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ABSTRACT 
As more and more embedded systems concepts are integrated into 
academic curricula, the incorporation of system-level concepts 
must keep pace with lower-level topics.  However, there are 
several challenges faced by educators trying to integrate system-
level concepts into embedded systems curricula.  Four such 
challenges include: the breadth of the embedded systems field 
limits opportunities for system-level content; lack of adequate 
laboratory platforms addressing system-level alternatives; limited 
student exposure to diverse software tools; and assessment 
associated with system-level activities.  Each of the challenges is 
described in detail and suggestions for overcoming them are 
offered.   

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computer and Information 
Science Education – computer science education, information 
systems education; C.3 [Computer Systems Organization]: 
Special-Purpose and Application-Based Systems – real-time and 
embedded systems 

General Terms 
Design 

Keywords 
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1. INTRODUCTION 
Embedded systems education has gained much momentum as 
embedded systems concepts are being integrated into many 
undergraduate electrical and computer (ECE) engineering 
curricula [3, 8, 12, 15, 17, 19].  To create capable embedded 
systems engineers, educators must present both low-level material 
and high-level system concepts.  Low-level and subsystem design 
is common and closely associated with most of the course-
specific embedded systems content being delivered.  However, 
concepts related to system-level design, integration, and 
especially testing are often lacking as students progress through 
the curricula.  In many cases, the system-level concepts are left to 
be presented in a project-based course at the end of the 
curriculum, such as a capstone design course, or in graduate 
courses.  This last minute effort to include system-level concepts 
in an undergraduate curriculum does not offer students the 
appropriate opportunities to become effective at solving 
embedded systems problems at the system level. 

In this paper, “system-level” concepts are considered to be those 
that pertain to the overall functionality of the entire system, as 
opposed to low-level or subsystem-level concepts related to 
individual parts of the whole system.  System-level concepts 
include several key ideas that embedded systems designers must 
understand to be successful and focus on choices that must be 
made when designing the embedded system.  Some typical 
system-level concepts include: the number and type of processors 
required; interconnection networks interfacing processors, 
peripherals, and memory; memory organization and its effect on 
system performance; types of peripherals needed; software tools 
and development environments; various allocations of tasks to 
hardware or software; system-level integration; testing, and 
verification; and high-level abstraction.   
These types of concepts center on design decisions and 
operational verification of the whole system and its parts.  While 
low-level and subsystem-level details are critical aspects of any 
embedded systems curricula, it is a mistake to assume that 
students can convert their detailed knowledge of subsystem 
behavior to the skills necessary to evaluate alternatives at the 
system-level and to understand the nuances associated with 
system-level integration and verification.  In fact, recent research 
indicates that more qualitative thinking should be incorporated 
into engineering curricula [5].  Thus, it is critical that these 
system-level skills be directly addressed in embedded systems 
undergraduate curricula.  The significance of this is well 
documented for several engineering disciplines [4, 7, 20]. 
In this expanded version of [11], the incorporation of system-level 
concepts into embedded systems curricula is discussed.  Section 2 
describes several challenges educators face when trying to 
incorporate system-level activities into the curriculum.  Some 
possible suggestions for overcoming the challenges are presented 
in section 3.  Finally, conclusions are presented in section 4.   

2. CHALLENGES 
Despite the variety of educational approaches used to integrate 
embedded systems concepts into ECE curricula, there are several 
challenges that seem to be universal when it comes to addressing 
system-level concepts.   

2.1 The Breadth Problem 
Embedded systems is a broad field incorporating topics from 
electrical engineering, computer engineering, computer science, 
and many application-specific areas.  The broad scope of this field 
has led to the development of educational aids such as the 2004 
IEEE/ACM Computer Engineering Model Curriculum [1].  This 

                               



model curriculum includes curricular guidelines for embedded 
systems education in the form of a broad set of topics and 
learning outcomes addressing both low-level and system-level 
concepts.  To quantify the scope of the embedded systems 
component of the model curriculum, there are 11 knowledge areas 
containing a total of 63 topics and 34 learning outcomes.   
One common problem faced by embedded systems educators is 
the difficulty associated with incorporating such a broad set of 
topics and learning outcomes into undergraduate curricula, often 
referred to as the breadth problem [6].  Since all concepts cannot 
be covered and decisions have to be made, there is a tendency for 
curricula to become too focused on the low-level subject matter at 
the expense of system-level concepts.  The breadth problem can 
be mitigated to some degree by having a larger set of course 
offerings.  However, for smaller programs having fewer courses 
in the embedded systems area, the breadth problem is made 
worse.   

