
Use of Discrete and Soft Processors
in Introductory Microprocessors and

Embedded Systems Curriculum
Sin Ming Loo

Electrical and Computer Engineering Department
Boise State University

Boise, Idaho 83725
208-426-5679

smloo@boisestate.edu

C. Arlen Planting
Electrical and Computer Engineering Department

Boise State University
Boise, Idaho 83725

208-426-4826
clarenceplanting@boisestate.edu

ABSTRACT
This paper describes a sequence of two courses, starting with the
teaching of introductory microprocessor concepts and extending
to advanced embedded system programming. The introductory
microprocessor course is taught using a soft processor with a
field-programmable gate array as the development platform, a
combination which allows the course to undergo continual
improvement without being limited by fixed hardware. The
second course builds on the foundation of the first course, with an
emphasis on working with advanced devices, building complete
embedded systems, and developing embedded programming skills
with different targets. This paper describes the experiences gained
from the first course, and the detailed plan for the second course.
This paper also describes which tools to include and which to
leave out in the learning process for this process to be most
effective from both the students’ and instructor’s perspective.

Categories and Subject Descriptors
K.3 [Computers and Education]: Computers and Education -
General

General Terms
Experimentation

Keywords
Microprocessors, Soft Processor, Field-Programmable Gate
Array, Curriculum

1. INTRODUCTION
Most microprocessors courses have traditionally been taught
using a discrete microprocessor, such as Motorola 6800, Intel x86,
ARM, or IBM PowerPC series [1]. The x86 platform has
historically been the one utilized in the microprocessors course at
Boise State University (BSU). The introductory microprocessors
course at BSU taught only assembly language programming with

little emphasis on other language skills.

The advent of field programmable gate arrays (FPGAs) and
access to more powerful embedded processors has made it
possible for students to tackle much larger projects than in the
past. Increasingly sophisticated projects involving robotics,
digital radio communications, MP3 players, video interfacing, and
various sensors are more meaningful and exciting to the students,
but also require a higher level of proficiency in programming. In
our experience most electrical engineering students have learned
to design hardware well, but lack the software skills to adequately
demonstrate the functionality of that hardware. These skills would
not only benefit students in advanced digital courses, but would
also increase the students’ future value in the workplace.

To address these issues, there has been an ongoing effort at BSU
since 2004 to update the computer engineering courses. An
integral part of every stage in updating BSU’s core computer
engineering courses involves the use of FPGAs in place of
traditional development boards, taking advantage of the fact that
the functionality of an FPGA can be changed without requiring
physical changes to the board itself.

The endeavor started in the sophomore Digital Systems (EE230)
course, with the major change being the introduction of a low-cost
FPGA in place of the prototyping board with discrete components.
The updated course has been very well received, and provides
students an early exposure to reconfigurable hardware concepts.
This sets the stage for the introduction of a soft-core processor in
the microprocessors course.

Individuals familiar with FPGAs and soft core processors might
assume that this approach would necessarily include teaching the
entire suite of processor configuration tools, which could be
overwhelming for both students and instructors. Key to the
success of the microprocessors course update was the strategic
decision to expose the students to only the processor program
development tools, with the instructors responsible for usage of
processor configuration generation tools. This enabled the
students to concentrate on learning how to use a microprocessor
rather than how to configure it.

Our next updating effort was the junior microprocessors course,
with major updates including introduction of the C programming
language, stressing the use of structures, unions, and pointers; use
of a soft core microprocessor, and a sizable FPGA as the
development target. The updated microprocessors course has also

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’08, October 23-24, 2008, Atlanta, GA, USA.
Copyright 2008 ACM 1-58113-000-0/00/0004…$5.00.

been very well received. Students indicated the heavy workload
was worthwhile. This is the last course in our electrical
engineering curriculum where students will interact with
processors unless they select a system-level design project
involving processors in their capstone senior design sequence.

Students have inquired which course they should take if they want
to study advanced topics in microprocessors systems or embedded
system design. Our curriculum has elective computer engineering
courses in hardware description, system testing, and
hardware/software co-design, but none as the natural follow-up to
the new microprocessors course.

The remainder of this paper describes the experiences gained from
teaching the first course (microprocessors) in the two-course
sequence, and the plan for the second course (embedded and
portable computing). Section 2 outlines BSU’s electrical
engineering curriculum and pre-update computer engineering
courses. Sections 3 and 4 discuss the goals and resource selection
for updating the course sequence. Section 5 provides details of the
re-designed microprocessors course, including selection of which
tools will be presented to the students. Section 6 presents our plan
for the subsequent course. A summary and conclusions are
presented in Sections 7 and 8.

2. EXISTING SITUATION
The Department of Electrical and Computer Engineering at Boise
State University (BSU) offers an ABET-accredited Bachelor of
Science in electrical engineering with computer engineering as an
option. BSU also has an ABET-accredited Computer Science
program, but does not have a separate computer engineering
program. One of the core courses offered at Boise State
University for students specializing in computer engineering is the
Microprocessors course. The students take Microprocessors after
they have taken Introduction to Computer Science (basic software
skills and object oriented programming with Java) and Digital
Systems (sophomore digital logic course).

The Microprocessors course at Boise State University covers
microprocessor architecture, software development tools, and
low-level hardware interfacing with emphasis on 16-bit and 32-bit
microprocessor systems. Machine and assembly language
programming, instruction set, addressing modes, programming
techniques, memory systems, I/O interfacing, and handling of
interrupts are among the topics studied with practical applications
in data acquisition, control, and interfacing. This course was
reported to be a favorite of many students, largely because of the
interesting devices (such as the magnetic card reader) that could
be played with by the end of the course. The intent was to retain
and potentially enhance this characteristic of the course with the
changes implemented.

