
Hands-on Oriented Curriculum and Laboratory Development for Embedded
System Design

Yu-Lun Huang and Jwu-Sheng Hu
Department of Electrical and Control Engineering,

National Chiao-Tung University, Taiwan

Abstract

As embedded systems are getting popular in industrial prod-
uct designs, a dedicated teaching laboratory for embedded
systems (EST Lab) has been setup for college and graduate
students to get familiar with embedded system engineering
and researches. In this paper, we present our experiences in
embedded system education curriculum and teaching labo-
ratory design carried out in the past few years. Accompa-
nied by a series of courses with hands-on exercises, students
can understand the whole picture of embedded systems in a
more systematic way. To give students a comprehensive view
of embedded systems, the curriculum includes not only em-
bedded hardware architectures and operating systems but
also embedded user-level software designs. We select the
most popular and available open-source operating system,
Linux 2.6, as the primary experimental platform for all lab-
oratory practices. In addition to the course design, several
research results derived from this laboratory are also pre-
sented in this paper.

1 Introduction

Thanks to the advances of system-on-chip (SoC) technolo-
gies, market size of embedded industries has expanded much
quicker than it used to be. With the highly competition
among this industry, product quality, cost and time-to-
market pressure, all introduce more design burdens to em-
bedded engineering. One of the trends to tackle this timely
development requirement is to shift more of the design effort
to embedded software side where the extension and modifi-
cation could be prompt and more flexible. As a result, the
key enabler to a successful design is to rapidly develop and
deploy innovative and stable embedded software modules.

Since embedded software has not been sufficiently com-
plex or general to warrant the effort, it has been ignored
by academics for years [9]. However, this was changed re-
cently with the increasing demands from industries. From
the papers published in recent special issues and workshops
dedicated to embedded system education [1][6][5][13], we can
also observe the increasing interests paid by academic com-
munity towards this area.

In response to such a demand, Ministry of Education
(MOE) of Taiwan has been running the VLSI Circuits and
Systems Education Program since 1996. The embedded
software consortium (ESW) [10], established in 2004, is
funded by MOE Taiwan under the program. It addresses
the challenges of embedded software for SoC systems. With

the funding from MOE Taiwan and National Chiao-Tung
University (NCTU), Department of Electrical and Control
Engineering has set up an Embedded System Teaching Lab-
oratory (abbreviated to EST Lab) in 2004. We also designed
a series of training courses to meet the design trend of em-
bedded software mentioned above.

The EST Lab is equipped with various ARM-based ref-
erence platforms, such as Samsung ARM7 S3C4510, TI
OMAP dual-core processor platforms etc, as well as their
development tools. In the laboratory, embedded Linux is
adopted for these experimental platforms. The availability
of the source codes enables students to design hands-on ex-
periments in board-support package (BSP), boot loaders,
hardware abstraction layer (HAL), kernel, device drivers,
dual-processors communications, and various hardware-
software interfaces. Students can practice embedded OS
programming skills such as multi-tasking, real-time schedul-
ing and synchronization. The abundance of Linux-based
open source projects also gives students reference materials
to design sophisticated projects. The open source commu-
nity enlarges the classroom so that students can broaden
their learning scopes once they are familiar with fundamen-
tal skills. To comply with the open source spirit, projects
developed in the laboratory are also open to the open com-
munity.

To bring embedded systems closer to students [11] and
shorten the gap between school and industry, the objective
of this laboratory is two-folded: to provide a series of em-
bedded software design courses for full-time EE students and
to support industrial hands-on training courses. Combined
with the industrial training programs, it is our hope that this
laboratory will provide an interactive environment among
the local industries, students and instructors. In this pa-
per, we describe our philosophy of the course design for the
school curriculum and industrial training programs. This
paper also presents the issues, challenges and experiences
in setting up an embedded system teaching laboratory and
designing appropriate educational programs for embedded
engineering.

