie in the
development of system-on-a-chip (SoC) designs. Powerful
programmable logic devices (PLDs) such as FPGAs are now
available that are capable of supporting multiple softcore
processors, various I/O peripherals, limited on-chip memory, and
associated glue logic. Using such a system, multiple processor
designs are feasible, different I/O system designs can be
evaluated, and different memory designs are possible.
Currently, SoC platforms are attractive as a complementary
technology, but improvements are required if they are to become
the primary platform for teaching system-level concepts. First,
there is a steep learning curve associated with the design tools.
Because of this, students are limited to a single development
environment contributing to the single tool problem described
above. Also, the steep learning curve pushes the use of these
systems further back in the curriculum giving students less time to
use the platform for more advanced activities. Additionally, there
are fewer softcore processors and compatible OSs available for
PLD implementations than are available using traditional system
implementations. Finally, the PLD devices are not complex
enough to provide for a significant amount of on-chip memory to
support a complex multiprocessor design. This limits possible
memory system designs and requires that the SoC design interface
to off-chip resources.

3.2.2 Model Traditional Platform
There is no one laboratory platform that can address every
possible system-level concept associated with embedded systems
and that will please every embedded systems educator. However,
the following paragraphs identify some general characteristics
defining a well-rounded, capable, model laboratory platform that
could, if it existed, help to address system-level concepts in
embedded systems curricula.
The platform should be modular to support easy transition from
one design to another. System-level design decisions include
number and types of peripherals, number and types of processors,
amount and configuration of memory, and desired software
environment. Thus, processor modules, I/O modules, and
memory modules should be available and should be easily
connected and disconnected from the other system components.

Although various component interconnection networks should be
supported, this capability is not realistic in a low-cost educational
platform. Since a basic system interconnection architecture must
be provided, a basic bus-based architecture is suggested. This is a
straightforward architecture that will support the easy integration
of system modules. A bus-based system provides the opportunity
to address many system-level concepts such as bus arbitration, the
effects of bus saturation on system performance, and the effects of
memory system operation on bus traffic and system performance.
Again, since many different bus communication protocols are in
use, it is suggested that a simple asynchronous protocol be used.
The bus protocol should support multiple masters and have
multiple levels of interrupts for flexibility in the design of the I/O
system.
Processor modules based upon different types of processors
having various speeds and data widths and supporting various
operating systems should be offered. This allows for
heterogeneous or homogeneous multiprocessor design, both
common design methodologies used in practice. Processor
modules must support interrupt driven I/O using multiple levels of
interrupts and should support bus arbitration for multiprocessor
systems. There is no requirement that I/O administration and bus
arbitration logic physically exist on the processor modules.
However, that would result in a smaller design requiring fewer
modules and fewer connection slots to the system bus. Also,
processor modules should include the capability to support on-
board memory so distributed non-uniform memory access
(NUMA) designs can be created.
Memory modules should also be available for connection to the
system bus. This memory can serve as global shared memory
providing support for uniform memory access (UMA) designs to
compare to the NUMA designs supported by distributed memory.
Cache memory should be provided and the memory hierarchy
should be reconfigurable to facilitate the evaluation of various
hierarchical structures.
I/O modules should also be available implementing various
common peripheral devices. These modules should support
multiple levels of interrupts and should have various response
times. In addition, special purpose modules can be offered that
host FPGAs and other PLDs so that advanced SOC designs can be
supported.
The form factor for the bus backplane, the individual modules,
and an enclosure should be relatively small and fit easily on the
desktop or lab bench. There is no need for rack mounting
capabilities or ruggedized performance given the educational
environment. The enclosure should have an integrated power
supply to create a self-contained design.
Costs must be kept low. The enclosure and backplane, two of the
more expensive components of the system, would be provided by
the institution creating permanent lab stations. However, the
overall goal would be to make the processor, memory, and I/O
modules inexpensive enough that students would purchase them
as part of a toolbox to be used as they progress through the entire
curriculum. During lab activities, individuals or student teams
would design their systems by choosing appropriate modules to
connect to the backplane within the enclosure at a given lab
station. Since many embedded systems are not based upon state-
of-the-art performance and this system is dedicated to educational