Since the microprocessors course (lecture and lab) is a requisite
for both electrical and computer engineering (ECE) and computer
science students, the course must endeavor to address the
disparate interests and needs of students in both disciplines. In
addition to those specializing in computer engineering, the ECE
group includes students interested primarily in other areas such as
integrated circuits, communication and signal processing, control
systems, power and energy systems, etc. Most computer science
students are more interested in hardware with an operating
system. Therefore it is important to attempt to achieve a balance
in the course that will adequately teach electrical engineering and

computer science students the needed fundamentals of
microprocessors, while also providing the computer engineering
students a solid foundation for advanced courses.

A course titled “Embedded and Portable Computing Systems”,
specifically addressing embedded design with the PIC
microcontroller, has been offered at BSU. This was a primarily
hardware-oriented senior/graduate level course utilizing assembly
language only. Students taking this class received no C
programming instruction.

3. GOALS
The goals of the updated two-course sequence were to more
effectively teach the basics of microprocessor programming using
updated technology, and to build on the foundation gained in the
Microprocessors course to expand what is covered in the
Embedded Systems course.

It was decided that the updated Microprocessors course would
involve:
• A RISC microprocessor (MIPS-like)
• Simple memory-mapped devices (LEDs, switches, buttons)
• Initial use of assembly language to understand processors
• Transitioning the knowledge of microprocessors from

assembly language to the C language [2]
• Coverage of topics such as polling, time management (delays

vs. timer), interrupts and interrupt service routines (ISRs)
• Advanced devices, such as character LCD, pulse width

modulated (PWM) DC motors and A/D conversion

The new follow-on Embedded Systems course would include:
• Advanced time management issues and usage of state

machine construct in order to manage time
• Introduction of microcontrollers (specifics of memory and

device and how they relate to programming)
• How coding can affect the ease of transferring code to other

platforms (retargetability)
• Advanced devices (I2C, SPI, USB, UART) from hardware

and software perspectives
• Sensors and component interfacing (wiring)
• Use of test equipment to aid system development and

debugging

The selection of resources to accomplish these goals is discussed
in the following section.

4. SELECTION OF RESOURCES
4.1 Development Board and Tools
The two-course sequence was updated to utilize a soft processor
instantiated on an FPGA. A board that had previously been used
in graduate level courses at BSU - the Altera DE2 (shown in
Figure 1) with Nios II processor - had most of the desired
features, including:

• Classic RISC architecture closely approximating MIPS
• Variety of memory types (FPGA on-chip memory, SRAM,

SDRAM, and Flash)
• Numerous attached devices plus two expansion headers for

future add-ons (device support for USB, audio, VGA,
Ethernet, UART, PS2, secure digital, and expansion headers)

In addition, the following are available from Altera for use with
the development board:
• Free software integrating industry-standard development and

debugging tools (e.g. GNU, Eclipse IDE, GCC compiler and
GDB debugger) that students are likely to encounter in their
careers

• Instruction set simulator (allowing work to be done at home)
provided free with software tools from Altera

Best of all, the board is reconfigurable, allowing a different
configuration for each lab and final project. A soft processor is
very expandable with new interfacing hardware written in
hardware description language. This feature allows the instructor
to quickly create different configurations in order to easily meet
different needs of various projects, and various courses. In
addition, it gives an opportunity to demonstrate hardware/software
co-design concepts in subsequent courses.

Figure 1. Altera DE2 Development and Education Board [3]

Since a soft processor is a microprocessor core that can be wholly
implemented using logic synthesis, this provides the capability to
expose the students to numerous different hardware
configurations in a single course. When covering topics such as
unimplemented instruction exceptions or the effects of working
with or without cache, real instances can be demonstrated rather
than only discussed from a theoretical standpoint. For example, a
processor configuration with the hardware multiplier
unintentionally omitted provided an object lesson in what is and is
not supported in the hardware and how the processor handles
unexpected behavior. (The usage of the div assembly instruction
will result in an exception and send the program counter to
exception address (0x20).)

Dedicated boards require that a connection resource be
permanently allocated for specific purposes, thus limiting usage of
the board. Conversely, a soft processor is analogous to a theater
where a new stage set can be brought in for each new production.
Each device/concept can be introduced with a unique processor
configuration. For example, the concept of cache memory can be
illustrated by using different configurations to generate a
processor with cache and one without cache and comparing
instruction performance and results.

As new devices become available or new instructional materials
are developed, they can more easily be integrated into the course
curriculum with a soft processor. If other devices in addition to

those available on the DE 2 board are desired, that device or
sensor can be put on an external board and installed on one of the
IDE-like connectors. Any necessary hardware interface can be
done in HDL (Verilog or VHDL) and this HDL design will
directly connect to the Avalon bus which provides quick and easy
access to the Nios II processor.

Unlike a discrete processor, all of the work does not need to be
done weeks ahead of time and developed on a dedicated board for
continued use months/years into the future. Minor changes to labs
can be made each year without requiring major redesign of
dedicated boards. The configuration of the soft processor can
grow or shrink as needs dictate. Simple configurations can be
used at the beginning so students can more easily grasp the big
picture; more complex configurations can be generated as their
understanding increases. If a project requires multiple UARTs, it
is easy to add them. Developing custom configurations for the
course final projects is quick and easy.