2 Curriculum

The increasing complexity of embedded systems requires
new design approaches. The emphasis is moved toward high-
level tools and hardware/software tradeoffs, rather than just
low-level assembly-language programming and logic design.
Thus, in designing embedded system courses, we focus not
only on low-level logic designs, but also high-level embedded

1



software designs.
The low-level logic design starts from introducing to

microcomputers, fundamental computer architectures and
DSP programming. The high-level software design empha-
sizes more on kernel primitives of embedded operating sys-
tems, software/hardware co-design and embedded software
applications. The development of the curriculum is to pro-
vide in-depth training in embedded hardware and software
co-design, which is mostly demanded by the industry. For
students interested in SoC applications and system inte-
gration, this curriculum should provide courses on general
overview of embedded systems, embedded operating systems
and development tool kits. We develop a curriculum of three
categories (see Figure 1) to meet the above requirements.
In the following sections, we describe the philosophy of the
course design for both college students and industrial train-
ing programs.

To make students systematically and progressively learn
about the embedded systems know-how, the courses are di-
vided into two stages: fundamental and advanced courses.
The fundamental courses include the “Introduction to Mi-
crocomputer”, “Embedded OS”, “Introduction to Computer
Sciences”, “Data Structure”, “Embedded Java Program-
ming”, etc. After taking these basic courses, students are
able to continue taking advanced courses, such as “Real-
Time Embedded OS for System on Chip”, “Embedded Mid-
dleware” and “Advanced Projects”. The curriculum of em-
bedded systems is illustrated in Figure 1. In the figure, the
link between two courses (A → B) means one course (A) is
a prerequisite of the other (B).

Since software and hardware cannot be considered in-
dependently in today′s embedded application development,
the courses have covered hardware, operating systems and
software, as described below.

• Hardware
The fundamental hardware courses are “Introduc-
tion to Microcomputer” and “Computer Architecture”.
Taking 8051 as the basis, “Introduction to Microcom-
puter” introduces the instruction set, 8051 assembly
language, in-circuit emulator (ICE), timer, counter, in-
terrupts and how to drive I/O peripherals, etc. “Com-
puter Architecture” introduces the fundamental con-
cepts of processor architectures, including the basic de-
sign of control and datapath, the pipeline, memory sys-
tems and peripherals.

• Operating Systems
Operating systems play important roles between hard-
ware and software. It is necessary for students to know
the interaction between software applications and OS,
OS and hardware peripherals. To make students under-
stand basic concepts of embedded operating systems,
we have planned a fundamental course, “Embedded
OS”, and an advanced course, Real-Time Embedded
OS for System on Chip. The fundamental course fo-
cuses on the basic concepts of Operating Systems ser-
vices, such as multi-tasking, task synchronization, de-
vice drivers, kernel primitives and so on. This course
also introduces common embedded operating systems,
such as uCLinux [4], uC/OS-II [8], and VxWorks [14].
uCLinux can be used in non-MMU systems; uC/OS-II
is a highly portable, scalable, preemptive real-time OS
for microprocessors and microcontrollers; VxWorks is
widely used in industries, it is deployed in over 30 mil-

lions devices. The advanced course “Real-Time Em-
bedded OS for System on Chip” addresses on five top-
ics:

– the basics and in-depth knowledge of the real-time
operating systems (RTOS);

– insight of a real-time multi-tasking kernel (how it
is constructed);

– real-time task scheduling and resource access pro-
tocols;

– scheduling and schedule analysis of real-time
tasks; and

– performance and engineering considerations for
embedded programs.

The advanced course is intended for students who have
the basic knowledge of Embedded OS and DSP chips.
Therefore, “Embedded OS” and “DSP Programming”
are the prerequisites of “Real-Time Embedded OS for
System on Chip”.

• Software
The basic software courses include “Introduction
to Computer Sciences”, “Data Structure”, “Object-
Oriented Programming”, “Embedded Java Program-
ming” and “Embedded Software Design”.

“Introduction to Computer Sciences” explains how a
computer works while “Data Structure” introduces fun-
damental structures used in software programming, in-
cluding arrays, vectors, link lists, stacks, queues, trees
and graphs. It also introduces the basic sorting al-
gorithms and their complexities. “Data Structure”
is a prerequisite of many courses, such as “Object-
Oriented Programming”, “Embedded Java Program-
ming”, “Embedded Software Design” and “Embedded
OS”.

“Object-Oriented Programming” covers the program-
ming skills of C/C++ and Java languages. The course
gives ideas on how students can write portable codes
that can be reused across different architectures or com-
puter systems.

In “Embedded Java Programming”, it presents some
popular embedded Java platforms, the architecture of
Java Virtual Machine (JVM), embedded Java develop-
ment environment (J2ME Wireless Toolkit [7], Forte,
etc). It also introduces the test, debug and integration
tools for embedded Java platforms.

