
A Publish-Subscribe Architecture and Component-based
Programming Model for Medical Device Interoperability

Andrew King, Sam Procter∗
Dan Andresen, John Hatcliff†, Steve Warren

Kansas State University
{aking,samuel3,dan,hatcliff,swarren}@ksu.edu

William Spees, Raoul Jetley
Paul Jones, Sandy Weininger

US Food & Drug Administration
{William.Spees,Raoul.Jetley,PaulL.Jones,

Sandy.Weininger}@fda.hhs.gov

ABSTRACT
Medical devices historically have been monolithic units – devel-
oped, validated, and approved by regulatory authorities as stand-
alone entities. Modern medical devices increasingly incorporate
connectivity mechanisms that offer the potential to stream device
data into electronic health records, integrate information from mul-
tiple devices into single customizable displays, and coordinate the
actions of groups of cooperating devices to realize “closed loop”
scenarios and automate clinical workflows.

In this paper, we describe a publish-subscribe architecture for
medical device integration based on the Java Messaging Service.
We provide a overview of a model-based development environ-
ment that we have built for rapidly programming device coordi-
nation scenarios. We assess the extent to which this framework is
capable of supporting and complementing the Integrated Clinical
Environment that has been proposed by the Medical Device Plug
and Play Interoperability Project The implementation of this frame-
work is freely available and open source. One of the primary goals
of the framework is to provide researchers in acadaemia, industry,
and government with an open test bed for exploring development,
quality assurance, and regulatory issues related to medical device
interoperability.

Keywords
medical device interoperability software systems component based
design

1. INTRODUCTION
Historically, medical devices have been developed as monolithic

stand-alone units. Current Verification and Validation (V&V) tech-
niques used in industry primarily target single monolithic systems.
Most devices today are either standalone units or integrated verti-
cally with other products from the same company. This state of af-
fairs stands in direct contrast to the pervasive integration and coop-
eration among computing devices in our world today, and it is quite
∗Author’s current affiliation: University of Nebraska, Lincoln
†Corresponding Author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

clear that numerous clinical motivations exist to deploy systems of
integrated and cooperating medical devices. It is anticipated that
medical systems will undergo a paradigm shift to provide func-
tionality such as device data streaming directly into patient elec-
tronic health records (EHRs), integration of information from mul-
tiple devices in a clinical context (e.g. hospital room) into a single
tailorable composite display, automation of clinical workflows via
computer systems that control networks of devices as they perform
cooperative tasks, remote-controlled/robotic surgery, and even au-
tomatic construction and execution of patient treatments. Indeed,
companies including Cerner, CapsuleTech, Philips/Emergin, Sen-
sitron, and iSirona are bringing to market infrastructure that facil-
itates streaming of device data into medical records. In addition,
large-scale research projects such as the Medical Device “Plug and
Play” Interoperability Program [9] (MDPnP), funded by the U.S.
Army’s Telemedicine and Advanced Technology Research Center
(TATRC), are developing standards and prototypes for systems of
cooperating devices.

Numerous challenges presently exist that are preventing this vi-
sion of deeply integrated and highly beneficial medical systems
from being realized. These include: (a) lack of domain knowl-
edge and infrastructure on the part of academic researchers as they
seek to develop appropriate V&V technologies, safety-critical sys-
tem components, and programming models, (b) lack of awareness
in industry of formal modeling and verification technologies that
could tackle the problems of compositional construction of highly
interactive safety-critical systems, and (c) lack of realistic applica-
tions of cutting edge V&V and programming technologies in the
device integration space that might provide science-based inputs
for guiding the formation of new regulatory policy. We believe that
only a broad-based community effort of academics, industry, and
regulatory officials can solve these interrelated challenges.

Progress must be made on a number of fronts to address the chal-
lenges described above.

• Which middleware and integration architectures are candi-
dates to support device integration across multiple interac-
tion scenarios?

• Which programming models are suitable for rapid develop-
ment, validation, and certification of systems of interacting
medical devices?

• What V & V techniques are appropriate for compositional
verification of envisioned medical systems, and how can the
effectiveness of the techniques be demonstrated so as to en-
courage adoption among commercial vendors?

• Can existing regulatory guidelines and device approval pro-
cesses that target single devices be (a) extended to accommo-
date component-wise approval of integrated systems and (b)

established in a manner that encourages innovation and rapid
transition of new technologies into the market while uphold-
ing a mandate of approving safe and effective technologies?

• What interoperability and security standards are necessary to
encourage development of commodity markets for devices,
displays, EHR databases, and infrastructure that can support
low cost deployment of integrated systems and enable flexi-
ble technology refresh?

To facilitate industry, academic, and government exploration of
these issues, we are developing an open Medical Device Coordina-
tion Framework (MDCF) for designing, implementing, verifying,
and certifying systems of integrated medical devices.

Below we list the design goals for our MDCF.

1. Provide distributed networking middleware infrastructure that
enables devices/displays/databases from different vendors to
be integrated with minimal effort.

2. Provide payload capabilities that support common data for-
mats used in the medical device and medical informatics do-
mains.

3. Provide an architecture that enables tailoring, integrating, and
transforming device information streams.

4. Support the requirements of realistic device integration con-
texts.

5. Develop an architecture whose performance and application-
level programmability scales gracefully as the number of in-
tegrated devices and computational resources (e.g. server ma-
chines) increases.

6. Provide basic functionality needed to address different no-
tions of reliability including options for guaranteed message
delivery, logging/auditing, and persistent storage of messages,
as well as looking forward to how gurantees of ‘functional
reliability‘ could be attained.

