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ABSTRACT
Medical device interoperability is still an issue. Standards
exist only for specific areas like HL7 and DICOM, or have
not been widely adopted like ISO/IEEE 11073 except for
the domain information model at the semantic level. An
approach that covers interoperability below the semantics
is proposed. It is based on Web services which are widely
accepted outside the medical device application domain. In
particular the architecture is build on the upcoming De-
vice Profile for Web Services (DPWS). It is a collection of
existing Web services specifications for service discovery, in-
terface description, event notification, and security. It is
designed for resource-constrained devices and thus seems to
be suitable as a basis for medical device plug-and-play.

1. INTRODUCTION
Interoperability is defined as “ability of two or more systems
or components to exchange information and to use the infor-
mation that has been exchanged” [6]. According to Lesh et
al. [8] the interoperability continuum distends from the least
complex endpoint of physical interoperability to the most
complex of data interoperability. To achieve data interoper-
ability not only the capability to exchange information with-
out an error has to be given, but also correct interpretation
of the information to use it in an algorithm. Benefits of med-
ical device interoperability range from less development time
for data-driven clinical decision support algorithms or medi-

cal device safety interlocks to improved patient safety. Many
initiatives like the MD PnP Interoperability program [10] or
IHE PCD [7] also address this problem.

The ISO/IEEE 11073 is a mature standard addressing the
interoperability issue. Especially the provided domain infor-
mation model is used frequently and enables medical devices
to exchange data on the semantic level. The lower layers are
complex and do not support current technologies like Ether-
net or TCP/IP.

MediCAN is a solution proposed by McKneely et al. [9] and
is described as a vendor-independent network architecture
for interfacing medical devices based on proprietary proto-
cols that are built on top of UDP/TCP as well as CAN-Bus.
There is no direct communication between the devices and
the access to the closed network of medical devices is con-
trolled by a proxy server.

Another approach establishes interoperability between com-
ponents of imaging systems built from OEM-components us-
ing special purpose CANopen device profiles. There is also
a CANopen based application profile addressing acute care
systems [25].

1.1 Service-oriented Architecture
The idea of service-oriented architectures (SOA) is coming
from the business environment. The operation and mainte-
nance of computer systems there is complex and thus very
costly. Each time business processes change, new computer
systems have to be integrated in the existing infrastructure.
Often, these new computer systems have new interfaces and
an integration with old systems is problematic.

A SOA solves this problem by introducing a new standard-
ized interface technology for all systems, called“service”. All
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Figure 1: In a SOA all services communicate with
each other over a common messaging backbone. The
realization of this abstract backbone depends on the
concrete SOA implementation. It can be a network
or a central communication server for example.
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Figure 2: The three primary roles in a service-
oriented architecture with the interaction among
each other

services are now communicating with their service interface
in a common messaging backbone according to Figure 1.

A SOA does not dictate a specific technology, it is just a
concept how to build such an architecture. Figure 2 depicts
that concept with the three primary roles: service provider,
service registry, and service consumer. A service provider
publishes its service description to a service registry. Then,
a service consumer is able to find a corresponding service in
the registry. Afterwards, the service consumer binds to the
service provider to use that service.

Web services are a realization of a SOA with Internet tech-
nologies [15]. The benefit of Web services in contrast to
other SOA solutions is that it uses well-known technologies
and a vendor lock-in can be avoided.

The fundamental and widely accepted standards on which
Web services are build are SOAP [23] and the Web Ser-
vices Description Language (WSDL) [22]. WSDL covers
the service description in the role model, while SOAP is
an XML-based messaging transfer format. Together WSDL
and SOAP cover the roles of the service provider and the
service requester.

The registry role is not covered by these two standards,
but by the Universal Description Discovery & Integration
(UDDI) [14] that specifies an interface for such a registry.
However, the standard is not so widely accepted as WSDL
and SOAP. This is owed to the fact that the main idea be-
hind UDDI to build one global service registry failed.

1.2 First Architecture Concepts
The architecture developed in the FUSION project, funded
by the German Federal Ministry of Education and Research,
is built upon Web services to realize a SOA. Two approaches
have been explored: a complete centralized and a more de-
centralized approach. The latter to overcome the problem
of a single point of failure and due to performance issues.