In evaluating the use of FPGAs for the two-course sequence,
several apparent disadvantages were addressed. Cost was one
consideration. The general perception is that FPGA-based
solutions are more expensive than utilizing a discrete board.
However, this is not necessarily accurate when one factors in the
savings provided by the reconfigurable aspect vs. add-ons
necessary with a discrete board. (The Altera DE2 lists for $495,
or $269 student price; BSU received a special academic discount
to reduce the price to ~$150). The FPGA proved cost-effective
when taking into account not only the initial cost of the discrete
board, but the total cost with add-ons to provide comparable
functionality.

Other apparent disadvantages had to do with the processor
configuration, including the need for 1) extra instruction to
understand reconfigurable aspects (higher abstraction level, need
to instantiate every time), and 2) the creation of processor
configurations. In the lower level courses, creation of processor
configurations was done by the instructor. Though this requires
additional effort on the part of the instructor, the capability to
change the functionality an unlimited number of times to fit the
desired application provides a distinct instructional advantage.
Also, once a configuration is done it is reusable for future
semesters.

Though the soft processor was considered the best instructional
platform, it is acknowledged that it still needs occasional
comparison (via demonstration) to traditional discrete
microprocessors.

4.2 C Programming Language
Since the C language is the choice for implementation of today’s
dominant operating systems [4], including Windows and Linux
[5], it seemed prudent to follow suit with this precedent. Though
C++ has more features than C, these features are not particularly
useful in teaching microprocessors and do not offset the fact that
it is more difficult to learn than C. In addition, many small
microcontrollers (such as the Microchip PIC) are not supported by
C++ compilers.

5. MICROPROCESSORS COURSE WITH
SOFT PROCESSOR
This course needed revamping to become more representative of
what practicing computer engineers deal with on a daily basis,

including embedded systems without operating systems. The
ultimate objectives are to update the course using a modern
development environment with modern debugging capabilities, to
teach the basics of microprocessor programming (assembly plus
C), and to have the students practice these skills with realistic
laboratory assignments and projects.

The Microprocessors course is a one-semester course consisting
of two separate parts, the lecture (ECE 332) and the lab (ECE
332L). Though ECE 332 and ECE 332L are co-requisites, each
part is individually graded and assigned credits (3 credits for the
lecture, and 1 credit for the lab). Lecture classes are taught twice
a week in two 1 hour-15 minute sessions, and the lab portion
consists of a 3-hour session once a week. The rest of this section
contains details of our course update and implementation,
including educational methodology, course details, and outcomes.

5.1 Approach
The primary changes in the updated Microprocessors course
involved selection of a MIPS-like processor implementation
(RISC architecture vs. the CISC platform previously used),
teaching the C programming language in addition to assembly,
and utilizing a modern development platform and tools.

Although CISC x86 is the most prevalent microprocessor
architecture, this doesn’t necessarily equate to the best educational
platform for teaching basic microprocessor concepts. The
instructions for CISC platforms are variable in length, which
complicates learning compared to the fixed length instructions for
RISC platforms. As many of the instructions available with the
CISC are not applicable to the basic microprocessors course, the
significantly smaller set of instructions provided for a RISC
platform was considered more appropriate. In addition, the
students will also use RISC when they take the Computer
Architecture course.

Introduction of the C programming language to the
Microprocessors course was proposed because of its ability to
enhance productivity and portability with minimal overhead. The
course would introduce just enough material from the C
programming language that students could work with devices at a
low level. This would minimize the overlap for the computer
science students, and also give some ECE students their first
exposure to the C programming language.

Before updating the Microprocessors course, an experimental
course addressing the usage of the C programming language for
embedded applications was undertaken (taught in Spring 2007) to
investigate methods of incorporating the C language in the
electrical engineering curriculum. The experimental course
included an accelerated presentation of the C language directed to
specific course objectives. When it became apparent that some of
the students were struggling with the accelerated approach (basics
of the C language in four weeks), the C language instruction was
extended for two more weeks. As it turned out, this protracted
coverage didn’t provide the desired benefits and the better
students began to lose interest. However, the exposure to key
concepts of the C language did prove to be of value for all the
students.

5.2 Resources Utilized
5.2.1 Course References

Textbooks are available for most traditional microprocessor
platforms. However, since the concept of teaching soft processors
is still evolving, we found no single source text that addressed
teaching with the Nios processor. Though there was no unifying
document that consolidated the information needed for the
updated Microprocessors course, usage of the soft processor was
considered valuable enough that this did not change our decision.
We accepted the challenge of generating our own instructional
materials for the processor-specific (assembly and C) portion of
the course.

Numerous references, including textbooks, vendor-supplied
handbooks and tutorials, and data sheets were utilized in the
course. Reference manuals and tutorials supplied by Altera for
the DE2, the Nios II processor, Nios II software developer and
Altera Debug Client were used. The textbook “Embedded System
Design - A Unified Hardware/Software Introduction” [6] was
selected as the text for the lecture portion of the course. This text
has been dropped in our latest offering of the course, and replaced
with inhouse-generated materials. “The C Programming
Language” (K&R) [7] was the primary reference for the C
language portion.

5.2.2 Development Platform and Tools
A microprocessor was considered a more generalized platform
better suited for teaching microprocessor basics than
microcontrollers, which have a wider variety of implementations.
(Microcontrollers will be addressed in the Embedded Systems
course.). In addition, the Nios II processor has an architecture
which, when coupled with memory-mapped I/O, simplifies
understanding of the system’s address space. The Harvard
architecture typically found on microcontrollers requires special C
qualifiers to identify data residing in different memory spaces.

