
The Development of Training Course for Embedded
Middleware Design

Hewijin Christine Jiau and Kuo Chen Wu
Institute of Computer and Communication Engineering

Department of Electrical Engineering
National Cheng Kung University, Tainan, Taiwan, R.O.C.

jiauhjc@mail.ncku.edu.tw, kuchenwu@nature.ee.ncku.edu.tw

ABSTRACT
In order to promote embedded software education and es-
tablish fundamental related research, Embedded Software
(ESW) Consortium was initiated by Taiwan Ministry of Ed-
ucation in 2004. Embedded Middleware Design Curriculum
is the advanced course for graduate and undergraduate stu-
dents to develop and practice embedded middleware. In this
work, course design, expected results and the course result
analysis are presented.

Categories and Subject Descriptors
D.3.3 [Computer Milieux]: Computer and Information
Science Education

General Terms
Human Factors

Keywords
Embedded Software, Education, Embedded Middleware

1. INTRODUCTION
The industry of Information Technology (IT) and Integrated
Circuit (IC) are the main focuses in Taiwan’s industry. In
order to keep the competition with worldwide IT/IC indus-
try, well-trained engineers play the key factor. Therefore,
the Advisory Office of the Ministry of Education (AOMOE)
of Taiwan established the VLSI Circuits and Systems Edu-
cation Program in 1996. Embedded Software (ESW) Con-
sortium [1] was initiated by the Ministry of Education under
the VLSI Circuits and System Education Program in 2004 to
promote ESW education and establish fundamental related
research for embedded software technologies [3, 13].

Embedded Middleware Design Curriculum is one of the cur-
ricula created by ESW Consortium and the purpose is to
develop the advanced embedded training course for grad-
uate and undergraduate students. This training course is

Figure 1: Course Relation.

designed to teach students to design and build embedded ap-
plications by merging existing embedded systems by various
hardware vendors. The course design and material prepa-
ration assumption is for students with basic knowledge of
embedded systems. The detail course design is in section 2.
Expected results are described in section 3. Section 4 is the
course result analysis to make sure the course performance.
Finally, section 5 provides the conclusion of this work.

2. COURSE DESIGN
According to the course arrangement plan of Embedded
Software Consortium [1, 13], students who take this course
must have taken the prerequisite courses. The required pre-
requisite courses are illustrated in Figure 1. Because stu-
dents have taken the prerequisite courses, students are as-
sumed to have some pre-required background knowledge.
These background knowledge includes basic concept of de-
sign issues of embedded systems, experiences of implement-
ing embedded systems, understanding tools with different
purposes for embedded system development, and computer
organization. Because students already have capabilities to
implement the basic embedded system, the design of this
course will only focus on teaching students the analysis of
applying issues in embedded middleware and the integration
concerns for middleware in final embedded systems.

Embedded systems are widely accepted on many different
domains. Those variations trigger all kinds of design issues,
such as requirement analysis and architecture specification.
Establishing proper strategies to deal with these issues can
improve the quality of embedded systems and decrease the
overall development cost [14, 15]. Middleware helps em-
bedded system developers decrease development complex-
ity by separating application logic from physical environ-
ment. Because separation of different concerns is necessary



in embedded middleware, object-oriented paradigm is intro-
duced to define system boundary, model physical environ-
ment. Model-driven approach is also applied for develop-
ment process.

To combine embedded middleware design and object-orientation
paradigm together is the main new aspect of this course.
The course is divided into seven chapters: Socio-technical
Systems, Critical Systems, USB Software and UML, Embed-
ded Software for Transportation Applications as Example,
Development Issues, Memory in Embedded Systems, and Mi-
grating Your Software to a New Processor Architecture. The
detail of these chapters are described in the followings.

2.1 Chapter 1: Socio-technical Systems
To help students realize the differences between embedded
middleware systems and embedded systems is the first step.
The differences between embedded middleware systems and
general embedded systems are due to the application domain
influences. The decision of applying embedded middleware
is made by the characteristics of application domains. It is
very important for developers to pick the suitable embedded
middleware applying context. Chapter 1 focus on teaching
students socio-technical systems to help them analyze sys-
tem characteristics.