purposes, none of the modules require the best performance
available. This can help to keep costs low.
One of the biggest hurdles to overcome to make this platform
feasible is that of software. Operating systems, software
development environments, drivers, and board support packages
are necessary. However, it is not feasible to require significant
amounts of custom in-house development of these components
either from an administration perspective or from a student
perspective. This also conforms to the goal to incorporate
system-level concepts. Low-level software and driver
development requirements are contrary to the system-level
approach the platform is supposed to create.
Based upon the description of the desired characteristics, it may
appear that such a model platform is out of reach. This may
indeed be the case if a custom design starting from scratch is
required. However, the preferred approach is to find an existing
platform having most of the desired characteristics and a low
cost/performance ratio and to modify it to fit this use. One such
platform is the VMEbus platform. As mentioned earlier, the
VMEbus platform maps well to most of the system-level concepts
in the model curriculum and has many of the characteristics of the
desired lab platform. Its primary drawbacks include costs and
form factor. Interestingly, if a subset of the standardized
VMEbus specification is used and the mechanical requirements
are relaxed, the form factor could be altered to make it more
suitable for educational use and the resulting costs would
correspondingly be reduced. Other existing bus-based platforms
are also possibilities. For example, the PCI-based PC/104
platform offers many of the desired characteristics.

3.2.3 Virtual Platform
Some of the difficulties associated with providing a model
traditional laboratory platform can be overcome by using a virtual
platform. Virtual tools have become quite popular in embedded
systems education [9, 16]. So far, these tools have been
introduced at the component and subsystem levels and are a
valuable means of abstracting some of the low-level details that
often overwhelm students. This approach can be extended to
provide a software tool capable of designing virtual embedded
systems. In this case, the tool provides a set of components
(processors, I/O peripherals, memory modules, bus arbiters, etc.)
and interconnection networks (buses, point-to-point networks
with various topologies) from which to choose. The students pick
the desired components to build a complete system, placing
instances of the components in an editing pane within the
software environment and connecting them. In the way, students
are basically drawing their virtual embedded system.
However, the software design tool does not just provide a means
to draw box and line type of diagrams. It also supports user input
of component parameters. Each component has associated
parameters and characteristics that must be set by the user. The
parameters include clock speed, communication protocol,
interrupt level, data width, execution times for hosted software,
etc. In this way, the user builds a virtual system and specifies its
behavior through component and interface specifications.
To really capture the power of this approach, the tool must also
provide analysis of the overall design created by the user. This
analysis must include subsystem verification as well as analysis of
overall system-level behavior. Typical system characteristics that

might be analyzed include mismatched communication protocols,
analysis of memory access times, interrupt latency, bus
throughput, etc. The analysis performed by the software tool
should be user-configurable. Therefore, the user would be
responsible for specifying a test plan for the virtual system he/she
created. This plan could contain both subsystem-level and
system-level tests using different analysis capabilities built into
the software tool to help address both the low and high-level
testing and verification concepts in the model curriculum.
Due to the virtual nature of the tool, there is no limit to the system
modules that can be added as potential system components. All
the components identified as necessary in the model traditional
lab platform can have virtual counterparts for use with this tool.
In addition, the necessity to limit options in the traditional
platform does not exist with the virtual platform. There is no
need to limit designs to bus-based architectures or to
asynchronous buses. All options are still available to the
designer. In this way, there are no restrictions on the design space
based upon available resources, and students can explore a larger
portion of the architecture space for each assignment.
The use of a virtual tool would be easy for universities to adopt.
The software tool would execute on a PC or workstation already
present in most ECE laboratories thus requiring minimal
infrastructure or investment.
A word of caution is needed here. As virtual tools become more
common, the natural side effect will be more abstraction of low-
level details. Students will migrate to higher levels of
understanding but will miss the underlying details. Thus, it is
important that virtual tools be incorporated into a curriculum
slowly and not at the expense of the low-level engineering details.
The authors are currently implementing a software tool capable of
designing virtual embedded systems. The tool is intended for use
in a senior-level/graduate-level embedded systems course. Once
completed, the software tool will be used and assessed alongside a
more traditional laboratory platform based upon the VMEbus and
used in this same course. In this way, direct comparisons can be
made between the actual VMEbus platform and the software tool.
The assessment process will focus on both low-level and system-
level concepts identified in the IEEE/ACM Computer
Engineering Model Curriculum for embedded systems [1].