The tools provided by Altera include tools to produce hardware
configurations, and tools to develop software solutions for soft
processors. The tools involving the generation of soft processor
configurations were used by the instructors, but were not
presented to the students.

For software development, Altera provides an educational
development tool (Altera Debug Client) in addition to commercial
grade tools (Nios II IDE). Altera Debug Client provides assembly
of assembly language programs with no run time support, and
compilation of C programs with minimalist run time support (no
interrupt service routine or exception handling). The Altera
Debug Client also loads resulting code into the DE2 and
establishes a debug session with capabilities to see disassembled
code, view and modify registers, view and modify memory, and
perform other debug functions (e.g. breakpoints). This is
advantageous for educational purposes.

Altera Debug Client is ideal for first time exposure to working
with embedded systems, but lacks the facilities for advanced
development and debugging. It also lacks simulator capabilities
that would allow its use for homework assignments, providing
students the freedom for exploring microprocessor concepts
outside of the lab.

The Nios II IDE automatically generates software libraries
(Hardware Abstraction Language, or HAL) to support most of the
devices generated with a particular hardware configuration.
While very convenient for advanced users, this hinders the
learning process for beginners. For this reason we decided to start

with Altera Debug Client for the first part of the course before
introducing the Nios II IDE. Using Debug Client eliminates the
startup code provided by the C runtime and the exception
handling in the Nios II IDE, and more importantly, assures that
students have to provide the functionality themselves. This
provides a better learning environment for assembly language.

The Nios II IDE development tool was used in the course for
development in the C language. However, since one of the
learning objectives for the Microprocessors course is interfacing
to low level devices and handling of interrupts, Altera’s
implementation of HAL was disabled for exception processing
(interrupt service routines, or ISRs). (Altera’s Nios II IDE is based
on the popular Eclipse IDE framework with Altera-supplied plug-
ins that manage the Nios II projects and the make process. If
alternate plug-ins could provide minimalist support then the use of
Altera Debug Client could possibly be avoided altogether, and
students wouldn’t need to learn two development environments.)

5.2.3 Limiting Scope of Tool Usage
Unless decisions are made to limit which tools are taught, the
number and complexity of tools required for teaching the
microprocessor course utilizing a soft-core processor with an
FPGA as target platform could quickly overwhelm the students
and instructors. As shown in Table 1, the instructor will use all
four major development tools while the students will use just two.
It is critical not to overload the students with extra tools that will
make the learning process much more complicated that it needs to
be.

Table 1. Tools usage

Development Tool Used by Instructor Used by Student

Altera Quartus II Yes No*

SOPC Builder Yes No

Altera Debug Client Yes Yes

Altera Nios II IDE Yes Yes

*only to download sof file

The Altera Quartus development suite is a software tool for
designing and debugging FPGA designs. The input can be
schematics capture or HDL (Verilog or VHDL). Though this tool
is usually used in digital design or higher level FPGA system
design courses, the students in the Microprocessors course do not
need to use this tool. However, the FPGA will still need to be
programmed. The instructor will use SOPC Builder to configure
the Nios II processor, and will synthesize it using Quartus II to
generate the sof file for student use in the lab.

Through experience, it has been found that starting from a simple
Nios II configuration with Nios II core, JTAG_UART, and
SRAM before other devices are added will be most fruitful.

The reason why we do not have our Microprocessors students use
the processor configuration generation tools (Altera Quartus II
and SOPC Builder) is because they should concentrate on learning
how to use a microprocessor rather than how to configure one!
(However, the students will be exposed to those tools briefly at
the end of the Microprocessors course, and students in the second

course of the sequence will learn how to use the tools to configure
a microprocessor.)

As for Altera Debug Client and Altera Nios II IDE, these tools
will be used extensively by the instructor and the students. The
Debug Client is used first because it is simple (less complex than
the industrial strength tool), it is good for assembly or C
programming (individually but not combined), and it supports
hardware debugging. However, it does not provide simulator
support (which is more appropriate for homework assignments).
For this reason, the transition to Nios II IDE is made as quickly as
possibly.

Once the students are comfortable with the basic development
concepts, Nios II IDE is brought in for the course. It has features
that any practicing engineer would use in the field.

5.3 Course Details
5.3.1 Course Approach
A goal-oriented approach was used to present key foundational
concepts in both languages, in order to produce a greater level of
proficiency more quickly than could be achieved with an
exhaustive coverage of either language. With both the assembly
and C languages, basic configurations were introduced at the
beginning so that students learned to write code as early as
possible (in the first lab assignment). Simple example programs
were provided in tutorials to promote the learning process.

An exhaustive presentation of the C programming language was
not the goal of this course. Presenting problems and solutions
with assembly language and then re-solving those problems
utilizing the C language provides an alternate method of
instruction that can be termed as goal-oriented. This approach can
greatly reduce the amount of time and effort for both students and
instructors.

Assembly language programming concepts were presented with a
mixture of devices to help keep interest in the labs. Introduction
of devices began with memory, followed by parallel I/O (PIO)
such as LEDs, switches, buttons, and the seven segment display.
This took about 4 weeks, and then the focus of the course moved
to the C programming language. Based on our belief that it isn’t
necessary to teach the entire C language to significantly enhance
software skills beyond those achieved with assembly language
alone, a subset of the C language was introduced after the
assembly language portion of the course. Much less time was
spent presenting the basic concepts of C language programming
than had been spent in the experimental embedded systems
programming course.

A course outline is presented in Table 2.