One of essential characteristics of socio-technical systems is
emergent properties. Therefore, the definition, the charac-
teristics, and what and how emergent properties influence
the development of embedded middleware systems is intro-
duced in this chapter. Socio-technical systems include op-
erational processes and people who use and interact with
the technical system [11]. It means that socio-technical
systems are governed by organizational policies and rules.
After providing the definitions of technical computer based
systems and socio-technical systems, students would real-
ize that embedded middleware systems are naturally socio-
technical systems. They also learned the concerns and is-
sues are different in these systems. It is very important
to teach students the meaning of system engineering after
introducing the emergent properties. System engineering
is the activity of specifying, designing, implementing, vali-
dating, deploying, and maintaining socio-technical system.
The purpose of teaching system engineering is to cooper-
ate with the services provided by an embedded middleware,
constraints on construction of an embedded middleware sys-
tem, and the interaction between embedded middleware and
other modules in the final system.

2.2 Chapter 2: Critical Systems
In addition to socio-technical systems, embedded middle-
ware systems also belong to critical systems in many applica-
tion domains [10]. Students have to learn the definition and
recognize different types of critical systems. They should
further learn the most important emergent property of crit-
ical systems is dependability. The dependability of a system
reflects the user’s degree of trust in that system and the
success of an embedded middleware system highly relates
to it. Through the explanation of dependability, students
will learn four dimensions of dependability which includes
availability, reliability, safety, and security.

After leading students to consider the development of em-

bedded middleware by the viewpoint of socio-technical sys-
tems and critical systems, it is assumed that students will
accumulate more background knowledge.

• Embedded middleware system is not only the system
which connects various hardware and software compo-
nents by middleware, but also the system has multiple
integration issues during developing.

• Embedded middleware system is a socio-technical sys-
tem. Emergent properties should be considered during
the development.

• The applications of embedded middleware systems are
usually critical systems. Dependability should be con-
sidered during the development.

2.3 Chapter 3: USB Software and UML
The goal of this chapter is to teach students the detail de-
velopment of an embedded middleware system. In order to
help students get the whole picture, USB software and UML
are demonstrated as examples to compare with the princi-
ples of embedded middleware development. There are sev-
eral similar development points between USB software and
embedded middleware. Through these comparison results,
students can find out the best way to develop an embedded
middleware. One similar point is that both USB and em-
bedded middleware are embedded in different devices which
support specified functions. Students could detect how a
middleware is embedded in specific devices as USB does.
Another similar point is that there are hosts in both USB
and embedded middleware to use those functions provided
by specific devices to achieve typical application goal. An
embedded device or a USB device usually plays both roles, a
device which supports specified functions and a host which
handles application logic. Students can conclude how to
separate physical environments and application logics after
the observation of USB devices. Finally, the detail defini-
tion of USB software layer can help students understand the
communication among other embedded systems by embed-
ded middleware and what an embedded middleware system
should have.

Model integration and transformation have been applied on
embedded software development [4, 12]. Students should
understand the meaning of Model and the influence when
applying model driven approach to embedded middleware
system. Besides, UML 2.0 has paid special attention on em-
bedded system design [2, 5, 6, 7, 8, 9]. For these reasons,
UML and how to apply UML in the development of embed-
ded middleware system are introduced formally in chapter 3.
The UML development concept is divided into three parts.
The first part is that students must understand that model
is not a precise or complete unit for final system and model is
for communication purpose only. If students understood this
property of model, they would further know the reason how
UML can help developers in the work of analysis and design,
and decrease the overall cost in integration, testing, and de-
ployment. Developers could concentrate in more complex
issues and improve the total productivity. The second part
is that students should understand that a model of software
works as blueprint of architecture. This property shows that
model can describe the decisions made by developers, such



as problem analysis, solution design, and implementation
detail. The third part is that students could understand it
is not necessary to distinguish a model from real software,
and a model could describe the whole software. Because of
this property, model compiler is introduced in this chapter.
UML can be translated to C/C++ code by model compilers.
Model compiler can encapsulate embedded software design
parameters when translating a model. It shows that model
itself or using model compiler is separated from the applica-
tion development. Then, design can be split from the appli-
cation and the architecture. The design of application can
be done by domain experts and the design of architecture
can be done by embedded experts.

Students learn the concepts and benefits of model driven
approach and the process of applying UML to the design of
embedded middleware systems. Especially, students would
know how UML can integrate embedded systems in the de-
sign phase and avoid the complexity from further implemen-
tation.

2.4 Chapter 4: Embedded Software for Trans-
portation Applications as Example

The overview of development technologies of embedded mid-
dleware systems is introduced in chapter 3. To help stu-
dents evaluate the principles learned from previous chapters,
transportation application is provided in chapter 4. There
are several reasons for choosing transportation application.

