
Nexos: A Next Generation Embedded Systems Laboratory

Dennis Brylow
MSCS Department

Marquette University
1313 W. Wisconsin Ave.,

Milwaukee, WI 53226
brylow@mscs.mu.edu

Bina Ramamurthy
CS&E Department
SUNY at Buffalo

201 Bell Hall,
Buffalo, NY 14260-2000

bina@cse.buffalo.edu

ABSTRACT
The Nexos Project is a joint effort at Marquette Univer-
sity (MU) and University of Buffalo (UB) to build cur-
riculum materials and a supporting experimental laboratory
for hands-on projects in embedded systems courses. Our
approach focuses on inexpensive, flexible, commodity em-
bedded hardware, (the Linksys WRT54GL wireless router,)
freely available development and debugging tools, and a
fresh implementation of a classic operating system that is
now ideal for embedded system exploration. The prototype
laboratory environment is being used in multiple courses at
our respective Universities, with excellent results. We re-
port on the infrastructure we have developed, the goals and
content of our initial course offerings at both schools, and
an evaluation of our success thus far.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems; K.3.2 [Computer and
Info Science Education]: Curriculum

Keywords
Embedded systems education, Nexos, Embedded Xinu

1. INTRODUCTION
Embedded systems comprise a large and growing segment

of the computing sphere, but efforts to prepare students for
work on design and implementation in an embedded context
face a number of important obstacles.

First, embedded systems are by their nature quite diverse,
both in scope and in function. Typical embedded systems
can range from 4- and 8-bit microcontrollers, with hundreds
or a few thousand bytes of storage, to full-fledged high-end
processors with multiple cores and gigabytes of storage. Sys-
tem requirements can range from low-power, event-driven
operation, to gigabit-speed hard real-time deadlines, and can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WESE ’08 Atlanta, GA USA
Copyright 2008 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

include everything in between. In short, the diversity of em-
bedded systems dwarfs the variation found in desktop and
server computing, and this enormous divergence can impact
every aspect of system development.

Second, embedded systems traditionally cannot make use
of the most powerful compilation, debugging and automated
testing tools available for production desktop systems. Their
input/output channels are comparatively narrow, they often
lack sufficient spare resources to support costly profiling or
instrumentation, and their design budgets cannot support
large virtual machines or elaborate software runtimes.

Third, computer science and engineering degree programs
are already well-established at many institutions, and of-
ten do not have room for entirely new courses in the core.
Furthermore, concentration on traditional system develop-
ment models does not necessarily transition smoothly to
time-oriented, interrupt-driven, and reactive models char-
acteristic of embedded systems.

Finally, many schools lack the financial resources, labo-
ratory space, or faculty expertise to commit to dedicated
embedded instructional equipment. With a few notable ex-
ceptions, many of the most popular commercial embedded
platforms do not provide inexpensive evaluation boards, are
supported only by proprietary development tools, and lack
the kinds of useful peripherals that would naturally lead to
a body of general purpose laboratory assignments.

This paper describes initial results from joint efforts by
Marquette University (MU) and University of Buffalo (UB)
to develop a curriculum and support infrastructure to ad-
dress several of these pressing challenges. The Nexos project
aims to provide effective, duplicable, modern curriculum as-
sistance to schools looking to incorporate embedded sys-
tems components into core computer science and engineering
courses throughout the curriculum. Our approach focuses on
inexpensive, commodity hardware—the Linksys WRT54GL
wireless router family—readily available to both students
and faculty. We are developing hardware and software to
support both small- and medium-scale laboratory installa-
tions centered around the WRT54GL. Our curriculum devel-
opment efforts have concentrated on developing laboratory
assignments, teaching materials, and a supporting web por-
tal to assist other departments interested in adoption. A
textbook / laboratory manual is in progress.

The remainder of this paper is organized as follows: a
brief outline of prior and related work; a description of the
Embedded Xinu operating system at the core of our labora-
tory environment and its related tools; a description of the
content in prototype courses taught at both UB and MU;

Figure 1: From Student Source Code to Operating System Output

and evaluations of our efforts thus far.

1.1 Prior and Related Work
There has been much recent work on embedded systems

education. Koopman et al. of Carnegie Mellon University
(CMU) presents an extensive study of the status of embed-
ded system education in [11]. The CMU group discusses
the diverse approaches in twelve different embedded appli-
cation areas, including cross-cutting embedded skills areas
such as real-time systems and energy-aware computing, and
concludes with a list of lessons learned. The guiding prin-
ciples for Project Nexos closely follow this list of lessons
learned.

Wolf and Madsen [20] discuss embedded systems educa-
tion for the future and provide a detailed description of
their experiences at Princeton University. This paper clearly
brings out the importance of hardware-software co-design
concepts, recommending C-like languages over an assem-
bly language approach. We concur with Wolf and Mad-
sen that, “next-generation courses in embedded computing
should move away from the discussion of components and
toward the discussion of analysis and design of systems.”

Hamrita et al from University of Georgia [8] reports an in-
terdisciplinary approach that comprises four different courses
in robotics, embedded systems, and two courses on micro-
controllers. This is an intensive curriculum in embedded
systems and would be very hard to adopt for a liberal arts
degree in computer science. A summary of the 2005 Work-
shop on Embedded System Education (WESE 2005) [10]
covers a list of presentations on existing embedded systems
courses from all over the world. Most of these presentations
refer to quite traditional courses.

A variety of platforms have been proposed for embedded
systems curricula. Ricks et. al [17] use an aerospace pro-
cessor to pursue substantially similar teaching goals to our
own. Others have focused on robotics platforms [8], dedi-
cated digital signal processors [1, 7], and more familiar mi-
crocontroller systems [5]. We believe that a consumer-grade
networking applicance like the WRT54GL presents a plat-
form of comparable or better flexibility at a lower cost than

much of this prior work, and with a clear path toward reuse
for its intended purpose.