The labs developed for the updated Microprocessors Lab course
are summarized in Table 3. The first three labs provided the
students hands-on experience with microprocessors utilizing the
assembly language as covered in the first five weeks of the lecture
series. The remaining labs, with the exception of a portion of the
ISR lab, dealt primarily with the C language.

Table 2: Updated Microprocessors Course Outline

Week Lecture Topics
1-3 Nios II Processor System Architecture and

Programming
Memory, Registers, Program counter
Assembly Instructions, Memory organization,
Addressing modes
Assembler Directives, Instruction Set Reference,
Instruction encoding/decoding

4-6 The C Programming Language: K&R Chapters1-4
C Program structure, Pointers, Structures, Unions, Bit
structures
C access to devices
Cache bypass in C
Inline assembly

6-7 Exceptions
7-8 Hardware abstraction layer (HAL)
8-9 Devices: Timers, counter, watchdog timers

UART, PWM
10-15 Keypad, Keyboard, Analog to digital, Real time clock,

LCD controller, Memory controllers
Performance measurement, ISR performance, Simple
bus, Communication protocols

Table 3: Updated Microprocessors Lab Outline

Week Topics/Assignment
1 Familiarization with DE2, Nios II, and Debug Client

(simplified tutorial)
2 Introduction to memory; develop bubble sort routine)
3 Exploration of address space beyond memory, concept

of memory mapped I/O. PIO devices: Interfacing to
LEDs and switches

4 More advanced PIO. Integration of concepts from
previous labs to implement display system using
switches, LEDs, buttons and seven segment.
Organization of code into modules and directories.

5 C language tutorial. Redo seven segment display in C,
continuing use of Debug Client

6 LCD interface routines in C language, continuing use
of Debug Client

7 Exceptions: return to assembly language to explore
issues of exception processing

8 HAL, introduction to Nios II IDE and related HAL
facilities

9 HAL interrupts (abstraction of interrupts provided by
Nios-supplied HAL routines)

10 Spring break
11 PWM and DC motor and H-bridge: use of PIO core to

control direction and speed of DC motor with PWM
12-16 Final Project

5.3.2 Synergy of teaching assembly and C together
Exposure to assembly is required for the Computer Architecture
course. However, it was our belief that the addition of the C
programming language would provide additional benefits. Both
assembly and C can be presented in the same course when taught
in the proper balance using a goal-oriented approach. The

assembly language was taught first in the course to provide a
foundational understanding of processors and platforms that
would accelerate the process of teaching C. Assembly language is
the best way to understand and learn the foundations of
microprocessors, since it is the primary interface to the processor.
The C language was added to provide a higher level view of the
same processor concepts, further reinforcing the knowledge
provided by learning assembly.

The goal-oriented approach utilized involved teaching a directed
subset of C from a hardware perspective. The versatility of the C
language allows it to be taught at various abstraction levels,
beginning as a relatively low-level language and advancing to
higher-level concepts as the students gain in understanding. C
programming was taught from a hardware-centric perspective
using practical examples. Object oriented programming
principles were included by example. Topics usually considered
as advanced techniques and traditionally presented at the end of a
C language course– such as pointers, structures, unions and bit
structures – were presented early in the course.

Bit manipulation is one concept that can benefit from the
introduction of the C language. The manipulation of bits is
generally the realm of hardware devices. The process of bit
twiddling using techniques such as bit shifting and masking has
traditionally been done in assembly language, and moving that
code to C does not yield any benefits. However, with the
combined usage of bit structures and unions, this process is
reduced to fairly straightforward code. Thus, the introduction of
the constructs of pointers, structures and unions can reduce the
tedium of dealing with the signals of connected hardware devices.
Since bit structures can be platform-dependent, their usage is best
restricted to lower platform-dependent layers.

Teaching C in addition to assembly provides advantages that
would not be provided by simply replacing assembly language
with C. In either language, working at the device level requires
becoming familiar with the processor and the address space. The
concept of pointers must also be learned in either case (pointers in
assembly languages may not be recognized as such in the same
context as C). Pointers are the most difficult concept to learn in
C. Teaching the concepts of pointers in assembly first, observing
the instructions involved, and then translating that knowledge to
implementation in C made it easier to understand the concept of
pointers in C. Once pointers have been learned in assembly, the
only differences that need to be learned in C are syntactic.
Pointers are the primary reason that C can replace assembly
language for device level code.

The following four figures demonstrate the object oriented aspects
of the microprocessors course. Figure 2 shows the top level of a
simple general-purpose input/output (gpio) program and the
abstractions with layering utilized. Figure 3 is a structure
definition for a memory mapped I/O based device and includes a
definition for a cache override. Figure 4 shows the methods for
data encapsulation with accessor methods (get_RUN and
get_POS). Figure 5 shows usage of a show variable to match the
state of the output only port so that individual signal may be
updated independently. Mutator methods (show_RUN and
show_POS) are provided.