The centralized approach utilizes an enterprise service bus
(ESB) to provide a common data-centric middleware struc-
ture for reliable transport and traceability of synchronous
and asynchronous messages [19]. The distributed approach
does not depend on a central structure, but more on stan-
dards from the Web service domain. Lookups of services
are handled by a UDDI server. Web services of a provider
are invoked directly by a consumer without sending the re-
quest/response through the ESB. Furthermore, events are
transported using the WS-Eventing specification: either
point-to-point or via an event broker. In most cases, point-
to-point event notification will be used, if the event is safety
critical and could not be send via a centralized event bro-
ker. This approach yields more flexibility, less configuration
effort, and – by far the most important – communication be-
tween devices will not break down, even if one of the basic
service components crashes. With regard to semantic in-
teroperability, both approaches employ an XML vocabulary
based on the ISO/IEEE 11073 domain information model
for hemodynamic and respiratory data as well as HL7 for
ADT data.

The problem with both solutions – even if reduced for the
latter one – is the usage of centralized structures and hence
the introduction of a single point of failure as well as scal-
ability issues. Furthermore some effort has to be expended
for configuration of the medical devices with the result that
no plug-and-play feeling comes up.

For that reason, an architecture based upon current Web
service standards is presented that is locally de-centralized
and only needs central components if communication over
subnet boundaries is needed. This concept is described in
the following section.

2. PROPOSED ARCHITECTURE
The architecture proposal for medical device connectivity
leverages the upcoming Devices Profile for Web Services
(DPWS) standard [11] that defines services for discovery,
interface description, messaging, event propagation as well
as secure information transmission. It is out of scope of the
proposed architecture to define the semantic side of inter-
operability. This can be handled using data models from
mature standards like HL7 or ISO/IEEE 11073.

DPWS – becoming an OASIS standard in June 2009 – is
a minimal set of Web services specifications for resource-
constrained devices. It includes discovery and description
of Web services as well as the possibility for event propaga-
tion. The origins of DPWS are in the consumer electronics
domain where it is used in modern network printers or image
scanners to allow plug-and-play. To sum up, DPWS achieves
the same ease of use for consumer electronics for Ethernet as
USB does for serial connected devices. It is pushed forward
by Microsoft for future printer integration and consequently



Microsoft Windows Vista, Windows Server 2008, and Win-
dows Embedded CE 6.0 R2 already have a native DPWS
stack (called WSDAPI) on-board.

The services of the proposed architecture are discussed in
detail below.

2.1 Dynamic discovery
Web Services Dynamic Discovery (WS-Discovery) [13] is a
service localization protocol and will be standardized in the
context of the DPWS standardization process. By default
it operates in an ad-hoc mode without any configuration.
Therefor it uses a predefined multicast group to reach all
services within the same sub-network. Multicast is a trans-
mission mode where the underlying network distributes the
data to all subscribed nodes. The discovery functionality is
similar to the probably known discovery procedure in SoHo
(Small Office Home Office) firewall appliances or in media
center systems that distribute music and video in home net-
works. In the managed mode the discovery process uses a
centralized component called discovery proxy that caches all
information. With this proxy the discovery process scales to
a larger number of endpoints since the usage of multicast is
reduced to a minimum in contrast to the ad-hoc mode.

The decentralized nature of the ad-hoc mode is applicable
to the application domain of medical devices, since it avoids
a single point of failure. It is important to have a robust
discovery system in case of network failures outside the cur-
rently interacting devices. Medical devices in an operation
room for example should function well in case of network
failures outside their room. This scenario forbids a sole cen-
tralized registry for discovery.

In WS-Discovery service providers announce themselves
when they join the network. It avoids the need for polling
in service consumers for the same service periodically. With
this feature it is possible to automatically update lists of
available services or directly respond in case a new service
appears in the network.

In Figure 3 two discovery procedures are shown. First, the
service consumer on the left side is already running while the
service provider starts up. The service consumer receives
the hello announcement of that service provider and thus
is able to directly start the interaction without the need for
periodically polling for new services. In the second discovery
sequence with the service consumer on the right, the service
provider started before the consumer. Thus, the consumer
missed the hello announcement and must search for that
service.

WS-Discovery is designed for use within a single subnet.
The multicast announcements and search requests do not
scale very well, because all messages have to be sent to all
WS-Discovery nodes in the network. Also the specification
restricts the usage to a single subnet. Thus, this specifica-
tion seems to be impractical for use in enterprise or hospital
networks. In such large networks it is much more efficient
to have a centralized component for discovering services.