“Embedded Software Design” introduces the basic con-
cepts of software module design as well as a brief to
the Unified Modeling Language (UML). It introduces
the design flow of software modules in embedded sys-
tems, including module design, processes, timing anal-
ysis, host debugger, target debug agent, etc.

“DSP programming” is one of the mandatory courses
for EE students. In this course, students learn the
design concept of DSP chips, BIOS, fixed-point num-
bers, ALU Registers and so on. The “DSP program-
ming course” makes students understand the variances
among different embedded processors.

“Embedded Middleware” explains the concepts, fea-
tures and characteristics of common middleware pack-
ages, including Embedded Java Machine, RT-Corba,

2



Curriculum
Operating 
Systems

Hareware Software

Computer 
Architecture

Embedded OS

Real-Time 
Embedded OS
for System on 

Chip

Introduction to 
Microcomputer

Introduction to 
Computer 
Sciences

Object-
Oriented 

Programming

Data Structure

Embedded 
Middleware

Embedded 
Software 
Design

Embedded 
Java 

Programming

Advanced 
Projects

DSP 
Programming

Advanced

Fundamental

Figure 1: The curriculum of embedded systems.

Experiential Activity

Lecture

Concept

PracticeRealization

Observation

Figure 2: The stages of our teaching strategy.

GTK+, Qt, Microsoft .Net Compact Framework, etc.
“Advanced Projects” give students practical experi-
ments on designing embedded software modules and in-
voking operating system primitives. Students who take
this course will be assigned various works in implement-
ing different software modules, from kernel modules to
device drivers, on different reference platforms.

We emphasize experiential learning in some courses (like
“Embedded OS”, “Real-time Embedded OS for System on
Chip”, “Embedded Middleware”, “Embedded Software De-
sign,” etc). Students taking these courses can learn by do-
ing and by reflecting on the experiences. The experiential
learning activities include, but not limited to, hands-on lab-
oratory experiments, practicums, field exercises, and studio
performances. Based on this teaching strategy, teachers first
give lectures of basic concepts. Then, students take several
hands-on laboratory experiments or practicums and observe
the behaviors of an embedded OS or embedded processor.
Finally, students leverage what they learn from the observa-
tion and design a system for the project assigned to them.
Figure 2 shows the stages of our teaching strategy.

After taking these courses, we anticipate that these stu-
dents have been trained on product development. Upon
joining the R&D teams in the industry, they can contribute
themselves as soon as possible.

3 Laboratory: The EST Lab

Laboratories and experiments are essential for learning em-
bedded systems and software designs. We built up a teach-
ing laboratory (Embedded Systems Teaching Laboratory,

Host 
(PC)

Target 
(Creator, OMAP, 

etc)

RS232

USB/ 
JTAG

OscillatorOscillator

NIC 2

NIC 1

Network

Figure 3: The Development Environment with S3C4510B.

Figure 4: The Freerunner Development Kit.

abbreviated as EST Lab) for courses introducing embed-
ded system designs. In this section, we brief the hardware
facilities and software packages equipped at the EST Lab.

At the EST Lab, each development set contains one per-
sonal computer, one oscilloscope (LeCroy 9310A, 400MHz,
100 Ms/S) and one reference board, such as ARM7-based
reference platform, ARM9-based SOPC platform, TI OMAP
dual-core processor platform and Openmoko Neo Freerun-
ner, as shown in Figure 3 and 4. Table 1 lists the equipments
we prepare for courses of embedded systems and programs.

The S3C4510B platforms are ARM7-based reference
boards. They are mainly used in the fundamental courses
while the Creator ARM922T-EPXA1 and OMAP plat-
forms are for advanced courses. Upon developing net-

3



Table 1: Equipments in the EST Laboratory

Equipment Models Amount

Host Machine ASUS AS-D777 30
Oscilloscope LeCroy 9310A 30
Logic Analyzer Tektronix TLA5202 1
Platforms S3C4510B 36

Creator ARM922T-EPXA1 5
OMAP Innovator 5
OMAP Minno O5 5
OMAP 5912 20
Neo Freerunner 15
Nios-DEVKIT-2S30 2
Casira BlueCore2 2
JN5139 ZigBee 5

work/communication modules, the Neo Freerunner plat-
forms, equipping with Bluetooth, 802.11 and Tri-band GSM
interfaces, become the first choice to students. The Nios-
DEVKIT-2S30 development kit, containing a set of devel-
opment tools, hardware, software, intellectual property cores
and reference designs, can help realize students’ embedded
designs from concept to system. The BlueCore2 and JN5139
ZigBee are used to implement 802.15 devices forming wire-
less personal area network (WPAN). The laboratory, equip-
ping with comprehensive development kits and reference
boards, helps the realization and verification of theoretical
concepts given in the lecture classes.