A transportation system is not only a socio-technical system,
but also a critical system. Course content taught in previ-
ous chapters could be reviewed through example. Besides,
because a transportation system is a distributed system, an
middleware is needed to provide communication services for
multiple microprocessors or microcontrollers in the trans-
portation system. Communication among these micropro-
cessors or microcontrollers is a typical issue for students to
consider real world application of middleware. Communica-
tion issue is not the only important issue in transportation
system design. To integrate various devices and architec-
tures into a whole transportation system are also typical
critical issues. Since all units must be integrated into a final
transportation system, finding the most effective method to
handle and integrate different architectures is the top mis-
sion and students will learn a lot from the discussion in class.
Real-time issue is also another famous issue when develop-
ing a transportation system. How to make a transportation
system predictable and reliable with real-time constraint in-
fluences the design of embedded middleware system. Except
reviewing the concept of the previous three chapters, related
technologies, such as microprocessor technology, system ar-
chitecture, design composition, software content, program-
ming language, and software team size, are also mentioned
in this chapter.

The major content of chapter 3 and 4 was the overview of
development of embedded middleware system. In chapter
3, USB software was used as example to help students un-
derstand how to communicate with other embedded systems
by embedded middleware and the fundamental modules of
an embedded middleware system. Then, model driven ap-
proach was taught as a key technology for the development
of embedded middleware system. A transportation system

was demonstrated in chapter 4 to conclude the concepts pre-
vious three chapters.

2.5 Chapter 5: Development Issues
It is assumed that students are qualified to develop an em-
bedded middleware system after the teaching of four chap-
ters. To guide students to further development issues due
to the characteristics of embedded software is the purpose
of this chapter.

The major difference between embedded middleware system
and general middleware system is Software/Hardware Trade-
offs. Students must know that software design and hardware
design are tightly coupled in the development of embedded
middleware systems. This issue make the development of
embedded middleware system different with general purpose
middleware system in several typical aspects, such as orga-
nization and process. Besides software/hardware trade-offs,
there is one more issue that students should pay special at-
tention to when they choose development assistant tools.
Suitable tools can speed up the development process and
improve the quality of the final product. Different develop-
ment tools will equip with different features but also with
different development strategies.

It was assumed that students could accumulate the knowl-
edge of what kind of problems they would possibly face dur-
ing development process and what kind of tools they could
use to solve those problems. In addition to these issues,
students should also focus on the influence from hardware
design decisions. For this purpose, students would learn the
meanings of memory in embedded systems in chapter 6 and
consider the portability of embedded software in different
processors.

2.6 Chapter 6: Memory in Embedded Systems
Students must understand memory has different definitions
in different contexts and it would be mixed in the devel-
opment of embedded middleware systems. Students should
understand memory architecture in embedded systems and
the different definitions of memory in different contexts. Af-
ter learning these background knowledge, students will be
taught how to use various memory sections for various pur-
poses. After chapter 6, students are expected to utilize
their knowledge to consider constraints from the viewpoint
of memory variation to make right design decisions.

2.7 Chapter 7: Migrating Your Software to a
New Processor Architecture

The design of embedded middleware system highly depends
on the specification of processors. To handle the migration
issues between different processors was the purpose of this
chapter. Different processors have different instruction and
registers. Although high level programming languages, such
as C and C++ code, have portability, language compilers
still depend on the processor. Besides, there are different
real-time profiles in different processors. Especially for in-
terrupt and in-house RTOS are also the hindrance to porta-
bility. Students should practice their knowledge and accu-
mulate experience to solve these issues. Embedded applica-
tion binary interface (EABI) was introduced in this course
to demonstrate a possible solution for students to solve these



issues from migrating different processors. In order to help
students practice the knowledge they learned in this course,
there was a final project to let students develop an embedded
middleware application for evaluation.

3. EXPECTED RESULTS
It is expected that students can get knowledge in four as-
pects after they finish the course.

• Students should identify the embedded middleware

applying context.

• Students should establish their background knowledge
for embedded middleware system architecture de-

sign.

• Environment issues handling is necessary for de-
velopers to build the desired embedded middleware sys-
tems due to the various application domains of embed-
ded middleware.

• Embedded middleware practice is necessary for stu-
dents to utilize knowledge learned in this course to de-
sign an embedded middleware.