3.3 Software Tools
The limited exposure to multiple software environments to
facilitate comparisons and trade-off analysis is a difficult problem
to overcome. As software tools continue to become more
complex, the learning curve associated with their use will remain
an obstacle to educational efforts and will continue to push
educators to the single environment approach. One positive
associated with complex software tools is that they often access
hardware from high levels of abstraction. So, by default, these
tools are supporting a higher, system-level approach. Still,
teaching only one environment limits students’ ability to analyze
systems from this perspective.
The negative effects of using a single tool or environment can be
minimized if software components are presented by focusing on
general software features. By teaching students the different
types of features that software tools have and what types of
features map well to various applications, students will begin to
be able to compare and contrast software components within a

system context. The one specific software environment students
use within the curriculum can then be used as an example and
justification can be given for its selection.
Another alternative to introducing more tools is to focus on
languages. Students are typically introduced to several different
languages in the average embedded systems curriculum including
assembly language, C, and C++. Efforts should be made to make
sure students master programming skills in appropriate languages
and to educate students when use of a particular language is
appropriate. This means that specific embedded programming
skills must be presented above and beyond the commonplace
general programming concepts presented to all ECE students [12].

3.4 Assessment
As more system-level activities are incorporated into the
curriculum, the challenge to accurately assess them minimizes.
For example, an appropriate traditional lab platform or a virtual
platform can make it more feasible for students to perform
individual lab work. This makes assessment of individual effort
more straightforward. Secondly, with an appropriate platform
integrated into more courses, design problems having a smaller
scale can be used. These problems are easier to assess accurately.
Finally, giving students more experience with system-level
concepts will inherently improve their judgment making student
feedback a more reliable assessment mechanism.

4. CONCLUSIONS
The 2004 IEEE/ACM Computer Engineering Model Curriculum
for embedded systems includes both low-level and system-level
concepts. Despite the wide-spread integration of these embedded
systems concepts into academic curricula, there is still work to be
done to integrate system-level embedded systems concepts.
Because of the breadth problem, introducing even more concepts
into the curriculum is difficult. One possible solution is to apply a
system-level slant to many of the component and subsystem
concepts already being used.
However, there are other inherent challenges that academia faces
regarding the integration of system-level concepts into embedded
systems curricula. These other challenges include the lack of
appropriate laboratory platforms, limited student exposure to
software tools and development environments, and difficulties
associated with the assessment of system-level concepts. SOC, a
new traditional laboratory platform addressing a wide range of
design options, or a design tool capable of creating virtual
embedded systems having a wide range of architectural
characteristics offer possible solutions to the first challenge. The
learning curve associated with modern complex software tools
continues to present a difficult obstacle to education, while
assessment difficulties associated with system-level concepts are
shown to be minimized as more system-level concepts appear in
the curriculum.

5. REFERENCES
[1] Joint Task Force on Computer Engineering Curricula, IEEE

Computer Society, Association for Computing Machinery.
Computer Engineering 2004: Curriculum Guidelines for
Undergraduate Degree Programs in Computer Engineering.
IEEE Computer Society, Los Alamitos, CA, 2006, pp. A.43
– A.45.

[2] PC/104 Embedded Consortium, [Online]. Available:
http://www.pc104.org/.

[3] Bruce, J. W., Harden, J. C., Reese, R. B. Cooperative and
Progressive Design Experience for Embedded Systems.
IEEE Transactions on Education, 47, 1 (February 2004), 83-
92.

[4] Chen, T. From System Design to IC in 14 Weeks –
Teamwork makes it Possible. IEEE Transactions on
Education, 36, 1 (February 1993), 137-140.

[5] Goldberg, D. E., “Bury the Cold War Curriculum”, PRISM,
P. 68, April 2008.

[6] Haberman, B., Trakhtenbrot, M. An Undergraduate Program
in Embedded Systems Engineering. In Proceedings of the
18th Conference of Software Engineering Education and
Training (CSEET’05), April 18-20, 2005, pp. 103-110.