7. Support a programming model that makes it easy to assemble
new functionality from building blocks.

8. Use infrastructure that is freely available and open source.
This will enable more cost-effective research and hopefully
encourage more widespread research in the academic com-
munity.

9. Use standards-based frameworks that are supported by enterprise-
level implementations that can provide suitable performance
in a realistic enterprise setting.

10. Support both real and simulated devices because it will be
difficult for academics to obtain real devices.

11. The interoperability infrastructure should enable health care
providers to mix and match components from different ven-
dors best suited to meet patient needs, without undue concern
for the safety of the resulting system. This should be done
in a way that assures a level playing field such that vendors
compete on the basis of features and performance.

12. Understand the limitations and safety implications of the ar-
chitecture to establish risk boundaries.

13. Ultimately, we aim to support the capabilities similar to those
called for in the MD PnP project by providing an implemen-
tation of a notion of Integrated Clinical Context or similiar
capabilities but realized in a component-based integration
environment supported by model-driven development [14].

In previous work [7], we overviewed the MDCF, discussed mul-
tiple clinical device integration scenarios that it aims to support,
and reported on experimental studies that described the performance
of the MDCF under computational loads that are similar to what
might be encountered in realistic deployments. This paper de-
scribes in greater detail the architecture of the MDCF and a MDCF-
specific environment for component-based model-driven develop-
ment of device coordination/integration scenarios. The specific
contributions of this paper are as follows:

• Describe a device coordination framework built on top of an
open standards based middleware (the Java Messaging Sys-
tem).

• Describe an architectural layer built on top of JMS that pro-
vides extended functionality for robustly managing the inter-
action of medical devices, and which supports a model based
programming paradigm.

• Explain a model-based development process for the develop-
ment of device coordination scenarios and components. We
present an Eclipse-plugin based on our Cadena tool [2] which
directly supports and aides the development of medical de-
vice coordination scenarios.

• Summarize experiments which indicate that the architecture
offers satisfactory performance for most integration contexts.

• Describe the open-source infrastructure that is now available
for building with the MDCF (including JMS providers, mock
devices, example device drivers and example scenario com-
ponents.)

We are submitting this paper to HDMCSS in order to directly en-
gage medical professionals and systems builders focused on inte-
grating medical devices. We hope that the MDCF can be used to
rapidly prototype integration systems geared towards a high level
of reliability1 and patient safety. These prototypes in turn would
provide both system designers and medical professionals with in-
sight concerning potential issues systems of medical devices are
likely to face. In addition, the MDCF architecture in combination
with its development environment serves as an example on how rig-
orous development practices could be automatically enforced. The
contents of this paper should not be interpreted as an endorsement
by the FDA of any particular technology, software infrastructure,
or direction for regulatory policy. However, we expect experience
with frameworks such as the one presented here to provide science-
based input to ongoing regulatory policy and standards develop-
ment efforts. We encourage additional experience building efforts
with this infrastructure by others in the software engineering and
medical device communities to help shape the vision and realiza-
tion of systems that we believe will be central to future health care
enterprises.

The MDCF infrastructure is available for public download at
[8].
1Reliability could defined as any combination of functional cor-
rectness, system level resilience, or the mitigation of any factors
that negatively affect patient care. Different clinical contexts could
require different notions of reliability.

Figure 1: JMS primary objects

Figure 2: JMS destinations

2. JAVA MESSAGING SYSTEM OVERVIEW

2.1 Message Oriented Middleware Foundation
The design of our core architecture is driven by practical reali-

ties of the clinical device integration, such as (a) flexible, dynamic
information flow (frequently needing privacy), (b) heterogeneous
systems, mechanisms, and needs, (c) many listeners, and many
sources, and (d) time-critical, scalable performance. A message-
oriented, publish-subscribe architecture with decentralized hubs,
dynamic queuing, reliable message passing, and enterprise-grade
deployment fits these criteria nicely. We have found it convenient to
consider message-oriented-middleware (MOM) based on the Java
Message Service (JMS) standard. JMS satisfies the criteria (a-
d) above, while providing low-cost, open-source implementations
for low barriers to entry and easy integration into research envi-
ronments. In addition, there are multiple commercial enterprise-
quality JMS implementations such as those found in IBM’s Web-
Sphere and Oracle’s AQ products. JMS provides point-to-point or
publish/subscribe topologies, reliable or unreliable message deliv-
ery, and potentially high throughput low latency message trans-
mission depending on the implementation used. It enables dis-
tributed communication which is “loosely coupled, reliable, and
asynchronous.” In our application environment, its ability to pass
simple data types as well as complex objects enables a clean in-
tegration with structured text standards such as HL7, as well as
binary objects such as DICOM images. .

Figure 1 presents the primary objects involved in JMS publish/-
subscribe communication. When a client wishes to originate a con-
nection with a JMS provider, it uses the Java Naming and Directory
Interface (JNDI) to locate a Connection Factory that encapsulates
a set of connection-configuration parameters for the provider. The
client then uses the Connection Factory to create an active Con-
nection to the provider (typically represented as an open TCP/IP
socket between the client and the provider’s service daemon). In
our architecture, clients will do all of their messaging with a single
Connection. A Connection supports an Exception Listener that will
be called when an connection fails (which we will use to handle sit-
uations in which a device unexpectedly disconnects in the middle
of an activity). Once a connection is established, a client uses the
connection to create a JMS Session.