Hansson et al. [9] present a graduate-level embedded sys-
tems curriculum focusing on a multi-processor system imple-
mented in FPGA. Work such as this highlights the wide di-
versity of complex topics encompassed by the term “embed-
ded systems”. Our work concentrates on single-processor,
system-on-a-chip hardware with already defined peripherals
in order to make the laboratory topics accessible to under-
graduates.

Vahid and Givargis emphasize the need for early introduc-
tion of structured, time-oriented programming in the first
or second year [19]. We concur that waiting until upper-
division electives to begin introducing core embedded con-
cepts is too long – this paper describes UB’s sophmore-level
course, and an upper-division MU course that builds di-
rectly on sophomore-level courses. Vahid and Givargis also
present a novel, virtual microcontroller environment that
can be used as a starting point in the very earliest courses.
A closely related project [18] extends this virtual teaching
environment to actual hardware through automatic transfor-
mation supported by several real underlying architectures.

Other previous work has emphasized the use of test-driven
development (TDD) in embedded systems courses [15], or
have presented tools for facilitating embedded system test-
ing [13]. Our project includes automated testing tools both
to assist student development and faculty assessment.

The Embedded Xinu kernel is based upon groundbreak-
ing experimental operating system work by Comer in the
1980’s [6]. The Nexos Project is based upon MU’s own prior
work on integrating embedded systems components into ex-
isting core courses [4, 3], and UB’s prior development of an
embedded systems course.

2. LABORATORY ENVIRONMENT
This section describes the Embedded Xinu laboratory en-

vironment we have developed to support the experimental
emphasis on embedded systems in the new curricula at MU
and UB.

2.1 Hardware
As our target platform, we have chosen the ubiquitous

Linksys WRT54GL family of wireless routers. These de-
vices are readily available at inexpensive prices, and can
already be found in homes, small businesses, and college
dorm rooms. They contain a little-endian embedded MIPS
32 processor, operating in the 200-300 MHz range, with 16
MB of RAM, and 4MB FlashROM. Several versions of the
router are available, but all have easily accessible serial port
connections on the main board that allow direct access to
the device firmware.

With only minor modifications to the casing and the ad-
dition of an RS-232/TTL serial transceiver circuit, the serial
console of the WRT54GL becomes accessible to the student.
From the serial console, a user can interrupt the normal
boot sequence from FlashROM, and substitute an uploaded
kernel image from over the local area network (LAN) port.
Thus, students can quickly find themselves running their
own embedded O/S kernel on the raw hardware, with no
emulation or simulation involved. An overview of this pro-
cess is shown in Figure 1.

WRT54GL routers are on the upper end of the enormous
spectrum of embedded devices available to us; their specifi-
cations are roughly equivalent to desktop PCs from the early
1990’s. Yet, while they are not as resource-constrained as 4-
and 8-bit embedded microcontrollers, they are true embed-
ded systems in the modern context. Processor speed and
RAM size are orders of magnitude less than typical desktop
PCs, and input/output channels to the processor are narrow.
They are missing major components that would be found in
non-embedded contexts – no hard disk or optical storage, no
video adapter, mouse, or keyboard. They provide a variety
of interesting peripherals (wireless and wired network in-
terfaces, Flash ROM storage, LED and general purpose I/O
pins,) but present realistic obstacles to traditional debugging
techniques. The highly resource-constrained operating sys-
tems they contain are event-driven systems expected to run
indefinitely with no direct interaction from users or admin-
istrators. In short, we feel that they are an excellent choice
for prolonged experimentation by students with an interest
in embedded computing. As an added benefit, they are a
RISC architecture commonly taught in lower division com-
puter organization courses, so many students will already
have some familiarity with the instruction set.

The modifications made to the platform are non-destructive,
and the WRT54GL once again becomes a fully-functional
wireless router running its stock system upon reboot. The
Embedded Xinu site [2] provides parts lists, diagrams, direc-
tions and pictures for making the simple serial modifications
required.

This embedded platform can be used in a stand-alone con-
figuration in which a single student computer with a net-
work card and a serial port manages a dedicated WRT54GL
router. The advantage of this configuration is simplicity, and
it can be realized in both a laboratory setting, or in many
cases at home and in dorm rooms. Students in the initial
offering of UB’s CSE 321 course (described below) followed
this route, with many students choosing to purchase their
own routers for use in the course. The cost of the hardware,
with modifications, is less than a typical textbook, and the
platform can be used later for either continued embedded
system exploration, or for its original purpose as a home
networking applicance. (Or both, with sufficient effort.)

As shown in Figure 1, the platform can also be used in a
dedicated pool configuration, where a collection of routers
are made available for “checkout” on the network, and stu-
dents can remotely power, upload, and interact with their
embedded operating system kernels from any front-end ma-
chine on the network with appropriate connection tools. In
the pool configuration, students can make use of the plat-
form without requiring dedicated lab space, and the pool
can be used by several different courses simultaneously. The
next section describes the software infrastructure we have
built to support the pool configuration at MU.

2.2 Software
We have ported the venerable Xinu operating system [6]

to the embedded MIPS32 processor, and have built appro-
priate device drivers for several of the key peripherals on
the WRT54GL platform. The source code is freely available
under a BSD-style license from the Embedded Xinu web
portal [2].

Our embedded O/S kernel is small but elegant, and de-
signed to be completely fathomable in a short time by under-
graduates working for the first time on embedded systems.
The layers of the Embedded Xinu kernel are shown in Fig-
ure 2, and include all of the components normally found in
an embedded operating system.