3.1 Embedded Middleware Applying Context
This aspect focuses on whether students understand the real
world factors of applying embedded middleware. Students
should establish their own knowledge to identify the right
context by following three principles. The first principle is
the difference between embedded systems with embedded
middleware and embedded systems without embedded mid-
dleware. In order to evaluate students’ understanding of this
principle, students are required to answer some questions af-
ter the teaching of chapter 1. If students could find out the
answers correctly, it is very possible for them to identify suit-
able embedded middleware applying context. The second
principle is analyzing emergent properties from an embed-
ded system with embedded middleware. After finishing the
teaching of chapter 1, students are required to analyze the
scenarios of their final projects and find the major emergent
properties in the chosen domain. It is important to evaluate
the analyzing results to know whether they have capabili-
ties to find the emergent properties of an embedded system
with embedded middleware or not. If students have capabil-
ities to find the emergent properties, they have insight of the
characteristics of embedded middleware. The third princi-
ple is the dependability of an embedded middleware system.
The applications of embedded systems with embedded mid-
dleware are usually critical systems. The analysis result of
dependability has strong impacts in applying the embedded
middleware and the characteristics of the embedded mid-
dleware. If students are able to analyze dependability of an
embedded middleware system, they can have a clearer pic-
ture of their final progress and the embedded middleware.

3.2 Embedded Middleware System Architec-
ture Design

Students should learn how to design an embedded middle-
ware in required software products after this course. Stu-
dents should have two capabilities to achieve this goal. The
first capability is to integrate embedded middleware into an

embedded system. Embedded middleware integrates vari-
ous software components and hardware components into a
whole system. It also separates application logic and phys-
ical environments to help developers pay attention on ap-
plication logic only. Therefore, it is important to evaluate
students’ understanding of this capability. The evaluation
is done by observing the design documentation of the final
projects. A good architecture design of the final project
shows that students have better understanding of how to
integrate components by embedded middleware. The sec-
ond capability is the understanding of model driven devel-
opment. Model driven development is useful when develop-
ing embedded system with embedded middleware and can
help developers avoid the complexity of environment con-
straints in early design. However, it is not easy to evaluate
this capability by normal questions or documentation. The
better way is to observe the development process of the final
project with related documentation during the development.
If students produce high quality documentation and define
suitable development process, they must have better under-
standing of model driven development.

3.3 Environment Issues Handling
Students should focus on four design issues when dealing
with environment issues. These issues are software/hardware
codesign, tool choices, memory variation, and architectures
variation. Students should analyze the impacts from en-
vironment and practice the process of software/hardware
codesign after this course. Although application logic and
physical environment are separated by embedded middle-
ware, developers are still responsible for handling the im-
pact from the physical environment to make effective de-
sign decisions. Again, the design documentation is the only
base to detect whether students are able to practice soft-
ware/hardware codesign or not. Another capability that
students need is to choose suitable tools for different plat-
forms. There are two methods to proceed the evaluation.
One is to lead students to answer questions about the con-
cepts in chapter 5, and the other is to observe the tools they
choose during the development of final projects. Memory
variation handling is not software/hardware codesign. Soft-
ware/hardware codesign focuses on picking suitable process
to handle software/hardware codesign but memory variation
handling is the capability to handle the issues from memory
constraints to produce better design. Besides memory vari-
ation, students could learn architecture variation handling
technique. Students should be able to migrate their soft-
ware among different architectures and designs. In order to
check whether students can handle all above issues or not,
the evaluation of final project documentations would include
all of them.

3.4 Embedded Middleware Practice
The practice plays an important role in this course. We can
observe the practice result to detect students’ study per-
formance. Besides, students could figure out that qualified
documentation does improve the quality of final products
through the practice.

The documentation produced in specification phase must
clearly present the speciality of the system. Students won’t
be forced to follow any commercial standard to produce their
documentations in this phase but only pay attention on the



Figure 2: Homework Design.

expressiveness of the documentations. After specification
phase, students are required to produce design documenta-
tions by utilizing UML. Students can learn how model driven
development approach can improve development process of
embedded middleware system by practicing UML. After de-
sign phase, students would choose suitable tools according
to the specific project to speed up the development process
or decrease the development complexity.

Students can get the evidence of the knowledge learned in
this course from the embedded middleware practices. The
practices are well observed to understand the study perfor-
mance as the base to improve the course.

4. COURSE RESULT ANALYSIS
The execution of this course was from September 2007 to
January 2008. Eleven graduate students took this course.
The homeworks and final projects which students produced
during this courses were the course results. The analysis of
the course results can reflect the performance of this course
and is also as the base for further improvement of this course.
The following sections present detail description of home-
works and final projects.