Figure 2 illustrates that a JMS destination is an abstract entity
to/from which a client publishes or receives a message. Destina-
tions are located/retrieved via JNDI calls. A session serves as a

Figure 3: JMS message format

factory for creating MessageProducers or MessageConsumers for
a particular destination. To send a message, a client requests a ses-
sion to create an empty message (of a particular type supported by
JMS), the message contents are filled in, and a MessageProducer is
called to send the message. To receive messages asynchronously
(which is the method we will use in our framework), the client
creates an object (a handler) that implements the MessageListener
interface and sets that object as the listener for a particular Mes-
sageConsumer.

A session is a single-threaded context designed for serial use by
one thread at a time. It conceptually provides a thread for sending
and delivering messages for all message producers/consumers cre-
ated from it, and it serializes delivery of all messages to all of its
consumers.

Figure 3 illustrates that the abstract structure of a JMS mes-
sage is divided into three parts: a header containing values used
by both clients and providers to identify and route messages, a
properties section containing application-defined or JMS-provider-
defined key-value pairs that provide additional metadata about the
message, and the payload of the message. A number of these fields
such as Destination, DeliveryMode, MessageID, Timestamp, and
Redelivered are not set by the client but by the infrastructure layer
as a message is transmitted. We use the Timestamp field to gather
performance information reported on in Section 5. Other fields
such as CorrelationID and ReplyTo are set by the client to guide
responses to messages. We use CorrelationID to support the situ-
ation where we have multiple integration scenarios running on the
same server. There are a few base administrative destinations (com-
munication channels) that are shared among all running scenarios;
each scenario sets a unique correlationID and watches for responses
from the scenario administrator using the same ID.

Property values are set by the client prior to sending a message.
When constructing a message consumer, a client can specify a filter
expression that references fields in message headers and properties;
only messages that pass the filter are delivered to clients. Thus, the
primary purpose of message properties is to expose attributes for
filtering. We currently use filtering only on header fields, but the
property mechanism provides significant flexibility for enhanced
functionality moving forward.

JMS provides a number of different formats for message pay-
loads. We primarily use text messages (e.g. HL7 and most other
data) and object messages (e.g. for DICOM images) (see Section 5).

3. ARCHITECTURE

Figure 4: High Level MDCF architectural diagram

3.1 Medical Device Coordination Framework
Components

Figure 3 contains a high level overview of the modules that com-
pose the MDCF. The figure denotes that two different types of cou-
pling are in place between the various modules. Two modules with
’JVM Coupling’ simply means that those modules communicate
with standard Java method calls, and that they must live in the same
JVM. Two modules with ’JMS Coupling’ communicate with each
other via the JMS message bus. Two modules with ’JMS Coupling’
need not exist in the same JVM.

3.2 Message Bus Modules
The modules in Figure 3 are grouped according to their general

functionality. The JMS message bus (JMS Provider) and device
relavent extensions (Topic Management Modules) provide an ab-
straction of the JMS topic management interface and abstract ac-
cess to the JNDI. As mentioned in Section 2, JMS provides a pub-
lish subscribe framework where JMS clients either publish to or
subscribe to ’global topics.’ The Topic Management Modules hide
the global nature of JMS publish / subscribe and instead expose
the notion of virtual inter-component channels (see Figure 5). A
MDCF scenario component then only communicates to other sce-
nario components via these virtual channels. There are 2 main ben-
efits to this approach: 1) Human and automated reasoning about in-
formation flows at the scenario level are greatly simplified, and 2)
the MDCF can take advantage of the performance features present
in the underlying JMS provider (E.g. if many different clinician
terminals are running a scenario that renders data from the same
device then the MDCF is smart enough to tap those terminals into
the same underlying global topic for information from that device
instead of generating a message for each terminal.) In addition,
topic subscription management can be abstracted away from the
’business logic’ of the MDCF component, allowing the developers
to only concern themselves with the actual data being published or
received from a virtual channel.

The Topic Management Modules manage two classes of JMS
topics; management topics and medical data topics. The manage-

Figure 5: The MDCF hides ‘global‘ topics from the program-
ming model. JMS topics are instantiated for each component
output port. The MDCF automatically subscribes a compo-
nent’s input ports in order to instantiate a given scenario. A
MDCF enabled heart rate monitor is represented in the sys-
tem as HrMon12, which maps to the HrMon component on the
modeling level. Data from HrMon12 flows via the underlying
JMS topics to a software component, HRAlarmGen2, which
will then emit an alarm message if the heart rate falls below
a certain threshold. Finally, alarm messages will be delivered
to a nurse’s console, which is running component AlrmDisp5.
Solid lines denote medical data information flows, dotted lines
represent management data flows.

ment topics are used by the various MDCF modules to communi-
cate with devices and operator consoles. Management topics are
never used to transport medical data. Medical data topics take on
the opposite role; they are exclusively used to communicate medi-
cal data between devices. This partitioning is in place to support the
MDCF programming model (where the scenario developer should
not be concerned with low level connection management and com-
ponent lifecycle) and possible future efforts towards automatic ver-
ification of integration scenarios (since information pathways are
explicitly partitioned into these two categories, analysis of the func-
tional correctness of scenarios would need not be concerned with
management data).

3.3 Operator Services Modules
The AdminConsoleService and ClinicianConsoleService provide

the actual business logic for the various remote operator consoles.
Each service manages the authentication of operators at remote
consoles and the interactions of those operators with the other mod-
ules of the MDCF.