Figure 2: Layers of the Embedded Xinu kernel

Our software can be compiled using freely-available cross-
compiler tools that are readily available from the web and
mainstream Linux distributions. In the stand-alone config-
uration, all that is required for software is a cross-compiler
and a TFTP server, another component that is freely-available
for all of the major desktop operating systems.

For a dedicated pool of backends, additional connection
software is required to allocate routers to remote users and to
manage special-purpose hardware for remote power control
and the large number of serial console connections required.
The Embedded Xinu portal supplies parts lists and config-
uration information for remote power control and network-
attached serial annexes; we also supply open source tools for
managing the remote connections and controlling the dedi-
cated backend pool.

The MU Systems Laboratory contains a dedicated pool
of two dozen backend target routers used for our embedded
systems courses and others. The high-level overview of the
pool is shown in Figure 1; additional details are available
online and in [4].

3. CURRICULUM
This section describes two Nexos Project courses that

have been developed in tandem at UB and MU, leveraging
the Embedded Xinu infrastructure. The first course, UB’s
CSE 321, is an embedded systems course normally taken
by sophomores as part of the core curriculum. The second
course, MU’s COSC 198, is an upper-division elective taken
by students who have already taken core operating system
and hardware system courses with embedded components.
While CSE 321 and COSC 198 are two very different courses
at two very different institutions, they both leverage a com-
mon laboratory infrastructure, and common curriculum ele-
ments. The two taken together show the diversity of assign-
ments and course focus that are possible within the Nexos
framework. We describe both courses in detail below.

3.1 Embedded Systems Course at UB
The Computer Science and Engineering department (CSE)

at University of Buffalo has decided to address the need for
a new course to bridge the gap between lower level courses
in data structures and computer organization and higher
level courses such as operating systems. A new course in
embedded systems has been created to bridge this gap, and
to strengthen the operating systems curriculum. While the
traditional operating systems course is offered at the senior
level, the new embedded system course will be taught at the
sophomore level. This model enables students to draw ideas
from modernized lower level courses, and also gives them
ample time to research, explore and apply the embedded
operating systems concepts in their research and internship
efforts in ways that were not possible with a single senior
level course. Prerequisite for the course is Data Structures
and Algorithms (CSE 250) or an equivalent. The topics cov-
ered in this course (CSE 321 [16]) begin at the boundary of
application level software and extend to applications in the
real world.

CSE 321 was offered for the first time in fall of 2007 as a
pilot. The curriculum for the course is strongly founded on
fundamentals that are often overlooked in the modernization
of courses. At the same time, the curriculum also exposes
current trends and concepts enabling modern innovations
and devices such as sensors, heart pace makers, digital music
players, and communication devices. The course pedagogy
includes four components:

1. A core component that provides coverage for funda-
mental concepts;

2. An extension that allows room for applied concepts;

3. Field visit(s) to a local industry; and

4. Class visit(s) featuring Q&A sessions with a distin-
guished scientist in a relevant area.

The core component deals with coverage of fundamental
concepts that are expected to be common among the course
offerings at various institutions. However the extension com-
ponent can be customized to meet curricular needs and to
reflect the areas of specialization of the host department.

Course topics include resource management, concurrency,
secure coding practices, memory management, timeline de-
sign and analysis using metrics and schedulability tests, hard-
ware interfaces, device driver programming, memory maps

and boot kernels, firmware and ROM-resident system code,
communications and networking, and debugging live sys-
tems. Intellectually, this course advances considerations of
computer system architecture, multi-threaded control, fault
tolerance, the translation of requirements into a well-parti-
tioned software architecture and practical design, the subse-
quent translation into code, the documentation of technical
ideas (promoting writing skills), and strategies for system
configurability, hardware state tracking, and safety. Class
visits by an expert are recommended by Koopman et al in
their survey paper [11] to add real impact to concepts like
requirements and tradeoffs discussed in class. Field visits
are modeled after the field-trips that K-12 curricula have
implemented for many years with great success.

The initial offering of CSE 321 used Laplante’s Real-Time
Systems Design and Analysis [12], because of its even-handed
presentation of fundamental real-time system topics. Mate-
rial was also drawn from Liu’s Real-Time Systems [14], be-
cause of the ample examples presented, and the strong, hard
real-time scheduling theory component.

A high level description of the curriculum is given in Fig-
ure 3. Each of the four components are described in greater
detail below. The second column of the table shows a list
of hands-on laboratory exercises that are carried out by stu-
dents on the Embedded Xinu / Linksys WRT54GL environ-
ment. These laboratory exercises correspond closely with
MU’s operating systems course [4]. Thus the implementa-
tion in Figure 3 illustrates the feasibility of retrofitting an
existing course curriculum with an Embedded Xinu-based
lab environment and exercises. Educators may choose to
customize this framework to suit their curricular needs.

3.1.1 Objectives
Given the wide diversity of embedded systems courses al-

ready in existence, it is important to define the objectives of
CSE 321 – the specific skills and knowledge that the authors
intend for students to acquire from the course.

First, students completing CSE 321 will be able to iden-
tify the unique characteristics of real-time and embedded
systems. They will be able to explain the general structure
of real-time systems, and define the unique design problems
and challenges of real-time and embedded systems. They
will apply real-time system design techniques to various soft-
ware problems presented throughout the term.

Second, students will gain hands-on experience designing,
implementing, and testing embedded software. They will
work with both familiar, data-driven problems, and with
asyncronous, interrupt-driven, and time-oriented problems.

3.1.2 Component I: Core
The core covers the fundamental topics we expect to be

common among most Embedded Operating Systems courses.
The objective of this component is to lay down a strong foun-
dation for the students, and to sharpen their C programming
and basic hardware-level competencies. It covers nuances of
memory allocation, deallocation, memory leaks and impli-
cations, buffer management and overflow implications, basic
device driver design, concurrency and event driven program-
ming. This component also offers an opportunity to discuss
open source software development and the GNU GPL (Gen-
eral Public License). The history of the Linksys WRT54GL
wireless router itself yields a very interesting case study for
this topic.