4 Syllabus Designs

This section details the syllabuses of fundamental courses
(DSP Programming and Embedded OS) and advanced
courses (Embedded Middleware, Real-Time Embedded OS
for System on Chip).

4.1 DSP Programming

The course introduces the DSP programming with TI
TMS320C55x, which is a microprocessor with high-speed
computing ability for DSP applications. A DSP chip plays
an important role in embedded systems on information pro-
cessing and computing, including:

• Filtering and Adaptive Filtering

• Video and Speech Compression/Decompression

• Speech Recognition

• Echo Cancellation and Channel Equalization

• Coding/Decoding

• Speech and Music Synthesis

• Digital Control

The course also details the addressing modes, arithmetic
computations, analog-digital interfaces, DSP BIOS, FIR

(Finite Impulse Response) and IIR (Infinite Impulse Re-
sponse) filters, artificial reverberation, fast sine wave gener-
ator, and fast Fourier transform (FFT). With twelve prac-
tices, this course guides students through the embedded pro-
gramming for DSP applications. In addition, students tak-
ing this course are assigned with a final project, for example,
to implement a digital music synthesizer.

4.2 Embedded OS

In this course, we first introduce the basic concepts of em-
bedded operating systems, including:

• architectures of embedded processors (ARM7, ARM9,
MIPS, etc),

• RTOS services,

• task and scheduling,

• kernel primitives (semaphore, message queue, pipe, sig-
nal, conditional variable, event register),

• timer and timer services,

• I/O subsystems,

• memory management, etc.

Since operating systems are very abstract, we design a
serial of laboratory experiments so that students can learn
by practicing and observing. Taking a kernel primitive
‘semaphore’ as an example, we first introduce different kinds
of semaphores and their characteristics. Then, students can
create, update and delete semaphores by invoking Linux sys-
tem calls. They can also obtain the semaphore status by
executing the “ipcs” command. After that, students are
assigned a small project to mutual exclusively control the
keypad and LED on the target board. In the project, the
keypad and LED may access a shared variable protected by
the semaphore.

To make students familiar with the embedded kernel pro-
gramming, we design a series of practices, including multi-
tasking, semaphore, mutex, timer and signal, described as
follows.

• Lab 1: Setup Development Environment
The goal of this laboratory is to make students familiar
with the development environment, network operations
and Linux commands. In this practice, students learn
the cross development of embedded programs. They
also learn to load images and know the functionalities
of a boot loader.

• Lab 2: Building uClinux for Creator-S3C4510
The goal of this laboratory is to make student under-
stand the procedures in building embedded operating
systems, including (1) installing tool chains for cross
platform, (2) building kernels, and (3) downloading im-
ages and application programs. In addition, students
also learn the differences between network file systems
(NFS) and ROM file systems from this practice.

• Lab 3: Tasks
The laboratory illustrates vfork(), wait() and POSIX
thread programming. It helps students understand the
differences between processes and threads and also the
different behaviors in MMU and non-MMU systems.

4



• Lab 4: Embedded Semaphore and Mutex
The laboratory helps students learn the behaviors of
semaphore and mutex. They also learn how to synchro-
nize their processes and threads by using the system
calls semget(), semop(), semctl() and POSIX library
calls pthread mutex init(), pthread mutex lock()
and pthread mutex unlock().

• Lab 5: Signal and Timer
The goal of this laboratory is to illustrate the con-
cepts of asynchronous programming on embedded sys-
tems. Students will be familiar with the system calls
sigaction(), kill(), setitimer(), etc.

After these practices, several projects will be assigned to the
students, such as the implementation of echo services, web-
based digital camera. In such projects, students learn to
write CGI (Common Gateway Interface) programs and port
an embedded web server, such as Boa web server, to the
targets and then build an embedded digital camera server
on the embedded Linux.