On the one hand the reliability of the decentralized multicast
discovery is required on the other hand an enterprise scale

discovery is required. An approach to solve this conflict is to
use both variants in combination with each other. For the
managed mode WS-Discovery specifies a so-called discovery
proxy. Originally it is used to cache all available informa-
tion from the local service providers and response to search
requests from service consumers within the same subnet. In-
stead of using this discovery proxy to reduce multicast traffic
in subnets it can be used as a central component to search
for services hospital wide – outside the current subnet. A
benefit of using a WS-Discovery proxy server instead of a
UDDI server is that the discovery process is more consistent
for the architecture.

The proposed feasible 2-layer discovery architecture [17] is
shown in Figure 4. The WS-Discovery compliant decen-
tralized multicast discovery within a subnet is as robust as
possible against network failures. It is sufficient, that a net-
work connectivity between service provider and consumer
exist. Practically this is no restriction, since the two ser-
vices cannot communicate further. To discover services in
the whole network it is necessary to query a centralized dis-
covery proxy.

Different approaches are possible to reach the centralized
discovery proxy. In [17] the DHCP protocol is used to trans-
fer the IP address of the discovery proxy server to the service
consumers. DHCP offers the possibility to add vendor spe-
cific data on the server side. Then DHCP clients are able to
request this data. Another approach [16] is to use the do-
main name system. Here, the clients query the name servers
for the IP address of the discovery proxy. The DNS based
solution has the benefit of being easier to implement plat-
form independent and has to be configured only in one name
server instead of all subnet limited DHCP servers.

2.2 Event-driven Architecture Concepts
Web services started with typical request-response scenar-
ios, where a client requests a service from the Web service
provider and gets a response. A typical example for this
are use cases from travel agencies where a flight and a hotel
must be booked for a customer. Events are disregarded in
this scenario.

In the medical application domain a lot of communication is
event driven. For example, alarms were sent and real-time
data is transmitted. That means that publish-subscribe has
to be supported in addition to the typical request-response
pattern for device control.

In IP-based networks two different solutions for publish-
subscribe exists in general. The first one uses a dedicated
point-to-point connection for each subscriber; while the sec-
ond solution utilizes the functionality from the underlying
network using UDP multicast.

For the first solution with n point-to-point connections for
n subscribers different Web services specifications exist that
were pushed by different companies: WS-Eventing (Mi-
crosoft) [1], WS-Notification (IBM) [5], and WS-Events
(HP) [2]. In March 2006 they released a joint white pa-
per to harmonize the existing specifications [3]. For event
propagation it results in a new specification called WS-
EventNotification that builds on WS-Eventing and has to
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Figure 3: WS-Discovery sequence diagram for two discovery procedures: The service consumer on the right
searches for services, while the consumer on the left waits for announcements.
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Figure 4: Two different discovery layers: Within the same subnet services can be found decentralized, while
in the whole network a centralized scheme is necessary to go across subnet boundaries.

be specified in the future. It seems to be best practices to
use WS-Eventing. It will also be referenced in the DPWS
standard. In WS-Eventing the event source can delegate the
management of subscriptions to and distribution of events
to another Web service. This is practical for scenarios where
the event source cannot or should not handle the list with
all subscriptions.

The second solution is based on the multicast functionality
from the underlying network. In this case, messages are
sent via UDP multicast, which results in only one message
transmission from the publisher to the multicast address.
The distribution to the recipients is managed by the network
routers. Multicast is designed from the group up for such
distribution scenarios that is why it scales better than point-
to-point transmission. The required specification to employ
multicast messaging in Web services is SOAP-over-UDP [12]
which is also included in the OASIS standardization process
of DPWS.

2.3 Security
For sensitive data and control commands information secu-
rity is important. In the context of medical device connec-
tivity data integrity, confidentiality, availability, and non-
repudiation is interesting for risk management.

Data integrity refers to the validity of data. The integrity
can be harmed by accident or maliciously. Confidentiality
means that the data is only accessible to those that are au-
thorized to have access. Availability stands for a system
that has all information available that are needed to serve
its purpose. In the considered context of medical device
interoperability, it is important to have a correctly function-
ing communication channel. Non-repudiation is required to
ensure that a party in a dispute cannot repudiate a mes-
sage that it sent out. This might be interesting for control
commands.