2.2 Laboratory Platforms 
In many cases, the integration of system-level concepts into the 
curriculum is hindered by the lack of an appropriate laboratory 
platform.  Many educational and development platforms offer 
only a fixed hardware and software configuration, and laboratory 
activities are reduced to using this configuration in different ways.  
This could explain the common approach used in many embedded 
systems laboratories where students concentrate on the 
operational characteristics of a broad set of peripherals and lab 
assignments differ only in the peripheral being used.   
Such a platform discourages system-level design decisions.  
Typically there is only one processor and it has already been 
chosen.  Similarly, the set of I/O peripherals, the I/O interfacing 
design, the memory system, and the software environment are 
fixed and static.  Students are left with few, if any, system-level 
design decisions.  There are no opportunities to evaluate different 
software allocations to see if multiple processors or hardware 
accelerators would improve system performance.  Nor can 
students look at different processors to determine the best 
cost/performance for the application.  In the best cases, students 
can evaluate the performance of the memory hierarchy by turning 
on or off the cache system.  However, most of the time the 
hierarchy design is fixed and various characteristics such as 
mapping and replacement policies cannot be changed.   
Simulation and emulators are sometimes used to fill some of the 
holes left by these types of platforms.  Laboratory activities based 
upon simulation are good exercises for students and reinforce the 
benefits of simulation such as reduced costs and improved time-
to-market.  However, simulation plays only a part in the overall 
design cycle of an embedded system and students should be 
exposed to other parts of this cycle including prototyping.   
Another limiting factor for laboratory platforms that address 
system-level concepts is cost.  There are platforms available that 
map well to the system-level topics and learning outcomes of the 
model curriculum.  One is the VMEbus [10, 13], and another is 
PC/104 [2].  However, these systems are designed for industrial 
applications in harsh environments and carry a high price 
compared to most educational platforms.  

2.3 OS and Software Environments 
One of the most significant factors influencing many system-level 
design decisions for embedded systems is the operating system 
(OS) and the software development environment [18].  Although 
there is no shortage of OSs or development environments and 
they are generally available at little to no cost for educational 
uses, their use and influence at the system-level is somewhat 
limited in the curriculum.  One reason for this is that educators are 
limited in the number of such systems students can be expected to 
master.  Without detailed knowledge of several software 
environments, students are limited in their ability to evaluate 
tradeoffs among them.   
Efforts to expose students to a larger number of software tools 
and environments are susceptible to degrading to a “teach-the-
tool” approach due to the limited time available and steep 
learning curves.  Thus, educators are often pushed in the opposite 
direction where a single tool is used throughout a course sequence 
with students gaining additional skills using the tool as they 
progress through the sequence.  This single tool approach 
undermines the ability of educators to integrate high-level 
software evaluation concepts into the curriculum.  

2.4 Assessment Challenges 
The difficulty with the assessment of system-level concepts is 
another obstacle to their integration into the average embedded 
systems curriculum.  Assessment of system-level concepts can be 
difficult for several reasons.  First, the scope of system-level 
problems, especially those that are design related, is significantly 
larger than that for component-level questions partially due to the 
exploding architecture space [14].  Given the larger solution 
spaces associated with such questions, it is more challenging to 
devise assessment rubrics capable of accurately capturing student 
performance.   
Similarly, the scope of system-level questions is often difficult to 
integrate into written assignments making them hard to assess in 
some courses.  This can be less of a problem in courses with labs 
or project-oriented courses, such as a capstone design course.  
However, students need to be exposed to many system-level 
concepts before they encounter the capstone design course.  Also, 
teaming aspects of a capstone design project or course lab 
assignments can make it more difficult to collect assessment data 
related to individual student understanding of system-level 
concepts. 
Another difficulty with assessment is that system-level knowledge 
is difficult for students to judge and therefore assessment data 
based upon student feedback can be misleading.  It is easy for 
students to mistakenly equate detailed component-level 
knowledge to system-level understanding especially if they have 
little system-level experience.  For example, consider a memory 
hierarchy problem.  A student who knows all about the mapping 
and replacement policies defining the operation of the hierarchy 
may easily assume knowledge of how the memory system effects 
overall system performance without ever evaluating the memory 
system in that context.  This observation is supported by 
anecdotal evidence collected from a capstone design course.  In 
this specific course, it is common for students to report total 
surprise at the time required to perform system integration and to 
validate system performance even after each subsystem was 
independently tested and verified to subsystem requirements.   