4.3 Embedded Middleware

Middleware can be applied to a variety of applications,
including messaging, database, communication and so on.
Middleware functions as a conversion or translation layer
between two or more applications running on different plat-
forms or come from different vendors. Basically, middle-
ware provides standard communication services and inter-
faces for networked applications. The lecture topics given
in this course include:

• client/server concepts and their building blocks,

• distributed objects technologies (Java RMI, CORBA,
.Net, etc,)

• component technologies (EJB architecture, etc.)

We mainly address on embedded middleware that can
be executed on embedded platforms with restricted or spe-
cial computing resources. In addition, we introduce middle-
ware used for implementing graphical user interfaces, such
as GTK+ and Embedded Qtopia.

The laboratory practices designed for this course empha-
size how to choose an appropriate embedded middleware ac-
cording to the characteristics and features of the embedded
application. We also have students to learn the embedded
software development flow through the software specifica-
tion, software block design, API definition, and functional
verifications. In the first four weeks, students are required
to design an application, such as calculator, game of guess-
ing words, cross-n-check, etc. The students learn to study
the feasibility of their design. They also write the functional
specifications, high-level designs, low-level designs and test
plans.

In this course, four middleware packages supporting dis-
tributed object technologies are introduced. For each mid-
dleware, three laboratories are assigned to realize one appli-
cation on three platforms, Linux (PC), Windows (PC) and
Embedded Linux (TI OMAP 5912). Students implement
their own designs according to the functional specifications,
high-level designs and low-level designs we mentioned above.
In the end of the semester, students should be able to under-
stand the importance of embedded middleware, and capture
the essence of distributed object technology. In addition,

they learn to develop small distributed applications using
Java, .Net, CORBA or similar middleware packages.

4.4 Real-Time Embedded OS for System on Chip

The main goal of the course is to teach students theory and
practical knowledge of embedded OS on System-on-Chip.
In addition to concepts of real-time multi-tasking kernel,
scheduling and performance, this course also asks students
to program on the embedded RTOS (using TI DSP BIOS
on TMS320C5510) and on the dual-core embedded processor
(TI OMAP 5912).

OMAP 5912 has a C55 DSP processing digital signals
and an ARM9 core running Montavista Linux. The two
processors can communicate with each other via a shared
memory and the DSP gateway. The laboratories designed
for this course include:

• Lab 1: Getting Started
Students should build up the development environ-
ment, including TI DSK5510 and TI OMAP 5912.
In this practice, students also learn the fundamental
features of TI DSK5510 (DSP), codec TLV320AIC23,
MCBSP (multi-channel buffered serial port), etc. An
example program is given to illustrate the data pro-
cessing of DSP. Students need to trace the example
program, modify control parameters and give the tim-
ing diagrams and explanations for their observation.

• Lab 2: I/O Bound Multi-tasking
Students should learn I/O bound multi-tasking on
DSK5510 in this laboratory. By taking a pitch shift-
ing algorithm as an example, students learn how it can
be realized on DSK5510. The implementation can be
done by interpolation and decimation. After this prac-
tice, students should be able to know how to perform
sampling, data conversion, read and write operations
on DSK5510.

• Lab 3: Streamed Data Processing
The objective of this practice is to learn real-time kernel
programming. Students learn to coordinate hardware
interrupt, software trap and periodic multi tasking sup-
ported by DSP BIOS. In this practice, students will im-
plement an 8-channel multi-rate filter bank using block
data input for both left and right stereo. They will give
the CPU load information for different block size and
explain the relation of the size and the CPU load.

• Lab 4: Embedded Linux Programming
The objective of this laboratory is to practice embed-
ded OS programming on a dual-core processor. The
target is TI OMAP 5912, which contains an ARM 9
core and a 16-bit DSP core. The ARM is typically
used to run a general purpose operating system such
as embedded Linux, Windows CE or QNX, while the
DSP, running TI DSP/BIOS, dedicates on real-time
computation and I/O operations. In this practice, stu-
dents will be familiar with U-Boot, Montavista Linux
kernel, NFS, JFFS2 and DSP/BIOS. Students are as-
signed to implement a system that reads the sine wave
data from the file on the ARM side (Embedded Linux),
and passes the data to the DSP side. Then, the DSP
chip transforms these data by a pitch shifting algorithm
and then passes the result back to the ARM core. The
result is compared with the original sine wave to verify
its correctness.