The various consoles at the bottom of Figure 3 could represent
either Clinician or Adminstrative consoles. These consoles are sim-
ply a remote graphical frontend to the logic provided by the con-
sole services. A Clinician Console permits a medical practitioner
to request that a given integration scenario be instantiated with an
operator specfied set of devices. If specified by the scenario, the
console may display data output by that scenario.

The Adminstrative Console is somewhat more complicated. This
console allows IT staff to configure, install and maintain different
aspects of the MDCF. The MDCF requires that devices are regis-
tered by administrative/IT staff (in the DeviceDB) before they can
connect. Likewise, scenarios and software components must be in-
stalled into the MDCF prior to use. A burden is placed on the staff
to ensure that only appropriate and approved devices are registered
in the system. The Adminstrative Console acts as a graphical fron-
tend to the AdminstrativeConsoleService. These two modules act

in concert to provide sanity checks on the various tasks an admin-
istrator may perform (verifying version compatibility between the
components and scenarios, as well as validating digital signatures).
The Adminstrative Console also provides some monitoring facili-
ties which allow adminstrative staff to observe the health and activ-
ity of the running coordination scenarios.

3.4 Device Integration Management Modules
The DeviceManager manages the lifecyle of connected and con-

necting devices. The DeviceManager uses the management top-
ics to communicate with devices that are connected or connecting.
During this communication the DeviceManager will query the re-
mote device for accounting information (e.g. what type of device?)
and periodically ’ping’ the remote device to determine the health
of the device’s connection. The DeviceManager also provides in-
formation about the state of connected devices to the rest of the
MDCF (e.g. Is device x connected? or Is the device y responding
to pings?) The DeviceManager uses information in the DeviceDB
to determine if a given device is allowed to connect to the MDCF
and what sort of security level the device has.

The ScenarioManager is responsible for instantiating and track-
ing integration scenarios. The ScenarioManager uses scenario spec-
ifications stored in the ScenarioDB to determine what type of de-
vices and components are required for a given scenario and then
communicating the necessary information via the management top-
ics to the requisite devices.

Scenarios can include purely software components in their spec-
ification (such as an alarm generator). Software components are
instantiated per-scenario (each scenario gets its own copy of a com-
ponent). If the ScenarioManager determines that a software com-
ponent is required in a given scenario, then the ComponentManager
will retrieve the component bytecode from the ComponentDB, in-
stantiate it, connect it to the JMS, and then place the new com-
ponent in the ComponentHost. When a scenario is finished, the
ComponentManager is responsible for disposing of the component
and tearing down any connections to the JMS that component had.

4. PROGRAMMING MODEL
We anticipate that device integration scenarios will be imple-

mented either by developers at a company that supplies an inte-
gration framework (who would find it advantageous to build up a
collection of reuseable components or product lines to serve mul-
tiple customers) or by on-site clinical engineers (who may not be
familiar with underlying middleware and network concepts). Thus,
we have developed a component-based programming model that
abstracts away the details of the lower-level infrastructure and fa-
cilitates rapid assembly of integration scenarios from reusable com-
ponents (Goal 7).

The component model supports typed input/output event (asyn-
chronous) ports with multiple categories of components, including
data producers such as devices, data transformers that filter, coa-
lesce or transform data streams, and data consumers that represent
displays or data repositories. Some components may be both data
producers and consumers, such as devices that may be controlled
by others or health information databases.

The MD PnP Integrated Clinical Environment (ICE) standard
provides foundational requirements describing the safe interaction
of dynamically-assembled components (in keeping with the plug-
and-play motif), clearly defining a set of roles within medical sys-
tems [14]. Each device provides a device description to the ICE-
compliant infrastructure, detailing the type and frequency of the
data and services being provided, and QoS desired. The MDCF
complements the ICE standard in several respects – providing a

Figure 6: ICU scenario components

standards-based middleware to support the ICE, proposing a com-
ponent model for programming device coordination behaviors, and
development of a model-based programming environment for rapid
assembly of device coordination scripts – while providing a less-
developed device model and no support for registering totally new
device types at runtime into the system.

While implementing a more general component model than the
ICE provides, our component model also provides a natural inter-
action with systems conforming to the ICE standard. For exam-
ple, elements from a broader MDCF environment can map easily
onto the MEDICAL DEVICE, ICE SUPERVISOR, and ICE NET-
WORK CONTROLLER components while providing a more de-
tailed view of the medical device ecosystem. Furthermore, MDCF
can reduce significantly the overhead of producing compatible, cor-
rect systems through extensive code generation capabilities.

We have built an integration scenario development environment
in our Cadena framework [2]. Cadena provides component-based
meta-modeling that enables us to define a domain-specific language
of components for building device integration scenarios. Given a
meta-model of the component language, Cadena generates a com-
ponent interface editor that allows one to define component types
and a system scenario editor that allows one to allocate and connect
component instances to form an executable system. Cadena’s rich
type system allows one to define different type languages for com-
ponent ports that capture specific properties of data communicated
between components. Cadena provides a notion of “active typing”
that continuously checks for type correctnesss as a system scenario
is constructed in the graphical scenario editor.

Figure 4 shows a device integration scenario built in Cadena’s
scenario editor. Components corresponding to medical devices such
as blood pressure and cardiac monitors appear on the right of the
figure. Connections between components represent publish/sub-
scribe relationships.