Topics Laboratory Exercises/Demonstrations
I. Core
Operating system fundamentals; 1: String operations and memory allocation

Secure coding : pointers, memory management
Buffer overruns: string vulnerabilities 2: Experimenting with buffer overflow
Device drivers 3: Writing and testing a basic device driver
Context switch and scheduling Introduce Linksys WRT54GL
Interrupt handlers 4: Context switch and scheduling
Open source OS and GPL Demo: Embedded Linux
Concurrency and process control 5: Process control
Event driven and asynchronous programming 6: Preemption and synchronization
Analysis and optimization for performance, space and power Demo: analysis and optimizations
II. Extension
Embedded systems: Memory maps and boot kernels 7: Heap management
Firmware and ROM resident execution strategies Demo: Show and tell of sample firmware
Wireless devices; Deeply embedded systems: sensor motes 8: Implement and test multi-level device driver

and introduction to sensor network
Digital signal processors
Handheld devices : end-use applications such as Internet 9: Design and implementation of basic file system

appliances, smart devices, GPS driven instruments
Debugging live systems Demo: debugging
Realtime systems; predictability, deadlines and schedulability Demo: Cardiac pace-maker
III. Field Trip
To local industry: Atto Tech Inc. and/or Wilson Greatbatch Inc.; Students write a report about their visit

Moog Controls Inc.
IV. Class Visit
Prominent researcher in the area; industrial practitioner Students ask questions

Figure 3: CSE 321 Course Topics and Supporting Laboratory Exercises

3.1.3 Component II: Extension
The second component of the course is intended to be a

variable and applied section that can be customized to suit
the needs of a particular instructor or curriculum. At a min-
imum, it covers kernel level aspects such as bootstrapping,
ROM resident firmware strategies and debugging aspects.
For CSE 321, real-time systems concepts were introduced;
another institution could, for example, replace this material
with an emphasis on sensor networks, or with material on
ubiquitous computing.

3.1.4 Component III: Field Trip
Student participation in a college-level field trip begins

well before the actual date; students start by writing a re-
port on their personal objectives for the trip and their ex-
pectations, and complete the report after the visit. While
Embedded Xinu-based laboratory exercises provide hands-
on experience, a field trip to an industry that applies the
concepts students learned in the course can be a valuable
tool to inspire and motivate them toward further study of
embedded systems.

3.1.5 Component IV: Class Visit
This final component gives an opportunity for the stu-

dents to meet an expert in the field of embedded systems,
a pedagogical pattern that seems to be quite popular with
the students. Question and answer (Q&A) format is used
for this component to allow wider student participation and
to avoid the monotony of the lecture format.

The combination of modernized curriculum, hands-on lab-
oratory experiments, an industrial field-trip and “ask the ex-

pert” Q&A sessions is intended to fill the interest bandwidth
of“net generation”students, keeping them motivated to per-
form well, and ultimately helping them to benefit from the
course.

3.2 Laboratory Exercises at UB
The first three lab exercises (Figure 3) aim to review and

reinforce the C language skills of the students. Many stu-
dents do not have adequate background in some important
concepts such as memory allocation and memory leaks, par-
ticularly when lower level courses have relied on garbage-
collected languages like Java as the first language. UB CSE
department uses Java for its introductory courses and moves
on to other languages (C, C++, and Lisp) in higher level
classes. Lectures and labs are supported by in-class demon-
strations of concepts and devices. For example, one of the
demos involves Linux, the GPL, embedded Linux, and the
history of the Linksys WRT54GL wireless router as a pop-
ular device for embedded Linux hobbyists. This is followed
by a comparison of embedded Linux and Embedded Xinu
that brings out the need for analysis and optimization for
performance and size. This demonstration partially fulfills
the need for qualitative requirements that are critical for
many embedded applications.

The third laboratory exercise, writing and testing a ba-
sic device driver, begins the experiences specifically aimed
at building embedded system design competence. Rather
than view a device driver through the lens of a heavily ab-
stracted operating system layer, students work directly with
the memory-mapped control and status registers of a serial
device to build input and output primitives that they will

reuse for the remainder of the term. This assignment serves
not only to practice reading and synthesizing technical doc-
umentation for a peripheral I/O device, but also to use C
language struct pointers to organize interaction with exter-
nal devices, a common motif in embedded systems.

The fourth laboratory exercise, on context switching and
scheduling, concentrates not on the heavy-weight process
boundary abstractions common in desktop operating sys-
tems, but rather on the light-weight, resource-conscious reg-
ister and stack swapping seen in embedded systems without
a mature real-time operating system. While the Embedded
MIPS processor on the WRT54GL platform has full virtual
memory support, the absence of an obvious backing store
makes it sensible to concentrate on a shared, physical mem-
ory view of thread contexts that has a distinctive embedded
flavor not found in typical operating system courses.

The fifth laboratory exercise, on process control, views the
system as a finite state machine, with each thread in one of
several allowable states. Concentration is on both the design
tools for dealing with such a system, and on a realistic imple-
mentation of code that produces proper state transitions in
an embedded system. This assignment can incorporate any
number of scheduling paradigms, ranging from cooperative
scheduling or simple time-sliced round-robin up to complex
priority queues, offline scheduling, or earliest deadline first
real-time scheduling.

The sixth exercise, preemption and synchronization, re-
casts the finite state machine of thread management with
new, time-oriented transitions reflecting fixed thread quanta.
Unlike an operating systems course, which would start with
high-level timing abstractions already present, the focus in
an embedded systems course is on working directly with
timer control registers and timer interrupts. In addition,
basic synchronization primitives are presented in this newly-
concurrent setting. Emphasis is on simple locks and sema-
phores, suitable for embedded resources, rather than expen-
sive monitor constructs or other highly-abstracted program-
ming language features.