4.1 Homework Analysis
To match the original goal of this course, six homeworks are
designed to help students understand the application do-
main of embedded middleware and the influence of embed-
ded middleware. This section describes homework design
and the homework analysis result.

4.1.1 Homework Assignment Design
The arrangement of six homeworks is illustrated in Figure
2. In order to track the progress of students in the course,
homeworks are separated into two phases. Students finished
homework 1 in the beginning of this course and homework
2 during the teaching process of chapter 1. The results of
homework 1 and 2 reflected students’ original background of
embedded middleware and embedded software. Then, stu-
dents finished homework 3 and homework 4 after the teach-
ing of chapter 4. Homework 3 required students to answer
the influence of embedded middleware during development
process and homework 4 required students to consider the

Figure 3: Homework 3 and 4 result.

suitable context for embedded middleware. Both homework
3 and 4 helped students review previous content and con-
clude their own ideas of embedded middleware. Students
finished homework 5 and homework 6 in the last two classes
of this course. Homework 5 and 6 required students to an-
swer the same problems again in homework 1 and homework
2. The purpose was to force students to evaluate themselves
through the same questions and compare the answers to
double check what they have learned.

According to homework assignment design, there are four in-
dicators to evaluate the performance of this course. To grade
the answer in homework 3 is the first indicator. This indica-
tor detects understanding about the embedded middleware
influence. The second indicator is to grade the answers in
homework 4 and this indicator detects the understanding
of the embedded middleware applying context. The third
indicator detects the improvement of understanding of em-
bedded software design after the teaching of course content.
The difference in scores between answers in homework 2 and
homework 5 represents the third indicator. The fourth indi-
cator detects the improvement of understanding about the
characteristics of embedded middleware after this course.
Detection the difference in scores between homework 1 and
homework 6 is the representation of fourth indicator. Analy-
sis results of homework is according to the detection of these
indicators and is described in the following section.

4.1.2 Homework Analysis Result
The scores of homework can be mapped into five grades.
Grade 1 is the lowest score, grade 5 is the highest. Figure
3 displays the result of homework 3 and homework 4. Ac-
cording to the results shown in Figure 3, the mean of scores
is 2.91 but almost half answers are under grade 3. The re-
sult shows that only half of students have right vision in
homework 3 and the overall performance is not good be-
fore homework 3. In homework 4, only three students score
grade 2 and others score above grade 3. The result rep-
resents that students have better understanding about the
applying context of embedded middleware.

The comparison between homework 2 and homework 5 is
illustrated in Figure 4. As illustrated in Figure 4, mean and
median of scores in homework 2 are 3.27 and 4. Mean and
median of scores in homework 5 are 3.36 and 4. The results
of homework 2 are similar with results of homework 5. The
progress between homework 2 and 5 is little. The reason



Figure 4: Homework 2 and 5 comparison.

Figure 5: Homework 1 and 6 comparison.

may caused by that most students have enough background
knowledge of embedded software. Although the mean and
median of scores in both homeworks are similar, students
get grade 1 in homework 2 both improved their scores in
homework 5. This phenomenon shows the positive influence
of this course.

Figure 5 illustrates the comparison between homework 1 and
homework 6. Over half students could score under grade 3
in homework 1. Then, mean and median of scores in home-
work 1 are 2.73 and 2. This phenomenon shows that stu-
dents took this course had no clear ideas about embedded
middleware. Result of homework 6 displays the progress of
students. Most of answers in homework 6 score above grade
3 and mean and median of scores in homework 6 are also
better than scores in homework 1. The comparison result of
homework 1 and homework 6 shows positive results of the
course performance.

4.2 Final Project Analysis
There are six teams organized in final projects. Each team
would find out a topic to fit the characteristics of embedded
systems and decide which part should be embedded middle-
ware. This section describes the support devices for students
to develop final projects and the analysis of final projects.