We have built a Cadena plugin that provides facilities akin to a
very light-weight version of the CORBA Component Model (CCM).
Given a Cadena type signature for an MDCF component, autocod-
ing facilities generate a Java skeleton/container for the component.
The skeleton contains all logic required by the framework to en-
able the component implementation to connect to the framework
as a framework component (this includes automatically generating
the logic for subscription assignment and publishing logic). The
component developer then only needs to implement the “business
logic” – the code that processes medical information (such as a data

transformer or rendering routine) or device access logic (interaction
with actual device sensor hardware).

Similar in spirit to CCM’s deployment and configuration infras-
tructure, the plugin can also analyze a Cadena coordination sce-
nario model and generate a MDCF specification file. The MDCF
specification file consists of XML that describes the named compo-
nent graph. The logical name of each component instance and the
type of the component is present, as well as what inter-component
connections exist. This information is used by the MDCF to lo-
cate the appropriate MDCF component class files and instantiate
the coordination scenario.

We believe that the use of sophisticated architectural types and
component encapsulation can help in constructing assurance cases
for integration scenarios. Use of component technology helps pre-
vent unanticipated interference between components by insuring
that components only interact through explicitly declared ports.
The strong typing in the Cadena modeling environment reduces the
possibility of programming errors.

4.1 MDCF Meta-Language
As mentioned in section 3.2 and section 4 the MDCF extends

JMS with the notion of abstract inter-scenario component chan-
nels. The MDCF meta-language encapsulates the features of this
abstraction in a way that allows scenario developers to design both
coordination components and scenarios composed of those com-
ponents within the Cadena MDCF programming environment. The
meta-language defines the programming model of the MDCF. What
follows is an informal description of the MDCF meta-language.

• JMSMessage - An ’abstract’ message type that can be trans-
mitted over JMS. (i.e. this is an ’umbrella’ type for the TextMes-
sages, ObjectMessages, ByteMessages, etc. described in Sec-
tion 2)

• JMSChannel - An interface type. A message transport be-
tween exactly two end points: a message publisher and a
message consumer. The JMSChannel exclusively transports
JMSMessages.

• JMSPublishPort - Describes a ’publication port’ which can
be associated with MDCF components. Data can only leave
a component via a JMSPublishPort and never enter the com-
ponent.

• JMSSubscribePort - Describes a ’subscription port’ which
can be associated with MDCF components. Data can enter
a component via a subscription port, but will never leave a
component via one.

• DriverProfile - Components of this kind represent medical
devices. DriverProfiless can have any number of subscrip-
tion and publication ports. In the future we anticipate placing
a restriction on the types of messages a DriverProfile com-
ponent may subscribe to (e.g. device commands.)

• DataTransformer - Components of this kind represent soft-
ware components that could be used in a coordination sce-
nario. Components of this kind also allow any number of
input and output ports.

• DataSink - A DataSink component only permits subscription
ports. Typically components of this kind would be heads up
displays or health informatics systems. Restricting this kind
to only allow subscription ports permits lightweight analysis
of scenario descriptions to determine what class of regulatory
oversight a given scenario may fall under.

Figure 7: The Cadena MDCF module view

4.2 Cadena MDCF Module Editor
The Cadena MDCF meta-language defines the kinds (type fami-

lies) of scenario components that the scenaro developer is permitted
to build. The Cadena MDCF uses the meta-language to generate a
MDCF specific module editor. MDCF component developers use
the module editor to define the type-signature for a MDCF mod-
ule. (Figure 4.1 is a screen shot of the module editor with several
MDCF component signatures open.)

Component developers refine the component kinds from the meta-
language by naming a component signature, explicity specifying
what ports that component signature will have, the names of those
ports, and the types of interface those ports will use. Constraints on
the number and types of ports present in the meta-language are ac-
tively enforced by the module editor (i.e. a component type based
off of the DataSink kind cannot have any ports where data is pub-
lished.)

4.3 Cadena MDCF Scenario Editor
The Scenario Editor allows developers to combine modules de-

fined in the module editor into cohesive coordination scenarios by
connecting ports on module instances via channel instances. The
plugin actively type checks scenarios as they are being constructed
in the scenario editor. For example, developers will not be able to
connect two publication ports together or two subscription ports to-
gether. Constraints defined in the meta-language and module editor
are actively enforced by the scenario editor.

4.4 Building a coordination scenario - start to
finish

In order to make the development workflow more concrete, we
describe the development of a simple coordination scenario, from
the definition of the requisite modules to the assembly of the sce-
nario from those modules. In this example we imagine a simple
coordination scenario where patient heart rate information is ana-
lyzed, if the heart rate drops below a certain threshold then an alarm
is generated and forwarded to a display at a nurses’ station. We also
assume that modules for both the heart rate monitor (HRMon) and
alarm display (AlrmDisplayPanel) have been implemented and ex-
ist as component type signatures in the development environment.
In order to realize the described scenario the developer must define
a component type for the alarm generator (HrAlrmGen), implement
its logic, and then combine all three components into a useable sce-
nario specification.

Figure 8: Simple Alarm propagation scenario in the Cadena
scenario editor

p u b l i c c l a s s HrAlrmGen ex tends TransformerComponent {
. . .