                               



3. OVERCOMING THE CHALLENGES 
The previous section outlines several challenges to the integration 
of system-level concepts into embedded systems curricula.  This 
section discusses some possible ways to overcome these 
challenges.   

3.1 The Breadth Problem 
As discussed earlier, because of the breadth problem, there is a 
tendency for many embedded systems curricula to focus on the 
low-level concepts instead of system-level concepts.  In some 
cases, this concentration occurs accidently as a side effect of how 
the curriculum is constructed and maintained.  If each course in 
the curriculum is designed and maintained individually, it is easy 
for each course to focus only on the details for that course, often 
heavily weighted toward low-level concepts.  If the curriculum is 
designed and maintained as an associated set of courses so that all 
the courses work together, then it is easier to see where system-
level concepts can be integrated into the course sequence.  For 
example, it may be difficult to design several complex 
components and integrate them into a larger system in a single 
one-semester course.  Therefore, the instructor for such a course 
may decide to limit the course to the design of the components.  
However, if the course is closely aligned with other courses 
within the curriculum, the components designed in the first course 
can be used and integrated into a larger system in subsequent 
courses.  This approach requires that educators view their 
curricula from both high, curricular-levels and low, course-levels.  
This approach also requires coordination among faculty teaching 
the different courses so that related projects can extend across 
course boundaries.   
On the other hand, the concentration on low-level concepts may 
occur intentionally as educators are faced with making decisions 
regarding topics to include and omit in the curriculum.  
Concentration on the low-level concepts is often justified by 
educators that believe the system-level concepts are merely 
extensions of the lower-level material and by those that consider 
the low-level concepts to be more fundamental, therefore more 
important.  However, the breadth problem and the abundance of 
low-level topics should not prevent the integration of system-level 
concepts into a curriculum.  The first step is to realize that 
system-level and low-level concepts do not have to be mutually 
exclusive.  If the proper approach is taken, a given set of topics 
can be presented in such a way as to emphasize both low-level 
and system-level concepts.   
In the remainder of this section, several examples are presented 
describing how common topics and learning outcomes from the 
model curriculum can be presented to enhance a system-level 
understanding.  This approach works well with existing topics and 
learning outcomes from the model curriculum making it easy to 
integrate the approach with existing curricular guidelines.   

3.1.1 Input/Output Interfacing 
One of the general knowledge areas in the embedded systems 
component of the model curriculum is CE-ESY1 Embedded 
Microcontrollers.  This knowledge area includes a topic related to 
the understanding of input/output (I/O) peripherals and another 
topic related to polled and interrupt-driven I/O [1].  Both of these 
concepts rightfully belong in an embedded systems curriculum.  
However, there are two completely different skill sets that 

students can gain from a series of lectures and labs covering these 
concepts.   
The first possible skill set is mastery of the operation and the 
required interfacing to various I/O peripherals.  Often presentation 
of this material focuses on the operational specifics of the popular 
peripherals of the day whether it is an A/D converter or an LCD.  
Students learn the operational details with the unrealistic 
expectation that they will interface to the same peripherals 
throughout their careers.   
The second skill set is the mastery of the interfacing from the 
processor to the peripherals, whatever they may be.  The lecture 
and lab materials to achieve this skill set are different from that 
used to achieve skill set one.  Specifically, students are presented 
with polled I/O techniques and interrupt-driven I/O techniques 
including the various ways interrupt vectors are obtained, the use 
of multiple levels of interrupts, and contention among interrupting 
peripherals.  In this approach, the peripheral is a secondary 
concern since the students are focusing on the interfacing 
techniques.  Popular and complex peripherals can be used, but 
their complexity will likely pose an obstacle to the student 
learning the interfacing concepts. 
From a system-level perspective, interfacing and evaluating the 
benefits of polled vs. interrupt-driven I/O is more significant than 
detailed knowledge of several different peripherals.  Peripherals 
will come and go and likely students will be interfacing to 
peripherals in the future that have not even been conceived yet.  
However, the basic skills of interfacing have not changed in years 
and are not likely to change dramatically in the near future.  
Students having these skills are more likely to be able to make 
system-level decisions and evaluate tradeoffs associated with 
different I/O designs to achieve stated performance goals of any 
embedded system.   