The seventh exercise, heap management, deals directly
with one of the most important resource constraint in many
embedded systems – allocation of memory. It is highly un-
usual to see embedded systems running with virtualized al-
location and garbage collection facilities, but this is the con-
text most familiar to students who learn to work primarily
in Java, Python, or Scheme in prior courses. This laboratory
exercise delves directly into the sea of memory pointers, free
lists and accounting blocks that comprise memory manage-
ment in many kinds of embedded system.

The eighth exercise extends the simple, synchronous serial
driver to build a fully-buffered, asynchronous serial driver.
Working directly with I/O interrupts, hardware FIFOs, and
multiple devices, students confront the genuine complexity
of interaction between embedded processors and their pe-
ripherals. A modern serial UART is itself best described by
a finite state machine with some timed transitions, and a
simple teletype (TTY) protocol on top of this adds another
state machine at a different level of abstraction.

The final laboratory exercise in CSE 321, the basic file
system, is again a finite state machine with timed transi-
tions, describing interaction between a client and a backing
store. An offline disk file can be used as target with the
addition of a block-oriented “serial disk” layer on top of one
of the asynchronous serial port drivers from the previous as-

signment. However, work is also in progress to make use of
the FlashROM hardware already present on the platform, a
storage medium common in embedded contexts.

Our evaluation UB’s first offering of CSE 321 is presented
in Section 4. The next section presents the counterpart
course offered at MU in the subsequent term.

3.3 Embedded Systems Course at MU
MU’s COSC 198: Embedded Systems was offered for the

first time in spring of 2008. The course was offered as an
elective, with our embedded operating systems course [4] as
a prerequisite. As a result, COSC 198 could be considered
the advanced level course in a sequence of systems courses
that revolve around embedded laboratory experiences; stu-
dents in COSC 198 had mostly already completed laboratory
assignments similar to those described for CSE 321 in the
previous section.

The target population of the course was upper division
undergraduates and junior graduate students in computer
science, computer engineering, and biomedical engineering.
In addition to the embedded operating systems prerequi-
site, most students also had prior coursework in hardware
systems, digital logic or computer architecture. Twelve stu-
dents enrolled in this first offering, a mix of third- and
fourth-year undergraduates from the target majors noted
above, and a couple of first- and second-year computer sci-
ence graduate students.

COSC 198 was comprised of three main components: first,
a lecture component covering new material on embedded
and real-time systems, following roughly the chapters in a
recommended textbook; second, a seminar component in
which students read, presented, and discussed research pub-
lications from venues in embedded systems and related ar-
eas; and third, a laboratory component in which student
teams designed, implemented, and tested their own new sub-
systems in the Embedded Xinu framework. Each of these
components will be discussed below.

The stated outcomes for this course were that upon com-
pletion students would be able to:

1. Read, understand, and present current research papers
in the area of embedded systems;

2. Design, implement, and test their own embedded sys-
tem components for integration into a larger system;
and

3. Document complexities of hardware/software interac-
tion in their embedded system components in sufficient
detail that the work can be understood and replicated
by others.

Design of embedded systems can include a startling range
of topics, including both hard and soft real-time system anal-
ysis, dynamical system characterization and feedback con-
trol, various kinds of signal processing, etc. For this course,
our emphasis was on implementation of time-oriented and
data-oriented state machines for I/O driven systems.

3.3.1 Lecture Topics
Lectures topics in COSC 198 were chosen primarily to

introduce new material that would be directly relevant to
subsequent research paper assignments, and to laboratory
projects. It corresponds roughly to the “Core” component

of CSE 321 developed at UB. Some intentional overlap with
prior courses was necessary because of the diverse back-
grounds of the students. Engineering majors had already
worked with feedback control systems, but computer science
majors had not. Conversely, computer scientists had dealt
more extensively with asynchrony than the engineers. Some
of these distinctions are particular to the respective curricula
at MU, and would not be the rule at other institutions.

Given that the primary Embedded Xinu laboratory plat-
form is a consumer networking appliance, student interest
naturally turned toward embedded networking technology
as laboratory projects were brainstormed. In the final third
of the term, much of the lecture material was devoted to
intermediate-level networking topics, to support this direc-
tion. This took the spot of the “Extension” segment of the
curriculum developed at UB. This emphasis on embedded
networking was quite advantageous; certainly the platform
is well-suited to networking, but the hardware also sup-
ports working with other serial-driven peripherals, as well
as GPIO-linked devices. But more importantly, low level
network protocols are fertile ground for developing exam-
ples of the time-oriented, state-driven behavior that we feel
exemplifies the core of embedded system design.

Lecture topics in the term included:

• characteristics of embedded systems;

• characteristics of real-time systems;

• soft vs. hard real-time;

• cyclic, asynchronous, and unpredictable systems;

• control systems and feedback;

• digital sampling, error, and resolution;

• scheduling and schedulability analysis;

• worst-case execution time analysis;

• case studies of real embedded/real-time systems; and

• networking state machines (Ethernet, IP, ICMP, UDP,
DHCP, TCP).

3.3.2 Seminar Topics
Interwoven with the lecture component of the course, stu-

dents worked alone and in pairs to read, present, and lead
class discussions of current research in embedded systems
and related areas. Working from an initial list of possible
papers, and then branching out on their own later in the
term, students drew papers from such venues as PLDI and
SOSP, LCTES, ASPLOS, PODC, USENIX, and SIGCSE.
Topics covered included: embedded, real-time operating sys-
tem kernels; fine-grained locking and lock-free synchroniza-
tion; designing against interrupt-driven overload; memory
protection and isolation in embedded processors; general
purpose computing with GPUs; optimizing embedded net-
working protocol stacks; resource bound and program anal-
ysis in embedded systems; and other embedded system lab-
oratories and curricula.