5



• Lab 5: Dual Processors
It is not easy to exchange data between dual proces-
sors. In this laboratory, students will learn the meth-
ods for real-time data change between dual processors,
using DSP gateway provided by TI development kits.
It is not easy to exchange data between dual proces-
sors. In this laboratory, students will learn the meth-
ods for real-time data change between dual processors,
using DSP gateway provided by TI development kits.
This practice is to design a complete system with the
OMAP 5912, say an audio player. Figure 5 illustrates
the general framework of the dual core system.

The system takes the incoming stereo audio signal and
converts it to digital data at a given sampling rate by
the audio codec AIC23. The DSP task processes the
digital data and passes it to the audio codec to convert
it to the analog signal. With the user interface running
on the GPP (ARM), the users are able to control the
behaviors of the audio player.

In the former three laboratories, the practices will be real-
ized on TI DSPK5510, while the last two practices are imple-
mented on OMAP 5912. We use real-time signal processing
examples which represent most of the embedded real-time
systems in these laboratory practices.

5 Master Research Projects

The above courses also benefit some of the students on their
master research projects of embedded systems. The grad-
uate students who took these courses used the equipments
provided by the EST Lab on their project emulations, exper-
iments and prototype systems. In this section, we introduce
the achievements of those graduate students who used the
facilities at the teaching laboratory to complete the research
projects as their master degrees [3][15][12][2].

5.1 Real-Time Codec: H.264

In the first research [3], the student took OMAP Innovator
as his experimental platform and implemented a real-time
video codec on a dual-core architecture (RISC and DSP), as
shown in Figure 5.

The implementation includes I-frame, P-frame, Intra-
prediction, Unrestricted Motion Vector (UMV), etc. Tasks
in this system are dispatched to the dual processors to gain
a better performance. On DSP, the student uses the im-
age hardware extension to speed up the computation. On
RISC, the student adopts Linux as the embedded operation
system and development environment. For inter-processor
communication, the student uses DSP Gateway to make the
communication possible. In this work, two Innovator refer-
ence boards are used to setup the experimental and testing
environment. In this experiment environment, one Innova-
tor runs encoder and the other runs decoder. The com-
pression information is transmitted through the Ethernet.
Finally, to improve the overall system performance, the soft-
ware pipelining concept is implemented among processors,
RISC instructions are executed while waiting the comple-
tion of DSP instructions. In this work, the final system
performance of 7.6 frames/sec can be achieved.

 Figure 6: Power-on sequences captured by the oscilloscope.

 Figure 7: Boot sequence captured by the logic analyzer.

5.2 Fast Boot

In the second research [15], the student tries to minimize
the boot time of the embedded Linux 2.6.14 kernel with
the empirical approaches. For the experimental purpose,
TIs ARM9-based OMAP5912 development kit is selected as
our reference platform. Firstly, the student analyzes the
boot sequence of the kernel and measures the time needed
for each functional block using the oscilloscope and logical
analyzer (Tektronix TLA 5202), as shown in Figure 6 and 7.

With the collected timing data, the student hacks in the
related codes of U-Boot, Linux kernel and BusyBox that
expose long execution time and study whether they can be
either simplified by rewriting the codes or even skipped with-
out any side effect. As a preliminary result, he has identified
several points in the boot sequence that can be reworked to
achieve faster boot time. In his experiments on the refer-
ence platform and with the suggested kernel configuration,
the student has achieved the instant boot of U-Boot 1.1.3,
Linux kernel 2.6.14 and BusyBox 1.01 by greatly reducing
the total boot time from 7934.41 ms to 1477.77 ms which
is considered as one of the important features on many em-
bedded systems.

5.3 Starfish: A Wheeled Robot

Starfish [12] is an intelligent and power saving wheeled
robot, designed for omni-directional transportation plat-
form. It is implemented by the research team led by Profes-
sor Jwu-Sheng Hu in 2006. Its major structure components
are three specially designed omni-directional wheels. Omni-
directional wheel structure is that there are several ellipti-
cal rollers around a rounded wheel axis. The angle between
those roller axis and wheel axis plane is adjustable. The
roller adjusts the upright wheel axle so that the wheel can
rotate and become parallel to the wheel axle. This wheeled
robot is realized on OMAP5912, as shown in Figure 8.