// file: shadow.c

#include "switches.h"

#include "ledr.h"

#include "types.h"

int main()

{

 bits POS = 0;

 bits RUN = 0;

 LEDR_Init();

 while (1)

 {

 show_RUN(RUN = get_RUN());

 show_POS(POS = get_POS());

 }

 return 0;

}

Figure 2. Simple gpio Programming with Layering

#ifndef PIO_H_

#define PIO_H_

#include "types.h"

#define NOCACHE 0x80000000

typedef struct pio_regs {

 word data;

 word direction;

 word interruptmask;

 word edgecapture;

} PIO_REGS;

#endif /*PIO_H_*/
Figure 3. Structure Definition Memory Mapped I/O Device

// file: switches.c

#include "system.h"

#include "PIO.h"

#include "switches.h"

static volatile PIO_REGS *SW =

 (PIO_REGS *)(SWITCHES_BASE | NOCACHE);

static union {

 word data;

 struct {

 bits POS : 3;

 bits fill_1 : 14;

 bits RUN : 1;

 bits unused : 14;

 } bits;

 } SH_SW;

bits get_RUN (void)

{

 SH_SW.data = SW->data;

 return SH_SW.bits.RUN;

}

bits get_POS (void)

{

 SH_SW.data = SW->data;

 return SH_SW.bits.POS;

Figure 4. Data Encapsulation with Accessor Methods

// file: ledr.c

#include "system.h"

#include "PIO.h"

#include "ledr.h"

static volatile PIO_REGS *LEDR =

 (PIO_REGS *)(LEDR_BASE | NOCACHE);

static union {

 word data;

 struct {

 bits fill_1 : 6;

 bits POS : 3;

 bits fill_2 : 5;

 bits RUN : 1;

 bits fill_3 : 3;

 bits unused : 14;

 } bits;

 } SH_LEDR;

void LEDR_Init (void)

{

 SH_LEDR.data = 0;

 LEDR->data = 0;

}

void show_RUN (bits RUN)

{

 SH_LEDR.bits.RUN = RUN;

 LEDR->data = SH_LEDR.data;

}

void show_POS (bits POS)

{

 SH_LEDR.bits.POS = POS;

 LEDR->data = SH_LEDR.data;

}

Figure 5. Show Variable

Other synergies between the assembly and C languages were
observed in relation to understanding registers, processor
architecture, and processor address space. In the C language, the
introduction of the register keyword is difficult to understand
relative to what usage it could have. After using assembly, it is
easier to understand how it can effectively be used. Doing low
(device) level microprocessor development in C is difficult to do
without a good understanding of the processor architecture and
the processors address space. This includes the program, data,
stack and devices. In this view it can be argued that
understanding the assembler for a processor before trying to do
work with C is a definite advantage. This is why we have chosen
to overlap the instruction of both the assembly and C languages.

It should be noted that the intent was not to write C code as
translated assembly, which is hard to read and maintain and offers
little benefit over assembly code. By effectively utilizing the
facilities of the C language, many assembly language routines can
be reduced to very small and elegant solutions. Writing code at
the lowest level to access devices is generally very tedious in
either language, but by providing appropriate abstractions this
code can be isolated in layers to allow the higher level more
freedom to solve problems with less consideration for hardware
details. This also provides for easier retargeting to other
platforms.

5.4 Course Outcome
Final lab projects are undertaken to consolidate and demonstrate
the knowledge gained in the lecture and lab portions of the course.
For the final project, the students choose their own teams ranging
from two to six students (depending on the complexity of the
project). The teams are allowed to propose their own projects and
proceed upon approval by the instructor. Teams that do not create
their own project are assigned one by the instructor. All final
projects are developed in the C language.

Each project is provided with a Nios II processor configuration
(sof and ptf files). Since each project has different requirements
and needs, the use of a soft processor allows the instructor to
create different configurations for each team. The teams are
required to perform a demonstration of the product for the
instructor, and produce a final project report describing their
project.

The final projects successfully demonstrated the students’ grasp of
the knowledge presented in the course. A wide range of devices
has been utilized in the final projects, including:
• Interface to student-built joystick to accompany VGA-based

game
• Interface to Super Nintendo game controller for game project
• Two-way infrared communications
• irDA device controller to DE2 interface
• DE2 version of Space Invaders -- on-board hardware utilized

in the implementation included buttons (user input), VGA,
LCDs (score display), timers and alarms (movement of aliens
and weapons), and the JTAG UART (output for testing
purposes),

• Client/Server with IRDA utilized two FPGAs, a keyboard, IR
transceiver, and LCD display,

• Motor Speed Detector and Regulator, utilizing PWM and an
infrared emitter and detector sensor,

• Audio to LED Display,
• LCD Scrolling Marquee,
• DE2 version of Pong Game,
• Ping Pong utilized VGA, sound and keyboard,
• Etch-A-Sketch, and
• Bomb Squad -- utilized two DE2s, keyboard, wireless

modules, motors (remote vehicle), audio and LED display.
All projects have been completed within the time frame provided
with little help from the instructor. Based on student evaluations
of the course, the course update was considered successful.

6. EMBEDDED SYSTEMS COURSE WITH
SOFT AND DISCRETE PROCESSORS

6.1 Objectives
The planned second course in the two-course sequence will build
upon the introductory (microprocessors) course with advanced
topics. The goal is to provide students with equally strong
software and hardware backgrounds, such that they can develop
systems that run reliably and efficiently.

The first objective is to incorporate both soft and discrete
processors in this course. One might ask, if the path of
progression is heading toward the use of soft processors in
FPGAs, wouldn't the use of a discrete processor be taking a step
backwards? That's a reasonable question to ask and one that has
no absolute right or wrong answer. Discrete processors typically

offer high performance and often exclusive special capabilities
that can't be totally replaced or matched by a soft processor
counterpart. The other reason to include discrete processors is
that it is beneficial for the students to be exposed to another
processor in order to learn to write code on one platform that is
appropriately layered to port easily to another platform.

The second objective of this course is to teach embedded systems
programming considerations, and object oriented programming
with C. The course will include teaching layered, modular
programming concepts and selected object oriented programming
principles applicable to embedded systems [8, 9]. It will also
provide exposure to abstraction interfaces of varying quality so
the students will gain the finesse to recognize and create an
effective hardware abstraction interface. The course will
selectively implement object oriented programming principles
applicable to small embedded systems.