While some of these topics proved to be too ambitious to
cover thoroughly in this level of course, most provoked lively
class discussion of the challenges facing modern embedded
system designers.

3.3.3 Laboratory Projects
For the practical laboratory component of COSC 198, stu-

dents split into teams of six. In the first portion of the term,
the teams worked in parallel on competing implementations
of the same prescribed embedded system software compo-
nents, and then presented their work to the rest of the class
in a “bake-off” format. In the latter half of the term, the
teams were allowed (in consultation with the professor) to
brainstorm their own project goals, and then pursue an as-
signed subset.

Team work throughout the term emphasized best practice
software design principles, including revision control and col-
laboration tools, testsuite validation, regular design reviews,
and group code reviews.

The first laboratory project focused on completing an
Ethernet device driver for the Embedded Xinu / Linksys
WRT54GL platform. A modern Ethernet device interface
is asynchronous, interrupt-driven, and includes direct mem-
ory access (DMA) buffer pools and client-side packet pools.
Working with such a device is an excellent review of resource
constraints and low-level hardware interaction for students
that have been away from an embedded context for several
terms.

The second laboratory project was to implement a packet
sniffer for receiving, classifying, and displaying various types
of network traffic. It would be easy to let such an assignment
slip into a tediously long list of network datagram details.
In order to maintain an embedded focus, only the most com-
mon datagram types were examined. Fixed-sized, resource-
constrained buffering is emphasized, and it is necessary to
coordinate multiple interrupt-driven devices to deliver cor-
rect output.

The third laboratory project entailed building support for
several low-level networking protols. ARP (Address Reso-
lution Protocol) is one of the key underlying pieces of the
modern TCP/IP Internet. Its packet format is simple, but
modeling a proper ARP cache requires a small state machine
(Figure 4) with a time-oriented transitions between several
of the states (dotted arrows).

Figure 4: States of an ARP cache entry

Teams implemented enough of ARP and ICMP (Internet
Control Message Protocol) to support ping and traceroute
primitives from their embedded operating system kernels.

The fourth laboratory project added an implementation
of UDP (User Datagram Protocol), the work horse of unreli-
able network communication. Students implemented enough
of UDP to support their own UDP service clients, including
DHCP and rdate. DHCP (Dynamic Host Control Protocol)
is again interesting particularly because it is best understood
as a state machine with timed transitions on several of the
edges, as shown in Figure 5.

Figure 5: DHCP timed state machine

At this point, the teams went their separate ways based
upon their interests. One group proceeded to implement a
working subset of TCP (Transmission Control Protocol), the
reliability layer of Internet communication, allowing their
embedded operating system to establish connections and ex-
change data with many other external services. The TCP
state machine has more than a dozen states, with many more
transitions. An embedded implementation requires careful
allocation of resources, particularly with regard to reassem-
bly and retransmission. Features like congestion control add
complex, feedback-driven timing behavior, and are an excel-
lent exercise in embedded system development.

Another group pursued memory protection, a mechanism
using the virtual memory hardware of the underlying archi-
tecture to guarantee memory isolation between processes in
the embedded operating system. While neither team were
entirely successful in achieving their advanced goals, each of
the teams met key benchmarks and ended the semester with
substantial accomplishment. Both of these final projects are
of the level typically found in second-year graduate-level sys-
tems courses at some other Universities.

4. EVALUATION
This section discusses the results of various assessment

mechanisms used at both UB and MU to weigh the edu-
cational value of the new curricula in conjunction with the
embedded laboratory enviroment.

4.1 Embedded Systems Course at UB
The prototype offering of CSE 321 was small and com-

prised only 6 students. UB had ample opportunity to get
feedback by closely observing the small number of students,
but some assessment instruments lacked both statistical sig-
nificance and anonymity with such a small enrollment. Next
fall’s offering is likely to have a normal enrollment of 20 to
30 students, and assessment will continue.

The pilot offering of CSE 321 at UB used the stand-alone
configuration for the WRT54GL router platform; each stu-
dent had a router and associated connectors. Besides the low
cost of the hardware, we had some significant observations
that are really impressive about the environment: 1) time to
set up was small (about 2 hours of student lab time per unit),
plus the cross compiler configuration time; 2) portability was
high (2 of the 6 students decided to buy their own hardware
to work at home since it was less than the cost of many
texts) and students could carry their equipment around in
a kit bag; and 3) the set-up was self-administered, meaning

that we did not need to depend on department system ad-
ministrators to install and configure the environment for us.
This is especially important for the adoptability of Nexos
in both large research schools where priorities are elsewhere
and in small, remote schools that lack technical expertise to
maintain specialized systems.

Evaluation question Avg
Understand the fundamental components

and operation of an embedded system 1.5
Can design and implement an embedded system 2.0
Understand the fundamental components

and operation of a realtime system 2.25
Can design and implement a realtime system 2.0
Are able to program using Xinu environment 1.25
Understand the interface between

hardware and software 1.0
Understand the interaction of

hardware and software 1.25
Are able to get a complete picture of an O/S 2.0
Are able to embed the system you programmed

in real hardware 1.75

Figure 6: Student evaluation of course objectives for
CSE 321

Figure 6 contains a summary of aggregate results from
the special-purpose assessment instrument section relevant
to the technical objectives of the course. Responses are
reported as averages over a five point scale, ranging from
Strongly Agree (1) to Strongly Disagree (5).