4.2.1 Support Devices
In order to support students’ final projects, there are sev-
eral equipments are prepared in this course. The purpose of
the preparation is to support two different communication
modes. The first mode is client-server mode so students can
build a networked embedded system within it. Equipments

Table 1: Embedded Middleware Server Specifica-

tions
Computation Power Space Mobility

PC High High Low
Notebook Medium(1.66GHz) Medium Medium

Sony VGN-27TN Medium(1.33GHz) Medium High
Dopod U1000 Low(624MHz) Low High

for middleware server are presented in Table 1. Equipments
for middleware server can be classified according three at-
tributes: computation power, space, and mobility. Students
can choose suitable equipments as middleware servers to de-
velop the final projects. Equipments for middleware client
are also provided. According to Table 2, equipments for
middleware client can be classified by four attributes: pro-
cessor, memory, mobility, and development cost. Besides
equipments for middleware server and client, equipments
for wireless equipments are also provided because most of
networked embedded systems communicate by wireless net-
work.

The second mode is peer to peer mode. Mobile devices are
one of most import applications of embedded system. Most
mobile devices support ad hoc network and communicate
in peer to peer mode. For this reason, equipments support
both peer to peer mode and mobile devices in this course.
Equipments for peer to peer mode is from the equipments
for client-server mode because all equipments can support
both client-server mode and peer to peer mode. Students
could use these equipments to simulate the application in
client-server mode or peer to peer mode according to the
application domain.

4.2.2 Final Project Summary
• Group 1: Amusement Facilities Routing Assistant (AFRA)

This project aims to build an embedded middleware
for amusement facility routing assistant. The routing
assistant suggests routing paths of the amusement park
to visitors based on the preferences made by tourists
to decide scheduling strategies. Through the help of
AFRA, visitors can play as many amusement facilities
provided by the park as possible. Considering the facil-
ity queuing information is scattering and varying with
time, a middleware is necessary to aggregate and dis-
tribute real-time queuing information for routing path
suggestions. With the middleware, a uniform abstrac-
tion of queuing information is introduced so the com-
municating complexity between diverse facilities and
different visitors is reduced.

• Group 2: Service-oriented Bus Embedded Middleware
(SOBUS)

This project aims to build an embedded middleware
for service-oriented city bus systems (SOBUS). SOBUS
provides automatic travel plan service for visitors ac-
cording to the destinations they want to go by taking
buses. Every destination contains different set of ser-
vices. According to the characteristics of available ser-
vices, SOBUS will reconfigure the plan dynamically for
efficient travel. The reconfiguration requires communi-
cation and coordination between service providers and



Table 2: Embedded Middleware Client Specifications

Processor Memory Mobility Development Cost
Notebook 1.66GHz 1GB Medium Low

Sony VGN-27TN 1.33GHz 1GB High Low
Dopod U1000 624MHz 128MB High Medium

Nokia N95 330MHz 64MB High High
iRex iLaid ER-0100 400MHz 64MB High High

SOBUS. In order to fulfill these requirements, SOBUS
is built. SOBUS deals with the communication and co-
ordination among services in various destination and
mobile devices with each visitor. In addition, overall
service quality and service resource utilization can be
improved by coordinating all service requests.

• Group 3: Mobile Home Automation (MHA)

This project is to build an embedded middleware for
people to facilitate their household appliances with
remote control strategy. MHA mediates the control
of household appliances and hides the heterogeneity
between various household appliances when different
communication protocols are applied. With MHA,
people can control their household appliances remotely
by any mobile device through the internet. By provid-
ing a standard interface, MHA improves the flexibility
when people add/delete any household appliances with
different communication protocols in the future.

• Group 4: Bulletin System (BS)

In Taiwan, there are a lot of information exhibition
markets available. Normally, each exhibition will con-
tain more than thousands of people. A group of friends
are often separated in each environment. An embed-
ded bulletin system in mobile device could help group
communication in such context. However, different
types of information, heterogeneous bulletin services
by the market, and security of group member infor-
mation are the issues of the environment. Group 4
proposed a middleware embedded in the exhibition
bulletins (BS), that provides a communication base
for group members getting various pricing information
and share their own message securely through their
own mobile devices. The middleware separates low
level communication issues from application logics of
service on bulletin system. Thus services of group com-
munication could easily be developed without handling
physical communication and security issues.

• Group 5: A Remote Control Used in a Literature Room
(RCULR)

There are many devices with different operations and
controllers in lecture room. For speakers or professors
who are unfamiliar with those operations, they have to
operate devices one by one respectively to finish a par-
ticular activity during speech. The RCULR aims to
solve the complexity and develops a middleware that
is distributed over devices and remote controllers at-
tached to microphone. The middleware is responsi-
ble to transmit operations to corresponding devices by
decomposing users’ commands on microphone. After
devices finish their operations, RCULR validates re-
ceived feedbacks and displays current status of devices

to users. In other words, users can control many de-
vices immediately by performing predefined commands
on microphone. By using RCULR, unnecessary inter-
action with device maintainer will be reduced and it
will make the whole speech process with smoothness
during speech. The presented middleware-based ap-
proach hides the heterogeneity of devices and makes
device replacement or extension easier in future. On
the other hand, users can avoid the complexity of what
and how devices actually operate and spend their ef-
fort on current conditions interpreted by middleware
in lecture room.