The final aim is to bring the first two objectives together by
providing opportunities to practice using real-world devices.
Sensors with different communications interfaces will be brought
in as programming assignments and to be used in projects.
Sensors that are interfaced using current, voltage and serial
protocols such as UART, SPI and I2C will be part of the
curriculum. Since a soft processor is part of the curriculum,
hardware/software codesign concepts can also be introduced. If
the schedule allows, a small project may be assigned to explore
pure software implementation, pure hardware implementation,
and an implementation taking advantage of synergism between
hardware and software.

6.2 Implementation
The partitioning of time spent on teaching hardware versus
software has been given much consideration in the two-course
sequence. Software concepts can be categorized as 1) language
skills, 2) device algorithms, and 3) operating system issues. As
shown in Table 4, not only does the percentage of time spent on
software differ between the two courses but the software topic
emphasis also varies significantly. Compared to the
Microprocessors course, the focus of the software concepts
presented in the Embedded Systems course is less about language
skills and more related to device interfacing and operating system
issues.

The new Embedded Systems course will begin with a few of the
more advanced concepts of the C programming language not
specifically covered in the Microprocessors course, including
object oriented programming in C, layering, race conditions, and
cooperative and pre-emptive multiprocessing. Those topics will be
introduced in conjunction with a case study of UART (further
described below). Foundational skills developed in the first half of
the course will then be employed in the second half to work with
I2C, SPI and USB platforms.

In object oriented languages such as Java, data and code are
tightly coupled. Conversely, in a structured or procedural
language such as C, data and code are uncoupled. To use C in
object oriented programming necessitates that data and code be
loosely associated (by means of establishing coding and naming
conventions) to approximate an object oriented language. Making
this transition requires an understanding of the concepts of data
abstraction and encapsulation, and C. Achieving the goal of

encapsulation and data hiding is accomplished by concentrating
on the appropriate usage of the static key word, and providing
functions to emulate the functionality of accessor and mutator
methods. (The interpretation of “object oriented” concepts for this
course doesn’t address concepts such as polymorphism,
inheritance, etc.)

Table 4. Hardware/Software Breakdown in Two-Course Sequence

 Microprocessors
Course

Embedded Systems
Course

Software

 Language Skills

 Device Interfacing

 Operating System

50%

10%

5%

5%

30%

20%

Hardware 35% 45%

Use of the Altera DE2 for prototyping purposes will continue in
this course. Students will tackle similar projects implemented on
different target platforms, followed by a review of issues found
with each platform. Students will select the platform for their
final project early in the course.

This course will target small embedded processors without
operating systems, requiring students to develop the code for the
services an operating system would normally provide. Concepts
typically covered in an operating systems course that are
applicable to embedded systems will also be addressed, including
time management, solutions to address concurrency issues (race
conditions [10]), and communications protocols. Since these
issues would typically be handled by an operating system in the
case of general purpose computers, different approaches are
necessary for small embedded systems [11-16].

Advanced time management issues and usage of state machine
construct in order to manage time will be addressed. This
approach allows for multiple threads of execution to be
accomplished in a cooperative manner. (To allow for accurate
measurement of time, this will be used in conjunction with an
external crystal and an interrupt service routine.) A cursory
introduction to pre-emptive context switching (pre-emptive multi-
tasking) will also be included.

A case study of serial communications (UART) will also be
presented in the course, incorporating RX/TX, interrupt handling,
operating system concepts (issues of concurrency with ISRs), data
structures (circular buffers), network protocols in SLIP, and low
level device access. Additionally, the solution to the problems
encountered in the case study can be structured utilizing layering
techniques which go hand-in-hand with encapsulation methods.

The serial communications case study will show a classic device
algorithm and provide insight into the measures taken to ensure
reliable usage of a device. When tackling the later devices (such
as I2C) the students will brainstorm to come up with possible
approaches, then experiment with methods for a short period of
time, and regroup to compare results. Once the routines are
completed, the class will again review and evaluate results.

The course will be project-oriented, with all projects developed on
the Altera DE2 development board and retargeted to other

platforms. Code for small embedded systems written on one
platform with the intent of porting to another is generally more
appropriately layered, which results in well-written code that is
inherently retargetable.

The initial project will be development of an ultra-light menu
system for embedded applications. This project is intended to
reacquaint the students with the Altera DE2 and tools used in the
Microprocessors course, and test their understanding and skills
using pointers, structures and unions. This should be a very small
efficient menu, intended not for dealing with everyday processes
but for infrequent updating of configuration items or as a
debugging tool. The routine will be a passive component, ready
to be used but with no continuous impact on system performance.

The second project will demonstrate a stepwise refinement
approach to designing a large project by starting with smaller
pieces that are designed and tested separately before being
integrated into a final solution. The intent is to illustrate that
many pieces of code can coexist and run cooperatively as a whole
without needing an operating system to manage the pieces.
Components will include those from the Microprocessors lab
projects (the majority implemented with minimal amounts of
code), the ultra-light menu developed in the first project, and an
Altera alarm abstraction that will be provided.

The third project will involve retargeting the comprehensive
project developed above to various other platforms. The
remaining projects will include a real-time clock (I2C), other I2C
devices, and SPI devices. The final project will involve a
platform containing a USB device.