3.1.2 Processor Organization 
Distributed across multiple knowledge areas in the model 
curriculum, there are several topics and learning outcomes 
specifically related to basic processor organization, operation, and 
interaction within the context of the overall system.  These topics 
are specified for basic systems as well as more complex 
multiprocessor systems [1].  These topics can be presented in 
many different ways leading to many different skill sets for the 
students.   
For example, it is easy for the internal architecture and the 
performance evaluation of a processor to become the central 
theme for curriculum materials covering processor-related topics.  
In fact, anecdotal evidence collected over several years through 
conversations with colleagues at various universities suggests that 
the processor performance is the main reason to select a processor 
for an embedded application with little thought given to the 
overall system performance.  While this approach will produce 
students having in-depth knowledge of the organization and 
performance of one processor, it will not address any of the 
system-level concerns including the role of the processor within 
the overall system and how other system components affect 
overall system performance.   
Another example concerns multiprocessor systems.  In many 
cases, the interconnection network topology is the centralized 
theme.  Students evaluate the benefits of different topologies and 
analyze communication routes utilizing skills from networking 

                               



theory, communications, and queuing theory.  This addresses 
many of the multiprocessor related topics and learning outcomes 
of the model curriculum, but it limits the students’ view of the 
overall system in which the multiple processors exist.  A more 
system-level approach should include discussions of hardware 
and software allocation decisions that might lead to the need for 
multiple processors.  Once multiple processors are deemed 
necessary, the interconnection network needs to be chosen.  This 
is where the network topology information plugs into the puzzle.  
However, from a system-level perspective, students would benefit 
more from understanding the effects of topology decisions rather 
than knowing every detail related to a set of popular topologies.  
The choice of interconnection topology influences 
communication mechanisms for inter-processor communication as 
well as shared and distributed memory designs.  A good 
embedded system designer should understand these relationships 
and be able to make educated decisions related to overall system 
design as opposed to being exposed to low-level details of one or 
more topologies.   

3.1.3 Memory Hierarchy Design 
Another example is related to memory system design.  Memory 
hierarchies and caches are specifically listed as a topic in the 
model curriculum and understanding how memory system design 
affects program design and performance is listed as a learning 
outcome [1].  However, the presentation of this material can be 
memory system-centric targeting the topic mentioned in the 
model curriculum.  Or, this material can be presented having a 
system-level focus helping to achieve system-level design skills.   
For example, memory hierarchies and caches can be presented 
with an emphasis on the mechanical details of replacement 
policies, write-back policies, and mapping policies.  Students can 
then be evaluated on their ability to demonstrate their 
understanding of the operation of the memory system.  On the 
other hand, these same concepts can be presented with overall 
system-level performance in mind.  In the latter case, students 
should be evaluated on their ability to choose memory hierarchy 
design characteristics to optimize system performance given a set 
of memory access patterns that are part of the standard workload.  
This second skill requires in-depth knowledge of the operation of 
the memory system.  However, the focus is to use this knowledge 
to address system-level performance questions.  In both cases, 
students gain a useful set of skills.  However, students with the 
ability to make system-level design decisions and to perform 
system-level evaluation are more valuable as embedded systems 
designers.   

3.1.4 Verification and Testing 
One final example is related to verification and testing, an area of 
critical need in embedded systems education.  Verification and 
testing is included in one of the 11 knowledge areas (one of the 
seven core areas) in the model curriculum, CE-ESY5 Reliable 
System Design.  This particular knowledge area concentrates on 
teaching students how to find hardware and software faults, and 
the overall benefits of design verification [1].  However, it does 
not differentiate among component-level, subsystem-level, and 
system-level testing and verification.  Thus, educators can choose 
the context within which to place these concepts.  It is important 
to include testing and verification at the lower levels for each 
component and subsystem.  But, it is just as critical for students to 

understand the potential problems encountered during system 
integration.  Furthermore, students should be able to relate 
component-level testing and system-level testing for the same 
project.  This provides students with a global understanding of 
how testing at one level can impact the other, and helps students 
to identify potential problems and the corrective actions needed to 
address errors encountered at both levels.   