6



ARM ARM DSP

Encoder
Task

Monitor
Task

VLC &
Server

Video 
Capture

ARM
Display 
Process

Monitoring

Shared
Memory

DSP

VLD & 
Client

Monitor
Task

Display
Task

Decoder
Task

Monitoring

ethernet

CMOS Sensor LCD Display LCD Display

Figure 5: Real-time codec implementation using a dual-core processor.

Figure 8: Starfish: A wheeled robot.

5.4 AshFS: A Personal Network Filesystem Sup-
porting Mobility

Traditional network file systems always assume that the user
has a strong and steady connection. Although a desktop
client is usually well-connected to the server, a mobile client
frequently loses the connection. In addition to the unpre-
dictable connectivity, bandwidth of the wireless network is
widely-varying and precious. In this paper, the student pro-
poses a design and implementation of a new mobile file sys-
tem, AshFS [2], which can deal with these situations auto-
matically. AshFS supports some advanced features includ-
ing disconnected operation and automatic synchronization.
AshFS can also reduce the bandwidth consumed in access-
ing data contents and synchronizing the filesystem. In the
AshFS mobile client, a cache and a connection manager are
implemented for effective data synchronization. Files are
kept in the cache when a poor network connectivity is de-
tected by the connection manager. Figure 9 illustrates the
architecture of AshFS. The research team realizes the AshFS
client modules on Neo Freerunner. Experiments show that
AshFS has a better throughput and a lower protocol over-
head, and the network status does not influence its perfor-
mance much.

6 Student Feedbacks

We implement several questions to get feedbacks from the
students on how they perceive our courses. The students fill
out questionnaires to reflect how they feel about the course
and the teacher. The anonymity of the questionnaires helps
obtain honest feedbacks from students. Then, teachers can
adjust their teaching styles and contents according to these

AshFS
Application

AshFS
Library

VFS

AshFS
Kernel 
module

Ext3 Module

AshFS
Secure Client

cache 
hit?

Y

N

User Space

Kernel

Internet
AshFS 
Server

AshFS Client Device

Figure 9: The architecture of AshFS.

feedbacks.
Taking “Embedded OS” as an example, the course is now

in its fifth offering. In the first offering, only lectures were
presented. The lectures consisted of the building blocks of
uCLinux only. The students were evaluated by their achieve-
ments of two examinations (40% for each) and one survey
report (20%). At the end of the first semester, from the
survey of the students opinions, we concluded the following
suggestions:

1. Students could not get clear pictures about the abstract
concepts of kernel primitives.

2. Students expressed their interests of learning more
embedded operating systems, such as Windows CE,
uC/OS-II, etc.

Thus, we designed the first five hands-on practices, men-
tioned in section 4.2, as the realization of the concepts we
introduced in the class. These hands-on practices were given
in its second offering. In addition, we also added more lec-
ture topics regarding the introduction of more kernel prim-
itives and libraries of Linux-based operating systems. The
result of the semester survey showed that:

1. Most students learned a lot from the lectures and the
practices.

2. Some students expressed their interests to having more
hands-on;

3. Others pointed out the difficulties they encountered in
doing the practices.

7



To help students catch up as soon as possible, in our third
offering, we added some example codes in our hands-on prac-
tices. The survey of the third offering indicated that most
students were satisfied with the courses. After the third
offering, we also introduced some information to the lat-
est designs of embedded products. Students were evaluated
according to their achievements of an examination (20%),
six laboratory experiments (30%), three projects (30%) and
one survey report (10%). The course was good from the
feedbacks after its third offering, surpassing the evaluations
from the first two offerings of the course.

Due to the limited quantities of experimental boards, we
offered thirty vacancies to register to this class in the first
three offerings. Students requested to open more opportu-
nities for registering to the class, so starting from the fall of
2007, we have been giving the course every semester, instead
of every year. Hopefully, we can shorten the gap between
the school and industry through the series of courses.

7 Conclusions and Future Work

In this paper, we present the design concept of our curricu-
lum for embedded systems, from basic courses, computer
architecture and data structure, to the advanced courses,
embedded operating systems for SoC and embedded mid-
dleware. Since our university is located next to the famous
Hsinchu Science Park, we also consider the demand of in-
dustries when designing the curriculums and syllabuses. In
addition to basic principles, we emphasize on a variety of
different embedded platforms as well. Throughout a sys-
tematic learning and training, we anticipate our students
can learn more about practical knowledge and skills. To
make the courses in this curriculum more practical, we build
up a teaching laboratory, EST Lab, and try to provide
students an environment to realize the concepts they have
learned from the courses. Some introductory materials of
our courses have been uploaded to MOE Taiwan and shared
with all other academics.