7. SUMMARY
To date, the updated Microprocessors course has been taught three
times and the course has been refined based on experiences in
each preceding semester. For example, the coverage of C
programming language concepts has been reduced and the order
of presentation revised to facilitate the transition from assembly
language to C (pointers, structures, unions and bit structures were
taught at the beginning of the C language portion of the course).
Tutorials for vendor products were modified to reduce the volume
of material beyond the scope and objectives of this course that
students were required to sort through. The use of homework and
quizzes was increased to reinforce understanding and increase
student accountability for learning.

Some material was moved out of the lab portion and into lecture
handouts, which adjusted workload to better match the credits for
the lecture/lab portions of the course. Lecture materials were
classified to emphasize practical (lab-oriented) materials versus
text (abstract) materials, allowing introduction of some concepts
in a different order than in the text in order to provide the
necessary background for the labs to proceed.

The labs were also redesigned to simplify future modification and
maximize reusability. The concept is to divide the labs into two
parts: one part that is instructional in nature, the other that
represents the creative endeavor required of the students. The
instructional portion can remain relatively unchanged from
semester to semester, requiring updating only to accommodate
changes in the hardware and tools used. The creative portion can
be changed every semester to insure that students are exposed to
new projects.

In the most recent offering of the course, smaller more frequent
homework assignments and labs have been successfully used to
cover the same material in a manner that seems to be less
overwhelming to the students. Course handouts and examples
have been increased to help students more thoroughly grasp the
concepts. Quizzes and tests have been updated to better reflect
the increased expectation of student understanding.

The upcoming version of the Microprocessors course will also
include a refresher section on number system concepts and an
early test of programming skills.

With the updated Microprocessors course as a foundation, less
time will need to be spent on the C programming language in the
embedded systems course. This will leave more time in the new
Embedded Systems course for specifically tackling embedded
programming for devices and protocols such as the UART, I2C,
and SPI.

8. CONCLUSION

A soft processor instantiated on an FPGA with classic RISC
architecture was used to provide a modern development
environment in the updated Microprocessors course at Boise State
University. Industry-standard development and debugging tools
(Eclipse IDE, GCC compiler and GDB debugger) that the students
are likely to encounter in their careers were also incorporated in
the course. A combination of assembly and C language was used
to teach the basics of microprocessor programming, and the
students learned to practice these skills with realistic laboratory
assignments and projects. The planned Embedded Systems
course will provide the natural follow-up to the updated
microprocessors course.

The update process for the computer engineering courses at Boise
State University has been fruitful for students and instructors.
Students get to learn modern design techniques with up-to-date
tools, beginning with the introductory Microprocessors course and
continuing into the Embedded Systems course.

9. REFERENCES
[1] S. M. Loo, “On the Use of a Soft Processor Core in Computer
Engineering Education,” Proceedings of 2006 ASEE Annual
Conference, Chicago, IL, June 18-21, 2006.
[2] G. Skelton, “Introducing Software Engineering to Computer
Engineering Students,” Proceedings of the 2006 Southeast
Conference, 0-4244-0169-0/062006 IEEE.
[3] http://www.altera.com/education/univ/materials/boards/unv-
de2-board.html, Visited: December 1, 2008

[4] G. J. Nutt, 2003. Operating Systems, 3rd ed. USA:Addison-
Wesley.
[5] A. Silberschatz, P.B. Galvin, and G. Gagne, 2005. Operating
System Concepts, 7th ed. Hoboken, NJ: John Wiley and Sons, Inc.
[6] F. Vahid and T. Givargis, 2002. Embedded System Design – A
Unified Hardware/Software Introduction, Hoboken, NJ: John
Wiley and Sons, Inc.
[7] B.W. Kernighan and D.M. Ritchie, 1988. The C Programming
Language, 2nd ed. Upper Saddle River, NJ: Prentice Hall.
[8] M. Curreri, “Object-Oriented C: Creating Foundation Classes
Part 1,” Available: http://www.embedded.com, Embedded
Systems Design, 9/10/03.
[9] C. Cantrell, “Embedded Object-Oriented Programming,”
Circuit Cellar, Issue 187, Feb. 2006, pp. 52-59.
[10] D.P. Reed and R.K. Kanodia, “Synchronization with
Eventcounts and Sequencers,” Communications of the ACM, vol.
22, no. 2, Feb. 1979.
[11] K.G. Ricks, W.A. Stapleton, and D.J. Jackson, “An
Embedded Systems Course and Course Sequence,” Proceedings
of 2005 Workshop on Computer Architecture Education,
Madison, WI June 5, 2005.
[12] D.J. Jackson and P. Caspi, “Embedded Systems Education:
Future Directions, Initiatives, and Cooperation,” ACM SIGBED
Review, Volume 2, Issue 4, October 2005.
[13] F. Vahid, “Embedded System Design: UCR’s Undergraduate
Three-Course Sequence,” 2003 IEEE International Conference on
Microelectronic Systems Education, Anaheim, CA, June 1-2,
2003.
[14] J. Conrad, “Introducing Students to the Concept of
Embedded Systems,” International Conference on Engineering
Education, Gainesville, FL, October 16-21, 2004.
[15] T.S. Hall, J. Bruckner, and R.L. Halterman, “A Novel
Approach to an Embedded Systems Curriculum,” 36th ASEE/IEEE
Frontiers in Education Conference, San Diego, CA, October 28-
31, 2006.
[16] A. Striegel and D.T. Rover, “Enhancing Student Learning in
an Introductory Embedded Systems Laboratory,” 32nd ASEE/IEEE
Frontiers in Education Conference, Boston, MA, November 6-9,
2002.