Sender hear tRateAlarmOUTSender ;
. . .

c l a s s h e a r t R a t e I N L i s t e n e r implements M e s s a g e L i s t e n e r {
p u b l i c vo id onMessage (Message message) {

TextMessage tMsg = (TextMessage) message ;
t r y {

S t r i n g msg = tMsg . g e t T e x t () ;
i n t in tMsg = I n t e g e r . p a r s e I n t (msg) ;
/ / b e g i n b u s i n e s s l o g i c
i f (in tMsg < 20){

hear tRateAlarmOUTSender . sendMessage ("ALARM HR < 20 ") ;
}
/ / end b u s i n e s s l o g i c

} catch (JMSExcept ion e) {
/ / TODO Auto−g e n e r a t e d c a t c h b l o c k
e . p r i n t S t a c k T r a c e () ;

}
. .

Listing 1: HrAlrmGen component source excerpt with ’busi-
ness logic’

The type signature for HrAlrmGen is straightforward. HrAlr-
mGen will be a software component that subscribes to one data
stream (heart rate information) and publishes one data stream (alarm
events.) The most appropriate kind from the meta-language to re-
fine for this component type is DataTransformer, which will per-
mit this signature to have both publish and subscribe ports. For
clarity, we name the subscribe port heartRateIN and set its type
to JMSChannel. Likewise, a publish port will be defined called
heartRateAlarmOUT which also has the type JMSChannel. This
completes the type signature for HrAlrmGen and the code skeleton
can be generated. The plugin will place all of the necessary ’JMS
plumbing’ into the source code that is generated. Primarily, this
means that the connection logic for a ’JMS Sender’ (heartRateAlar-
mOUTSender) and a specialized message handler (heartRateINLis-
tener) will be present in the new source file. The developer simply
needs to flesh out the sender with the relevent ’business logic.’ See
Listing 1 for an excerpt of this code including the implemented
logic.

When all necessary module type signatures are defined the de-
veloper can use the scenario editor to specify the scenario. In this
case, we place an instance of each of our component types into a
fresh scenario. Next, connections between the ports need to be cre-
ated. In this case, two JMSChannel are used. The first between the
HRMon and the HrAlrmGen and the second between the HrAlrm-
Gen and AlrmDisplayPanel. See Figure 4.4.

5. EXPERIMENTS AND PERFORMANCE
In this section, we summarize the experiment results previously

reported in [7]. These experiments aim to show how the MDCF
might support the following clinical contexts in which device in-
tegration is used (Clinical Device Integration Contexts - CDICs).

Two categories of experiments were designed to evaluate the via-
bility of the framework: baseline experiments and clinical scenario
experiments. Baseline performance experiments use simple pro-
ducer/consumer configurations to measure the raw performance of
the framework as it propagates data representative of clinical con-
texts. CDIC experiments use device/display component configura-
tions that correspond to the clinical integration contexts presented
in [7] (e.g. operating room, ICU ward, and alarm forwarding) to
assess the ability of the framework to support typical usage modes.

Three categories of data were considered in our experiments: de-
vice data (point data and streaming data from monitoring devices),
alarm events (relatively infrequent anomaly events published by
devices), and medical informatics data (relatively infrequent and
large data sets corresponding, for example, to patient record data,
drug dosing information, and medical images). Parameter settings
(e.g. the rates at which device data are published) are set to account
for perceived worst case assumptions (maximum system require-
ments). For example, given a source device such as an electrocar-
diograph, a data update rate of once every 50 ms is considered fre-
quent enough for a physician’s data display to appear as if the data
arrive in real time, so the data transfer and display process will not
affect the quality of the associated clinical assessment. Other types
of sensor data (i.e. blood pressure, heart rate, or blood oxygen sat-
uration) can arrive much more infrequently. In our experiments, we
will simply assume that devices publish information at a minimum
interval of once every 50 ms. Low latency is important for device
and alarm data, but less so for informatics data.

Tests were performed on a single server representing the antic-
ipated minimum machine configuration likely to be encountered
in an enterprise-grade hospital information system (HIS) setting.
We used a Sun Fire X4150 server with dual 2.8 GHz quad-core
Xeon processors, 8 GB of RAM, a local 250 GB hard disk, and a
gigabit Ethernet connection to the network fileserver. The server
runs Linux 2.6.23, Java 1.5.0_13-b05, and OpenJMS 0.7.7-beta-1.
OpenJMS was configured for non-persistent messaging unless oth-
erwise noted. We observed that the current openJMS internal soft-
ware architecture produced strongly asymmetric results; we expect
other JMS implementations to provide more balanced performance.
All results were averaged over multiple runs.

5.1 Baseline Performance
These experiments were designed to measure the throughput of

the framework for single-step propagation (from a data producer to
data consumer) given different types and sizes of clinical data. Per-
formance was measured as a function of the numbers of producer-
s/consumers under different connection topologies (fan-in/fan-out
of producer/consumer relations).

5.1.1 Data Types and Connection Topologies
Three types of data were considered: simple event notifications,

Health Level 7 (HL7) messages, and DICOM data.
Simple Event Notifications: These support the alarm notification
scenarios (little or no payload), control instructions such as the X-
ray activation (workflow automation examples) as well as many
forms of device data such as remote heart rate notification (small
payload). To simulate messages of this type, we use JMS ByteMes-
sages with a payload of 10 bytes.
HL7: Health Level 7 is a messaging standard for the electronic ex-
change of medical information. HL7 messages use a text format
(frequently XML-based) to structure medical data, health record
queries, and data from health records. Although theoretically un-
limited in size, these message typically range between several hun-
dred and several thousand bytes. Our base experiments use three