Evaluation question Avg
Hardware resources appropriate 2.0
Software resources appropriate 1.25
Computer resources adequate for assignments 1.5
Computer resources available and accessible 1.5
Enabled “hands on” embedded system experience 1.25
Enabled “hands on” realtime system experience 2.25
Able to work with Embedded Xinu 1.0
Able to work with WRT54GL platform 1.0
Xinu wiki useful 1.25

Figure 7: Student evaluation of Embedded Xinu in
CSE 321

Figure 7 contains a summary from the special-purpose as-
sessment instrument section relevant to the Embedded Xinu
laboratory resources used for the term projects. Responses
are reported as averages over a five point scale, ranging from
Strongly Agree (1) to Strongly Disagree (5).

Overall, UB successfully duplicated the basic Embedded
Xinu environment to teach a course on embedded and real-
time systems. Student suggestions for improvement included
complaints about the difficulty of soldering wires for the se-
rial transceiver. By the start of the spring term, MU had
provided a solution in the form of a printed circuit board de-
sign for easy transceiver assembly. UB students frequently
consulted the Embedded Xinu Wiki [2] maintained by MU
and sent in requests for more information. One of the up-
dates UB requested was a wiki page for shell programming;
the prompt MU response is at http://xinu.mscs.mu.edu/Shell.

Students were excited about the application of knowledge
from their earlier courses. For example, they designed a
UML class diagram for Embedded Xinu, and experienced
the effects of single threaded kernel through the errors they
encountered. Students explored the hardware on their own
by buying parts such as serial-to-USB cables from Ebay and
USB drivers from Radioshack.

UB plans an offering of the course for fall 2008, with nor-
mal enrollment (20-30 students). This will be supported by
an extended, scaled-up version of Embedded Xinu, and a
dedicated pool of backend platforms.

4.2 Embedded Systems Course at MU
COSC 198: Embedded Systems was the first offering of

its kind at MU, so it cannot be quantitatively compared
with predecessor courses. Instead, we rely on three other
measures to assess the student learning resulting from the
course. First, we have quantitative, direct measure of the
practical subsystem deliverables produced from the labora-
tory component of the course. Second, we have the standard
MU course evaluation forms completed by students at the
end of the term. Finally, we have the results of a specially
produced assessment instrument, jointly developed for the
Nexos project by UB and MU, and administered by an inde-
pendent evaluator. Student participation in the assessment
was anonymous and voluntary, and the protocol was ap-
proved by both the UB and MU Institutional Review Board
(IRB) for research involving human subjects.

The systems produced by the teams in the first group of
laboratory projects was either very good or excellent in each
case. For each major functionality milestone, teams passed
all or all but one of the key testing criteria. In the second,
advanced phase of laboratory projects, the teams were not
able to pass the majority of testing criteria – however, they
had set highly ambitious goals for themselves.

Evaluation question Median Decile
The course as a whole was: 5.0 9
The course content was: 4.9 9

Figure 8: Student evaluation of COSC 198

Figure 8 summarizes anonymous student evaluation of the
course using the standard MU assessment instrument. An-
swers were given in a scale from Excellent (5) to Very Poor
(0), and the aggregate score is reported as a median. The
decile rank compares the median score of an item in this
course with the median scores for all courses at MU in the
past two years; a decile of 9 indicates a median score in the
top 10% of all courses.

Figure 9 continues the summary of anonymous student
evaluations, with all questions phrased to rank relative to
other college courses the student has taken. The scale runs
from Great (7) to None (0).

Figure 10 contains a summary of the special-purpose as-
sessment instrument section relevant to the technical ob-
jectives of the course. Responses are reported as averages
over a five point scale, ranging from Strongly Agree (1) to
Strongly Disagree (5). Note that this scale is reversed from
the previous assessment tool, and lower numbers are better.

Finally, Figure 11 contains a summary of the special-
purpose assessment instrument section relevant to the Em-
bedded Xinu laboratory resources used for the term projects.

Evaluation question Median Decile
Learn the conceptual and factual

knowledge of course 6.3 8
Develop an appreciation for the

field in which course resides 6.8 9
Understand written material in field 6.5 8
Develop ability to express self

in writing or orally in field 6.4 8
Understand & solve problems in field 6.5 9
Apply course material to real world

issues or other disciplines 6.7 8
General intellectual development 6.8 9

Figure 9: Student evaluation of COSC 198 relative
to their other college courses

Evaluation question Avg
Understand the fundamental components

and operation of an embedded system 1.6
Can design and implement an embedded system 1.8
Understand the fundamental components

and operation of a realtime system 1.5
Can design and implement a realtime system 1.8
Are able to program using Xinu environment 1.3
Understand the interface between

hardware and software 1.4
Understand the interaction of

hardware and software 1.3
Are able to get a complete picture of an O/S 1.4
Are able to embed the system you programmed

in real hardware 1.5

Figure 10: Student evaluation of COSC 198

Responses are reported as averages over a five point scale,
ranging from Strongly Agree (1) to Strongly Disagree (5).

4.3 Discussion
Both the direct measure and the two indirect measures as-

sessing the Embedded Systems course at MU are uniformly
excellent, and indicate that the Embedded Xinu platform en-
abled an engaging and rewarding learning experience. Stu-
dents’ written comments were similarly glowing, and sug-
gested a greater focus on case studies and application-centered
papers for the next iteration of the course.

The indirect measures at UB were similarly impressive,
although it is difficult to draw strong conclusions before we
have a larger sample. Assessment of our curriculum mate-
rials and infrastructure will continue with future offerings
of these courses, with evaluation of student performance in
subsequent courses, and with experiences reported by other
schools currently adopting the fruits of the Nexos Project.