3.2 Appropriate Laboratory Platforms 
Future work should focus on the development of more system-
friendly laboratory platforms.  The importance of laboratory 
assignments in an embedded systems curriculum is well 
documented.  Without laboratory support for system-level 
concepts, there are fewer opportunities to integrate these concepts 
into the curricula.  There are three possible approaches to solving 
this problem.     

3.2.1 System-on-a-Chip Platforms 
The eventual solution to the platform problem could lie in the 
development of system-on-a-chip (SoC) designs.  Powerful 
programmable logic devices (PLDs) such as FPGAs are now 
available that are capable of supporting multiple softcore 
processors, various I/O peripherals, limited on-chip memory, and 
associated glue logic.  Using such a system, multiple processor 
designs are feasible, different I/O system designs can be 
evaluated, and different memory designs are possible.    
Currently, SoC platforms are attractive as a complementary 
technology, but improvements are required if they are to become 
the primary platform for teaching system-level concepts.  First, 
there is a steep learning curve associated with the design tools.  
Because of this, students are limited to a single development 
environment contributing to the single tool problem described 
above.  Also, the steep learning curve pushes the use of these 
systems further back in the curriculum giving students less time to 
use the platform for more advanced activities.  Additionally, there 
are fewer softcore processors and compatible OSs available for 
PLD implementations than are available using traditional system 
implementations.  Finally, the PLD devices are not complex 
enough to provide for a significant amount of on-chip memory to 
support a complex multiprocessor design.  This limits possible 
memory system designs and requires that the SoC design interface 
to off-chip resources.   

3.2.2 Model Traditional Platform 
There is no one laboratory platform that can address every 
possible system-level concept associated with embedded systems 
and that will please every embedded systems educator.  However, 
the following paragraphs identify some general characteristics 
defining a well-rounded, capable, model laboratory platform that 
could, if it existed, help to address system-level concepts in 
embedded systems curricula.   
The platform should be modular to support easy transition from 
one design to another.  System-level design decisions include 
number and types of peripherals, number and types of processors, 
amount and configuration of memory, and desired software 
environment.  Thus, processor modules, I/O modules, and 
memory modules should be available and should be easily 
connected and disconnected from the other system components.   

                               



Although various component interconnection networks should be 
supported, this capability is not realistic in a low-cost educational 
platform.  Since a basic system interconnection architecture must 
be provided, a basic bus-based architecture is suggested.  This is a 
straightforward architecture that will support the easy integration 
of system modules.  A bus-based system provides the opportunity 
to address many system-level concepts such as bus arbitration, the 
effects of bus saturation on system performance, and the effects of 
memory system operation on bus traffic and system performance.  
Again, since many different bus communication protocols are in 
use, it is suggested that a simple asynchronous protocol be used.  
The bus protocol should support multiple masters and have 
multiple levels of interrupts for flexibility in the design of the I/O 
system.  
Processor modules based upon different types of processors 
having various speeds and data widths and supporting various 
operating systems should be offered.  This allows for 
heterogeneous or homogeneous multiprocessor design, both 
common design methodologies used in practice.  Processor 
modules must support interrupt driven I/O using multiple levels of 
interrupts and should support bus arbitration for multiprocessor 
systems.  There is no requirement that I/O administration and bus 
arbitration logic physically exist on the processor modules.  
However, that would result in a smaller design requiring fewer 
modules and fewer connection slots to the system bus.  Also, 
processor modules should include the capability to support on-
board memory so distributed non-uniform memory access 
(NUMA) designs can be created.   
Memory modules should also be available for connection to the 
system bus.  This memory can serve as global shared memory 
providing support for uniform memory access (UMA) designs to 
compare to the NUMA designs supported by distributed memory.  
Cache memory should be provided and the memory hierarchy 
should be reconfigurable to facilitate the evaluation of various 
hierarchical structures.   
I/O modules should also be available implementing various 
common peripheral devices.  These modules should support 
multiple levels of interrupts and should have various response 
times.  In addition, special purpose modules can be offered that 
host FPGAs and other PLDs so that advanced SOC designs can be 
supported.   
The form factor for the bus backplane, the individual modules, 
and an enclosure should be relatively small and fit easily on the 
desktop or lab bench.  There is no need for rack mounting 
capabilities or ruggedized performance given the educational 
environment.  The enclosure should have an integrated power 
supply to create a self-contained design. 
Costs must be kept low.  The enclosure and backplane, two of the 
more expensive components of the system, would be provided by 
the institution creating permanent lab stations.  However, the 
overall goal would be to make the processor, memory, and I/O 
modules inexpensive enough that students would purchase them 
as part of a toolbox to be used as they progress through the entire 
curriculum.  During lab activities, individuals or student teams 
would design their systems by choosing appropriate modules to 
connect to the backplane within the enclosure at a given lab 
station. Since many embedded systems are not based upon state-
of-the-art performance and this system is dedicated to educational 