Figure 9: Message throughput

sample HL7 messages from the CDC Immunization Record EX-
change (iREX) project [5], where messages range in size from 313
bytes to 4312 bytes. The small 313-byte message is an HL7 patient
vaccine record query message. The medium 2227-byte message
contains a fragment of a patient record that notes adverse reactions
to vaccinations (a VAERS record). The large 4312-byte message is
also a VAERS record, but with more vaccination events noted.
DICOM: The DICOM image exchange and storage format sup-
ports high resolution digital images tightly coupled with patient in-
formation. For instance, a DICOM file or message will typically
contain a digital image (JPEG or RLE/TIFF format), a header con-
taining the patient name or identification, and other metadata such
as image dimensions, format, color depth, manufacturer/software
version, etc. [4, 6] For our experiments, we use sample DICOM
data from [1]: “CR-MONO1-10-chest” (379 kB), “MR-MONO2-
16-knee” (130 kB), and “MR-MONO2-12-shoulder” (70 kB).
Connection Topologies: The base experiments evaluate the frame-
work with components in topologies likely to appear in real-world
CDICs. These topologies consider that some devices, databases,
or displays (i.e. a nurse’s station display) may be shared within
and across different scenarios. The topologies relating producers
to consumers include 1 to 1, 1 to 50, 1 to 100, 50 to 1, 100 to
1. In each topology, producers operate at “full throttle” – emitting
messages in a loop as fast as the infrastructure can handle them.

5.1.2 Baseline Experimental Results
Both message size and connection topology affect the rate at

which messages will move through the framework. Larger mes-
sages take longer to marshall/unmarshall, which reduces the rate at
which the system can move messages. Interestingly, throughput is
greatly affected by the connection topology. Increasing the num-
ber of producers will not increase the message throughput nearly
as much as increasing the number of consumers. We suspect that
this is because the JMS provider maintains a queue of pending mes-
sages that is shared between the provider’s worker threads. In the
case of many producers, many different messages can arrive at the
message queue at the same time, and some resource contention can
occur. When the number of consumers is scaled, the system merely
has to remove one message from the queue and copy it to as many
worker threads as system resources allow.

5.2 Critical Care Device Coordination
We begin the CDIC experiments with the Device Coordination

Context discussed in [7]. Due to its safety-critical nature, this con-
text has stronger real-time requirements. As discussed in [7], we
expect that hospitals or critical care providers will use a dedicated
server for each operating or critical care room, and the server will

Figure 10: OR scenario components

run one scenario instance at a time.
For this experiment, we imagine an operating room equipped

with the following medical equipment networked to the MDCF: an
anesthesia machine with an integrated ventilator and electrocardio-
graph (e.g. an Ohmeda Modulus CD/CV) plus a blood pressure
cuff. The operating room is also equipped with a large heads-up
display that renders device data streams. In this scenario, we also
incorporate a software component, a Transformer, that prepro-
cesses the electrocardiogram data stream prior to the stream’s ren-
dering on the physical display. See Figure 5.2 for a graphical de-
piction of this scenario’s logical components.

Mean latencies of the informational messages are excellent - typ-
ically 1 ms. Each producer generates one data message on its out-
put ports once every 50 ms (small numerical data messages that
denote current sensor state, or a 50 ms subsection of a continuous
waveform). Alarm events are updated once every 5 seconds.

Although this experiment does not represent an explicit coordi-
nation activity, it is clear from the performance discussion that our
infrastructure would also be able to support critical care coordina-
tion activities such as those discussed in [7] when OpenJMS is used
as the JMS provider and persistent messaging is disabled. Enabling
persistent messaging increases the mean latency to 5 ms, but the
peak latencies rise significantly, (in this case the peak latency was
7.42 seconds), indicating that OpenJMS may not be appropriate for
some critical care scenarios when persistent messaging is enabled.

Mode Mean % < 50ms % > 2×mean
Non-Pers. 1ms 99.99 1.0
Persistent 5ms 99.62 0.7

Table 1: Message latencies - OR scenario

5.3 Integrated Displays and Alarms
This experiment combines both the Room-Oriented Device In-

formation Presentation and the Alarm Processing
CDICs. It demonstrates the ability of the MDCF to scale to ward

level and still meet appropriate quality-of-service standards.
In this scenario, we imagine a large ICU ward with multiple

rooms – each equipped with a blood pressure cuff, cardiac mon-
itor, intravenous medicator, pulse oximeter, and ventilator. Each of
these devices produces one or more data streams or alarm events
(see Figure 4 for details). Each room is equipped with a config-
urable in-room, heads-up display that renders these data streams.

Figure 11: ICU latencies

The ward is equipped with a nurse’s station display, which sub-
scribes to all alarm events generated by any of the individual room’s
devices. This experiment replicates the scenario 1 - 100 times and
aggregates all alarm messages to one nurse’s station instance.

As can be seen from Figure 5.3, the framework easily scales to
20 rooms. Even when managing 20 rooms, the maximum observed
latency for any system message is 227 ms. The vast majority of
the messages are transmitted much more quickly. At 50 rooms, the
mean latency remains good, but the maximum observed latency has
increased to 3 seconds (the spread of latencies has also increased,
as can be seen by the increase in standard deviation). At 100 rooms,
the maximum observed latency has grown to 4 seconds, but most
latencies are still within allowable bounds.

6. OPEN TEST BED
The MDCF is part of a broader effort to build components which

would be available to researchers for testing and experimentation
of medical device integration. The MDCF described in this paper
is a core component of this effort, as it supplies both the actual in-
tegration infrastructure and a tool with which formal methods and
process oriented development can be excercised w.r.t. medical de-
vice integration systems.