The courses in this curriculum have been given for more
than three years. After the laboratories and training, stu-
dents should be made aware of the issues concerning the
product development, such as embedded software module
design, functionality and performance test, debug, and so
on. Students are also ‘encouraged’ to make themselves fa-
miliar with new development environment, for example, dif-
ferent microprocessors, embedded operating systems, cross-
compilers and tool chains. Then, they can soon contribute
their know-how to the industrial organizations as they fin-
ish this program. In addition, the equipments in the EST
Lab also help students to go deeply into the core of the
embedded systems, including hardware design and software
modules. It educates and nurtures the research power in de-
signing hardware, operating systems and software modules
for embedded systems.

Acknowledgment

The authors would like to thank the reviewers for their con-
structive suggestions, as well as the Ministry of Education of
Taiwan, the ESW consortium and the Department of Elec-
trical and Control Engineering, National Chiao-Tung Uni-
versity for the financial supports in setting up the EST Lab.

References

[1] Burns, A. Editorial. Trans. on Embedded Computing
Systems 4, 3 (2005), 469–471.

[2] Chang, L.-Y., and Huang, Y.-L. AshFS: A
Lightweight Mobile File System Supporting Discon-
nected Operations. Master’s thesis, Master Thesis of
Institute of Electrical and Control Engineering, Na-
tional Chiao Tung University, 2008.

[3] Chou, C.-C., and Hu, J.-S. Real-Time Video Codec
Implementation Using a Dual-Core Processor. Mas-
ter’s thesis, Master Thesis of Institute of Electrical and
Control Engineering, National Chiao Tung University,
2004.

[4] Embedded Linux/Microcontroller Project.

[5] Huang, T.-Y., King, C.-T., Lin, Y.-L. S., and
Hwang, Y.-T. The Embedded Software Consortium
of Taiwan. Trans. on Embedded Computing Sys. 4, 3
(2005), 612–632.

[6] Jackson, D. J., and Caspi, P. Embedded Systems
education: Future Directions, Initiatives, and Cooper-
ation. SIGBED Rev. 2, 4 (2005), 1–4.

[7] Java Technology. Java 2 Platform, Micro Edition
(J2ME).

[8] Labrosse, J. MicroC/OS-II: The Real-Time Kernel,
second edition. CMPBooks, 2002.

[9] Lee, E. A. Whats Ahead for Embedded Software?
Computer (2000), 18–26.

[10] Ministry of Education Taiwan. The ESW Consor-
tium, VLSI Circuits and Systems Education Program.

[11] Muppala, J. K. Bringing Embedded Software Closer
to Computer Science Students. SIGBED Rev. 4, 1
(2007), 11–16.

[12] Sun, L.-H., and Hu, J.-S. Implementation of DOA for
Speech Using OMAP5912 on a Wheeled Robot. Mas-
ter’s thesis, Master Thesis of Institute of Electrical and
Control Engineering, National Chiao Tung University,
2006.

[13] Tsao, S.-L., Huang, T.-Y., and King, C.-T. The de-
velopment and deployment of embedded software cur-
ricula in taiwan. SIGBED Rev. 4, 1 (2007), 64–72.

[14] Wind River. Wind River VxWorks.

[15] Yang, C.-C., and Huang, Y.-L. An Empirical Analy-
sis of Embedded Linux Kernel 2.6.14 to Achieve Faster
Boot Time. Master’s thesis, Master Thesis of Institute
of Electrical and Control Engineering, National Chiao
Tung University, 2006.

8


	Introduction
	Curriculum
	Laboratory: The EST Lab
	Syllabus Designs
	DSP Programming
	Embedded OS
	Embedded Middleware
	Real-Time Embedded OS for System on Chip

	Master Research Projects
	Real-Time Codec: H.264
	Fast Boot
	Starfish: A Wheeled Robot
	AshFS: A Personal Network Filesystem Supporting Mobility

	Student Feedbacks
	Conclusions and Future Work