purposes, none of the modules require the best performance 
available.  This can help to keep costs low.   
One of the biggest hurdles to overcome to make this platform 
feasible is that of software.  Operating systems, software 
development environments, drivers, and board support packages 
are necessary.  However, it is not feasible to require significant 
amounts of custom in-house development of these components 
either from an administration perspective or from a student 
perspective.  This also conforms to the goal to incorporate 
system-level concepts.  Low-level software and driver 
development requirements are contrary to the system-level 
approach the platform is supposed to create.   
Based upon the description of the desired characteristics, it may 
appear that such a model platform is out of reach.  This may 
indeed be the case if a custom design starting from scratch is 
required.  However, the preferred approach is to find an existing 
platform having most of the desired characteristics and a low 
cost/performance ratio and to modify it to fit this use.  One such 
platform is the VMEbus platform.  As mentioned earlier, the 
VMEbus platform maps well to most of the system-level concepts 
in the model curriculum and has many of the characteristics of the 
desired lab platform.  Its primary drawbacks include costs and 
form factor.  Interestingly, if a subset of the standardized 
VMEbus specification is used and the mechanical requirements 
are relaxed, the form factor could be altered to make it more 
suitable for educational use and the resulting costs would 
correspondingly be reduced.  Other existing bus-based platforms 
are also possibilities.  For example, the PCI-based PC/104 
platform offers many of the desired characteristics.   

3.2.3 Virtual Platform 
Some of the difficulties associated with providing a model 
traditional laboratory platform can be overcome by using a virtual 
platform.  Virtual tools have become quite popular in embedded 
systems education [9, 16].  So far, these tools have been 
introduced at the component and subsystem levels and are a 
valuable means of abstracting some of the low-level details that 
often overwhelm students.  This approach can be extended to 
provide a software tool capable of designing virtual embedded 
systems.  In this case, the tool provides a set of components 
(processors, I/O peripherals, memory modules, bus arbiters, etc.) 
and interconnection networks (buses, point-to-point networks 
with various topologies) from which to choose.  The students pick 
the desired components to build a complete system, placing 
instances of the components in an editing pane within the 
software environment and connecting them.  In the way, students 
are basically drawing their virtual embedded system.   
However, the software design tool does not just provide a means 
to draw box and line type of diagrams.  It also supports user input 
of component parameters.  Each component has associated 
parameters and characteristics that must be set by the user.  The 
parameters include clock speed, communication protocol, 
interrupt level, data width, execution times for hosted software, 
etc.  In this way, the user builds a virtual system and specifies its 
behavior through component and interface specifications.   
To really capture the power of this approach, the tool must also 
provide analysis of the overall design created by the user.  This 
analysis must include subsystem verification as well as analysis of 
overall system-level behavior.  Typical system characteristics that 

                               