• Group 6: Push-to-Talk System on Group (PTS)

This team provides functionality, walkie-talkie, on mo-
bile devices and walkie-talkie supports group commu-
nication. In order to complete walkie-talkie, an embed-
ded middleware (PTS) is proposed. This middleware
implement walkie-talkie functions by the combination
of SIP protocol, RTP protocol, and RTCP. The ma-
jor benefit of PTS is to provide a standard interface
for group communication and improve the efficiency
when building up application bases on group commu-
nication.

4.2.3 Final Project Analysis
Final project results could reflect on expected results de-
scribed in section 3, but it is not easy to directly reflect the
observation to expected result. For this reason, there are six
indicators proposed to evaluate final projects. These indi-
cators are utilized in the discussion of course performance.
The evaluation result shows in Table 3. The first indica-
tor is Proposal Validation. This indicator validates that
each team chooses a suitable topic and exposes enough evi-
dence in the proposal to explain the topic with course goal.
The evidence includes system features should be embedded
and application logic should be separated by the embed-
ded middleware. This indicator detects whether students
understand the meanings of embedded middleware. If stu-
dents understand the meanings of embedded middleware,
they would choose related topics and show enough evidence
to prove it. The second indicator is Domain Analysis Ver-
ification. This indicator verifies domain analysis result of
each team. Students must proceed domain analysis to make
sure which system features are fixed in the environment and
which system features belong to application logic. Results
of this indicator represent the separation between physical
environments and application logic in final projects. The
third indicator is Model Driven Approach Verification. Stu-
dents are taught to utilize model driven approach to develop
embedded middleware systems. This indicator observes the
documentation to verify the degree of applied model driven
approach in the development process. The fourth indicator



Table 3: Final Project Evaluation

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6
Proposal Validation 4 5 2 3 3 2
Domain Analysis Verification 3 5 5 3 4 4
Model Driven Approach Verification 3 5 2 2 2 2
Environment Issues Verification 2 4 2 2 2 3
Completeness of Documentation 3 5 2 3 3 2
Evaluation of Final Presentation 4 5 2 2 2 3

Table 4: Final Project Analysis

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Average
Characteristics of Embedded Middleware 4 5 2 3 3 2 3.17
Architecture Design of Embedded Middleware 3 5 3.5 2.5 3 3 3.33
Environment Issues Handling 2.5 4.5 3.5 2.5 3 3.5 3.25
Development Process 3 5 2 2.5 2.5 2 2.83

is Environment Issues Verification. This indicator observes
the documentation to distinguish that students made design
decision according to environment issues. The fifth indica-
tor is Completeness of Documentation. Evaluation result of
completeness of documentation can expose the development
process of each project and understand whether each team
choses suitable process. The sixth indicator is Evaluation
of Final Presentation. Evaluation result of final presenta-
tion represents the quality of each project. The purpose
is not only to judge quality of each project but also provide
the base to understand the relation between other indicators
and project quality.

According to the evaluation results of final projects, the per-
formance of this course is exposed in Table 4. Proposal Val-
idation represents the degree of understanding of character-
istics of embedded middleware because students who know
characteristics of embedded middleware can also provide a
suitable proposal. According to the description in section
3.2, learning performance of architecture design of embed-
ded middleware system should be represented by the aver-
age of variables of Domain Analysis Verification and Model
Driven Approach Verification. Development issues from em-
bedded design are regarded as how to handle design issues
from environments and indicators, Domain Analysis Veri-
fication and Environment Issue Verification, represent this
result. Finally, Development Process, which presents pro-
cess quality of final projects, is the average of Model Driven
Approach Verification and Completeness of Documentation.
Model Driven Approach Verification is chosen because this
indicator reflects the degree of applying model driven ap-
proach on development process.