[7] Hung, D., Vien, J., Chan, W., Fu, C. Developing a Teaching
Environment for Rapid Design and Verification of Complex
Digital/Computing Systems. In Proceedings of the IEEE
International Conference on Microelectronic Systems and
Education (MSE’03), Anaheim, California, June 1-2, 2003,
pp. 131-133.

[8] Paulik, M., Krishnan, M., Al-Holou, N. Work in Progress –
Development of an Innovative Curriculum for
Undergraduate Electrical and Computer Engineering
Students. In Proceedings of 34th ASEE/IEEE Frontiers in
Education Conference, Savannah, Georgia, October 20-23,
2004, pp. S2C-13 – S2C-14.

[9] Phalke, A., Lysecky, S., eBlocks. In Proceedings of the
Workshop on Embedded Systems Education (held in
conjunction with EMSoft 2008), ISSN: 1943-801X, Atlanta,
Georgia, October 23, 2008, pp. 49-56.

[10] Ricks, K. G., Jackson, D. J. A Case for the VMEbus
Architecture in Embedded Systems Education. IEEE
Transactions on Education, 49, 3 (August, 2006), 332-345.

[11] Ricks, K. G., Jackson, D. J., Addressing System-Level
Concepts in Embedded Systems Education. In Proceedings
of the Workshop on Embedded Systems Education (held in
conjunction with EMSoft 2007), Salzburg, Austria, October
4-5, 2007.

[12] Ricks, K. G., Jackson, D. J., Stapleton, W. A. Incorporating
Embedded Programming Skills into an ECE Curriculum.
SIGBED Review, ISSN: 1551-3688, 4, 1 (January 2007), pp.

17-26. [Online]. Available:
http://www.cs.virginia.edu/sigbed/vol4_num1.html.

[13] Ricks, K. G., Jackson, D. J., Stapleton, W. A. An Evaluation
of the VME Architecture for Use in Embedded Systems
Education. In Proceedings of the Workshop on Embedded
Systems Education (held in conjunction with EMSoft 2005),
Jersey City, New Jersey, September 22, 2005, pp. 59-65.

[14] Schaumont, P., Hardware/Software Co-design is a starting
point in Embedded Systems Architecture Education. In
Proceedings of the Workshop on Embedded Systems
Education (held in conjunction with EMSoft 2008), Atlanta,
Georgia, October 23, 2008, pp. 18-24, ISSN: 1943-801X.

[15] Seviora, R. A Curriculum for Embedded System
Engineering. ACM Transactions on Embedded Computing
Systems, 4, 3 (August 2005), 569-586.

[16] Sirowy, S., Sheldon, D., Givargis, T., Vahid, F., Virtual
Microcontrollers. In Proceedings of the Workshop on
Embedded Systems Education (held in conjunction with
EMSoft 2008), ISSN: 1943-801X, Atlanta, Georgia, October
23, 2008, pp. 57-62.

[17] Sztipanovits, J., Biswas, G., Frampton, K., Gokhale, A.,
Howard, L., Karsai, G., Koo, T. J., Koutsoukos, X., Schmidt,
D. C. Introducing Embedded Software and Systems
Education and Advanced Learning Technology in an
Engineering Curriculum. ACM Transactions on Embedded
Computing Systems, 4, 3 (August 2003), 549-568.

[18] Turley, J. Survey says: Software Tools More Important Than
Chips. Embedded Systems Design, April 11 2005, [Online].
Available:
http://www.embedded.com/showArticle.jhtml?articleID=160
700620.

[19] Vallino, J. R., Czernikowski, R. S. Thinking Inside the Box:
A Multi-Disciplinary Real-Time and Embedded Systems
Course Sequence. In Proceedings of the 35th ASEE/IEEE
Frontiers in Education Conference, Indianapolis, Indiana,
October 19-22, 2005, pp. T3G-12 – T3G-17.

[20] Wirthlin, M. Senior-Level Embedded System Design Project
using FPGAs. In Proceedings of the IEEE International
Conference on Microelectronic Systems and Education
(MSE’05), Anaheim, California, June 12-14, 2005, pp. 91-
92.