might be analyzed include mismatched communication protocols, 
analysis of memory access times, interrupt latency, bus 
throughput, etc.  The analysis performed by the software tool 
should be user-configurable.  Therefore, the user would be 
responsible for specifying a test plan for the virtual system he/she 
created.  This plan could contain both subsystem-level and 
system-level tests using different analysis capabilities built into 
the software tool to help address both the low and high-level 
testing and verification concepts in the model curriculum.   
Due to the virtual nature of the tool, there is no limit to the system 
modules that can be added as potential system components.  All 
the components identified as necessary in the model traditional 
lab platform can have virtual counterparts for use with this tool.  
In addition, the necessity to limit options in the traditional 
platform does not exist with the virtual platform.  There is no 
need to limit designs to bus-based architectures or to 
asynchronous buses.  All options are still available to the 
designer.  In this way, there are no restrictions on the design space 
based upon available resources, and students can explore a larger 
portion of the architecture space for each assignment.   
The use of a virtual tool would be easy for universities to adopt.  
The software tool would execute on a PC or workstation already 
present in most ECE laboratories thus requiring minimal 
infrastructure or investment.     
A word of caution is needed here.  As virtual tools become more 
common, the natural side effect will be more abstraction of low-
level details.  Students will migrate to higher levels of 
understanding but will miss the underlying details.  Thus, it is 
important that virtual tools be incorporated into a curriculum 
slowly and not at the expense of the low-level engineering details. 
The authors are currently implementing a software tool capable of 
designing virtual embedded systems.  The tool is intended for use 
in a senior-level/graduate-level embedded systems course.  Once 
completed, the software tool will be used and assessed alongside a 
more traditional laboratory platform based upon the VMEbus and 
used in this same course.  In this way, direct comparisons can be 
made between the actual VMEbus platform and the software tool.  
The assessment process will focus on both low-level and system-
level concepts identified in the IEEE/ACM Computer 
Engineering Model Curriculum for embedded systems [1].   

3.3 Software Tools 
The limited exposure to multiple software environments to 
facilitate comparisons and trade-off analysis is a difficult problem 
to overcome.  As software tools continue to become more 
complex, the learning curve associated with their use will remain 
an obstacle to educational efforts and will continue to push 
educators to the single environment approach.  One positive 
associated with complex software tools is that they often access 
hardware from high levels of abstraction.  So, by default, these 
tools are supporting a higher, system-level approach.  Still, 
teaching only one environment limits students’ ability to analyze 
systems from this perspective.   
The negative effects of using a single tool or environment can be 
minimized if software components are presented by focusing on 
general software features.  By teaching students the different 
types of features that software tools have and what types of 
features map well to various applications, students will begin to 
be able to compare and contrast software components within a 

system context.  The one specific software environment students 
use within the curriculum can then be used as an example and 
justification can be given for its selection.   
Another alternative to introducing more tools is to focus on 
languages.  Students are typically introduced to several different 
languages in the average embedded systems curriculum including 
assembly language, C, and C++.  Efforts should be made to make 
sure students master programming skills in appropriate languages 
and to educate students when use of a particular language is 
appropriate.   This means that specific embedded programming 
skills must be presented above and beyond the commonplace 
general programming concepts presented to all ECE students [12].   

3.4 Assessment 
As more system-level activities are incorporated into the 
curriculum, the challenge to accurately assess them minimizes.  
For example, an appropriate traditional lab platform or a virtual 
platform can make it more feasible for students to perform 
individual lab work.  This makes assessment of individual effort 
more straightforward.  Secondly, with an appropriate platform 
integrated into more courses, design problems having a smaller 
scale can be used.  These problems are easier to assess accurately.  
Finally, giving students more experience with system-level 
concepts will inherently improve their judgment making student 
feedback a more reliable assessment mechanism.   

4. CONCLUSIONS 
The 2004 IEEE/ACM Computer Engineering Model Curriculum 
for embedded systems includes both low-level and system-level 
concepts.  Despite the wide-spread integration of these embedded 
systems concepts into academic curricula, there is still work to be 
done to integrate system-level embedded systems concepts.  
Because of the breadth problem, introducing even more concepts 
into the curriculum is difficult.  One possible solution is to apply a 
system-level slant to many of the component and subsystem 
concepts already being used.   
However, there are other inherent challenges that academia faces 
regarding the integration of system-level concepts into embedded 
systems curricula.  These other challenges include the lack of 
appropriate laboratory platforms, limited student exposure to 
software tools and development environments, and difficulties 
associated with the assessment of system-level concepts.  SOC, a 
new traditional laboratory platform addressing a wide range of 
design options, or a design tool capable of creating virtual 
embedded systems having a wide range of architectural 
characteristics offer possible solutions to the first challenge.  The 
learning curve associated with modern complex software tools 
continues to present a difficult obstacle to education, while 
assessment difficulties associated with system-level concepts are 
shown to be minimized as more system-level concepts appear in 
the curriculum.   
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