Except Development Process, the average score of each indi-
cator is over grade 3. This result shows that students don’t
follow an identified process to develop final projects. Be-
sides, we observe that architecture design and environment
issue handling are the best indicators among the rest indi-
cators. Both indicators are for the purpose of application
domain understanding. Except group 6, other groups didn’t
choose familiar application domains in their final projects.
Therefore, the better performance in domain understand-
ing is caused by the emphasis on domain analysis in this
course. After observing the results in each indicator in Ta-

ble 4, the comparison among evaluation of final presentation
and indicators in Table 3 is proceeded to find the reason of
better project quality to be the base of next course. The
comparison shows two phenomena. One is that groups with
better project quality have better scores in indicator Model
Driven Approach Verification. The other is that group 6
only performs better result in Environment Issue Verifica-
tion and that is the reason why the project performs better
than other projects with low scores. These two phenomena
imply that in order to improve final project quality, model
driven approach and environment issue handling should be
emphasized during the development.

5. CONCLUSION
In this work, the course design of Embedded Middleware
Design Curriculum is presented. The proposed course con-
tent is from the viewpoint of software engineering and the
course design focuses on which system features should be
embedded, which system features should be separated from
embedded middleware, and the influence of embedded mid-
dleware during software development. Besides course de-
sign, expected results and course result analysis are also
presented. Embedded Middleware Design Curriculum is an
ongoing project. The goal is to collect more teaching-related
materials and experiences to help other universities in Tai-
wan to develop embedded middleware design related courses
more effectively.

6. ACKNOWLEDGMENTS
This research was supported in part by the Taiwan ESW
Consortium, and in part by the Taiwan National Science
Council (NSC) under contracts NSC 96-2628-E-006-024-MY2
and NSC 97-2221-E-006-177-MY3.

7. REFERENCES
[1] The Embedded Software Consortium, VLSI Circuits

and System Education Program, Ministry of
Education, Taiwan,
http://esw.cs.nthu.edu.tw/e-index.php.

[2] R. Damasevicius and V. Stuikys. Application of UML
for hardware design based on design process model. In
Proceedings of the 2004 Conference on Asia South



Pacific Design Automation: Electronic Design and
Solution Fair, pages 244–249, January 2004.

[3] T.-Y. Huang, C.-T. King, Y.-L. S. Lin, and Y.-T.
Hwang. The embedded software consortium of
Taiwan. ACM Transactions on Embedded Computing
Systems (TECS), 4(3):612–632, August 2005.

[4] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty.
Model-integrated development of embedded software.
Proceedings of the IEEE, 91(1):145–164, January 2003.

[5] P. Kukkala, J. Riihimäki, M. Hännikäinen, T. D.
Hämäläinen, and K. Kronlöf. UML 2.0 profile for
embedded system design. In Proceedings of the
Conference on Design, Automation and Test in
Europe, pages 710–715, March 2005.

[6] G. Martin. UML for embedded systems specification
and design: Motivation and overview. In Proceedings
of the Conference on Design, Automation and Test in
Europe, pages 773–775, March 2002.

[7] G. Martin, L. Lavagno, and J. Louis-Guerin.
Embedded UML: a merger of real-time UML and
co-design. In Proceedings of the Ninth International
Symposium on Hardware/Software Codesign, pages
23–28, April 2001.

[8] A. T. Murray and M. Shahabuddin. OO techniques
applied to a real-time, embedded, spaceborne
application. In Companion to the 21st ACM
SIGPLAN Symposium on Object-oriented
Programming Systems, Languages, and Applications,
pages 830–838, October 2006.

[9] M. F. S. Oliveira, L. B. de Brisolara, L. Carro, and
a. R. W. Fl˙Early embedded software design space
exploration using UML-based estimation. In
Proceedings of the Seventeenth IEEE International
Workshop on Rapid System Prototyping, pages 24–32,
June 2006.

[10] D. C. Schmidt. Middleware for real-time and
embedded systems. Communications of the ACM,
45(6):43–48, June 2002.

[11] I. Sommerville. Software Engineering. Addison-Wesley
Publishing Company, 8th edition, 2007.

[12] J. Sztipanovits and G. Karsai. Model-integrated
computing. IEEE Computer, 30(4):110–111, April
1997.

[13] S.-L. Tsao, T.-Y. Huang, and C.-T. King. The
development and deployment of embedded software
curricula in Taiwan. ACM SIGBED Review,
4(1):64–72, January 2007.

[14] J. W. Valvano. Embedded Microcomputer Systems:
Real Time Interfacings. Thomson-Engineering, 2nd
edition, 2006.

[15] C. Walls. Embedded Software: The Works. Newnes,
2005.