We hope to build support for low cost or no cost (simulated) de-
vices into the MDCF. Currently, work is underway to produce soft-
ware ‘devices‘ which ‘simulate‘ Electrocardiograms by streaming
pre-recorded data ([10]) into the MDCF. We hope that the avail-
ability of simulated devices will enabled researchers without the
resources to obtain expensive medical equipment to use the MDCF
as an experimental platform or test bed.

In addition to these virtual or simulated devices, we are working
to build support for low-cost sensors into the MDCF. Such sen-
sors include low-cost pulse-oximeters [12], thermometers, heart
rate monitors, and multi-axis accelerometers available to us and
currently used in vetinary telemedicine [13]. Lastly, we are explor-
ing integrating pressure sensors found in entertainment oriented
computer interfaces (such as a Dance Dance Revolution pad) as
a way to provide a low cost version of a device which could be
used to detect patient falls.

Finally, the MDCF programmers development environment is
open; Researchers could further extend the tool to realize different
and varied analysis capabilities for both the integration scenarios
and components.

7. CONCLUSION
We produced an open (source) Medical Device Coordination Frame-

work (MDCF) with the ultimate hope that it will be used as a re-

search artifact in the research community to explore issues related
to automated medical device integration and coordination. The un-
derlying technologies (JMS) are also open and there exist imple-
mentations of JMS that are freely available. Initial experiments
indicate that the architecture is scalable enough to support many
realistic device integration and coordination scenarios.

Available with the MDCF is an Eclipse plugin that provides the
’MDCF Programmer’s Environment’ - a model based development
tool thats aids integration scenario developers by allowing the defi-
nition of MDCF component types, the assembly of MDCF compo-
nents into workable integration scenarios, and provides code gen-
eration facility which auto-programs the low level JMS connection
code for any component specified. This plugin is also open; re-
searchers could potentially extend the tool to perform other analysis
of the integration components and scenarios. The tool has already
been used to rapidly prototype several different device coordination
scenarios.

We see the MDCF as complementary to efforts like the MD PnP
Integrated Clinical Environment. While the MDCF supports decen-
tralized integration and coordination, it would be fairly straightfor-
ward to build centralized device coordination facility the MDCF.
The internals of the MDCF have also been designed in a modu-
lar fashion in order to more easily allow developers to support the
types of features which may require management of data at a lower
level than what the programming model on its own provides. (e.g.
ICE proposes functionality such as QoS and a ‘device model‘)

8. FUTURE WORK
We plan to extend both the MDCF and the accompanying pro-

grammer’s environment with more sophisticated analysis and ver-
ification technologies. In addition to the active type checking, we
will extend the the programmer’s environment to support more pre-
cise specification of functional properties (e.g. numerical behavior
of transformer components) of a scenario. The scenario editor will
be modifed to permit the developer to check the correctness of a
given scenario vs. the scenario and component specifications (com-
positional reasoning). We hope to integrate other analysis tools
such as Bogor [11] and Kiasan [3] so the programmer’s environ-
ment plugin can be used to verify the ‘business logic‘ integration
scenario developers implement are correct w.r.t. to the specifica-
tions applied at the modeling level.

9. REFERENCES
[1] S. Barre. DICOM images – Sebastian Barre respository.

http://www.barre.nom.fr/medical/samples/.
[2] A. Childs, J. Greenwald, G. Jung, M. Hoosier, and

J. Hatcliff. CALM and Cadena: Metamodeling for
component-based product-line development. Computer,
39(2):42–50, February 2006.

[3] X. Deng, J. Lee, and Robby. Bogor/Kiasan: A k-bounded
symbolic execution for checking strong heap properties of
open systems. In 21st IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 157–166,
2006.

[4] DICOM homepage. http://medical.nema.org/.
[5] CDC Immunization Record EXchange (irex) project.

http://www.dt7.com/cdc/.
[6] W. B. Jr, S. Horii, F. Prior, and D. V. Syckle. Understanding

and using DICOM, the data interchange standard for
biomedical imaging. Journal of American Medical
Informatics Association, 4(3):199–212, May 1997.

[7] A. King, S. Proctor, D. Andresen, S. Warren, J. Hatcliff,
W. Spees, R. Jetley, P. Jones, and S. Weininger. An open test
bed for medical device integration and coordination. In
Proceedings of the 31st International Conference on
Software Engineering (ICSE 09), 2009. To appear.

[8] Medical Device Coordination Framework (MDCF) – Kansas
State University.
http://mdcf.projects.cis.ksu.edu/.

[9] Medical device ”plug-and-play” interoperability program.
http://mdpnp.org/, 2008.

[10] Physiobank medical device data stream repository.
[11] Robby, M. B. Dwyer, and J. Hatcliff. Bogor: An extensible

and highly-modular model checking framework. In
Proceedings of the 9th European Software Engineering
Conference held jointly with the 11th ACM SIGSOFT
Symposium on the Foundations of Software Engineering,
pages 267–276, 2003.

[12] D. Thompson and S. Warren. A small, high-fidelity
reflectance pulse oximeter. In 2007 Annual Conference and
Exposition, American Society for Engineering Education,
June 2007.

[13] S. Warren, D. Andresen, D. Wilson, and S. Hoskins.
Embedded design considerations for a wearable cattle health
monitoring system. In 2008 International Conference on
Embedded Systems and Applications (ESA ’08), July 2008.

[14] A. F. WK19878. New Specification for Equipment in the
Integrated Clinical Environment - Part I: General
Requirements for Integration., 2008.