5. CONCLUSIONS
We have presented the results of inaugural offerings of

embedded systems courses at two Universities, based upon
a common laboratory environment to support hands-on ex-
perimentation. Our infrastructure focuses on flexible, in-
expensive, ubiquitous consumer hardware, and open-source
tools that are widely available. We believe this constitutes

Evaluation question Avg
Hardware resources appropriate 1.3
Software resources appropriate 1.3
Computer resources adequate for assignments 1.3
Computer resources available and accessible 1.3
Enabled “hands on” embedded system experience 1.2
Enabled “hands on” realtime system experience 1.6
Able to work with Embedded Xinu 1.3
Able to work with WRT54GL platform 1.6
Xinu wiki useful 1.9

Figure 11: Student evaluation of Embedded Xinu in
COSC 198

a “next generation” over prior work that relies on expensive,
proprietary, special-purpose hardware and closed tool sets.

Our courses concentrate on key aspects of embedded sys-
tem software development: time-oriented design and analy-
sis, resource-constrainted implementations, testing and de-
bugging on real hardware, and interrupt-driven reactive sys-
tems. The current choice of platform is particularly well-
suited to network applications, but can support a wide va-
riety of interactions over serial ports and GPIO pins.

Embedded systems education covers a fantastic array of
topics, and we do not attempt to address development of dig-
ital electronics background, hardware/software co-design,
FPGA’s, real-time operating systems, or domain-specific pro-
gramming languages. The combination of software-centric
embedded and real-time topics we have chosen suits our two
university’s population of computing majors, and we believe
other schools will also find it suitable.

The Nexos Project comprises our curriculum materials,
hardware and software tools, and a community web portal to
support widespread adoption of the same. Our initial assess-
ments have been extremely promising, and we believe that
our approach can help bring embedded systems education
to many schools that would not otherwise have resources,
space, or expertise to initiate such an undertaking.

6. ACKNOWLEDGMENTS
The authors are grateful for the students in MU’s COSC

198 and UB’s CSE 321 courses who persevered through our
experimentation in the 2007-2008 school year. This work
is supported in part by NSF grant DUE-CCLI-0737476 at
MU, and DUE-CCLI-0737243 at UB.

7. REFERENCES
[1] M. Benjamin, D. Kaeli, and R. Platcow. Experiences

with the blackfin architecture in an embedded systems
lab. In WCAE 2006: Workshop on Computer
Architecture Education, 2006.

[2] D. Brylow. Embedded XINU project, 2007.
http://www.mscs.mu.edu/~brylow/xinu/.

[3] D. Brylow. An experimental laboratory environment
for teaching embedded hardware systems. In WCAE
2007: Workshop on Computer Architecture Education,
pages 44–51. ACM Press, June 2007. ISBN:
978-1-59593-797-1.

[4] D. Brylow. An experimental laboratory environment
for teaching embedded operating systems. In SIGCSE
2008: Proceedings of the 39th SIGCSE technical

symposium on Computer science education, volume 40,
pages 192–196, New York, NY, USA, 2008. ACM.

[5] B. H. C. Cheng, D. T. Rover, , and M. W. Mutka. A
multi-pronged approach to bringing embedded
systems into undergraduate education. In Proceedings
of ASEE 98: American Society for Engineering
Education Annual Conference, 1998.

[6] D. E. Comer. Operating System Design: The XINU
Approach. Prentice Hall, 1984.

[7] D. Franklin and J. Seng. Experiences with the blackfin
architecture for embedded systems education. In
WCAE 2005: Workshop on Computer Architecture
Education, 2005.

[8] T. K. Hamrita, W. D. Potter, and B. Bishop.
Robotics, microcontroller and embedded systems
education initiatives: An interdisciplinary approach.
International Journal of Engineering Education,
21(4):730–738, 2005.

[9] A. Hansson, B. Akesson, and J. van Meerbergen.
Multi-processor programming in the embedded system
curriculum. In Proceedings of WESE 2008: Workshop
on Embedded Systems Education, pages 33–40, Oct
2008.

[10] D. J. Jackson and P. Caspi. Embedded systems
education: future directions, initiatives, and
cooperation. SIGBED Review, 2(4):1–4, 2005.

[11] P. Koopman, H. Choset, R. Gandhi, B. Krogh, et al.
Undergraduate embedded system education at
carnegie mellon. Transactions on Embedded
Computing Systems, 4(3):500–528, 2005.

[12] P. A. Laplante. Real-Time Systems Design and
Analysis. Wiley-IEEE Press, 3rd edition, 2004.

[13] V. Legourski, C. Trödhandl, and B. Weiss. A system
for automatic testing of embedded software in
undergraduate study exercises. SIGBED Review,
2(4):48–55, 2005.

[14] J. W. S. Liu. Real-Time Systems. Prentice Hall, 2000.

[15] J. Miller and M. Smith. A TDD approach to
introducing students to embedded programming. In
ITiCSE ’07: Proceedings of the 12th annual SIGCSE
conference on Innovation and technology in computer
science education, pages 33–37, 2007. ACM Press.

[16] B. Ramamurthy. CSE 321: Realtime and embedded
systems, 2007. http:
//www.cse.buffalo.edu/~bina/cse321/fall2007/.

[17] K. G. Ricks, W. A. Stapleton, and D. J. Jackson. An
embedded systems course and course sequence. In
WCAE 2005: Workshop on Computer Architecture
Education, 2005.

[18] S. Sirowy, D. Sheldon, T. Givargis, and F. Vahid.
Virtual microcontrollers. In Proceedings of WESE
2008: Workshop on Embedded Systems Education,
pages 57–62, October 2008.

[19] F. Vahid and T. Givargis. Timing is everything –
embedded systems demand early teaching of
structured time-oriented programming. In Proceedings
of WESE 2008: Workshop on Embedded Systems
Education, pages 1–9, October 2008.

[20] W. Wolf and J. Madsen. Embedded systems education
for the future. Proceedings of the IEEE, 88(1):23–30,
January 2000.