Information security can be achieved on transport layer or at



message level. For transport layer security a secure channel
is established for end-to-end communication. This secure
channel provides data integrity and confidentiality as long
as both endpoints authorize each other at the beginning.
HTTPS is an example of transport layer security that uses
the TLS (Transport Layer Security) protocol which is the
successor of SSL (Secure Socket Layer) [4].

For message level security each message is secured individ-
ually instead of sending unsecured messages through a se-
cure channel. The benefit of message level security is that
the message can be passed through insecure nodes. Fur-
thermore, non-repudiation is achieved on the message level
utilizing digital signatures. In this case the signed messages
must be logged for later proof of message transmission How-
ever, the message level security is more complex in contrast
to the transport layer security.

For transport as well as message security a public key in-
frastructure (PKI) is a basic requirement for medical device
authentication. A centralized approach with user name and
password is inapplicably. It contradicts to the plug-and-play
nature, introduces a single point of failure, and nevertheless
requires a certificate to authenticate the server to the clients.

Availability for Web services highly depends on the under-
lying network. Ethernet is a best effort network that sup-
ports prioritization. Anyhow, a network node with unsocial
behavior might disturb other data transmission and impor-
tant data packets might get dropped in overloaded switches.
For hard real-time constraints proprietary Ethernet modifi-
cations exists. These are not compatible with Web services.
A tradeoff between normal Ethernet and proprietary solu-
tions can be a fair network switch [18] that equally shares
the available data rate between sending nodes. Thus the
effect of unsocial nodes can be reduced and a minimal data
rate can be guaranteed.

3. FIRST FEASIBILITY EVALUATIONS
First feasibility evaluations have been made with demon-
strator programs on standard computer hardware. For WS-
Eventing a few performance measurements were made to
gain experience for multiple point-to-point transmissions.
They were done with the DPWS toolkits WS4D-gSOAP and
WS4D-JavaME [24] with enabled debugging/logging. The
results are summarized in Table 1.

The performance measurements showed for a WS4D-gSOAP
device, that for one WS4D-gSOAP listener it takes 3.0 ms
to transmit the event and receive an acknowledgement. For
two listeners the event is delivered after 5.7 ms. This time
does not only depend on the devices implementation it also

Table 1: Exemplary performance results for event
distribution according to WS-Eventing for different
toolkits

Event source Listener Total delay

WS4D-gSOAP 1 × WS4D-gSOAP 3.0 ms

WS4D-gSOAP 2 × WS4D-gSOAP 5.7 ms

WS4D-gSOAP 1 × WS4D-JavaME 3.8 ms

Table 2: Serialization overhead in WS4D-gSOAP for
normal messages and messages with a digital signa-
ture for different payloads on PC hardware

Payload Normal
messages

Signature w/o
certificate

Signature with
certificate

1 Integer 1.3 ms 6 ms 8 ms

50 Integer 2.4 ms 12 ms 14 ms

depends on the listeners. For one Java listener implemented
with the WS4D-JavaME toolkit it took 3.8 ms instead of
the 3.0 ms with the WS4D-gSOAP listener.

For measurement of the overhead especially for message level
security the WS4D-gSOAP toolkit was used. It is an add-on
for the gSOAP toolkit [20] that has support for digital signa-
tures. Table 2 summarizes first results for the serialization
time in different scenarios with debug logging enabled by
default. From the second column it can be concluded that
the overhead for the SOAP envelope and the DPWS com-
pliant SOAP header takes 1.3 ms. The serialization of an
additional integer takes merely 22 µs. In the third column
the whole body of a SOAP message is signed according to
WS-Security with a 1024 bit RSA key and the SHA1 hash
algorithm. The certificate for the RSA key is not included
because it is already known to recipient in this scenario. An
additional integer in a signed SOAP message takes 122 µs
which is 5 to 6 times the overhead according to the unsigned
message. This overhead solely results from the SHA1 hash-
ing in the signature procedure. From the last column it
can be concluded that an embedded certificate leads to an
overhead of 2 ms for serialization and hashing.

Van Engelen et al. [21] did further performance mea-
surements concerning security overhead. They compared
HTTPS transmissions with symmetric and asymmetric mes-
sage level security.

4. RESULTS
A concept for a plug-and-play architecture was introduced.
It is build on current Web services standards and covers the
technical layers of interoperability. It is an infrastructure
architecture and thus semantics is out of scope and exist-
ing standards should be used. To discover other devices an
enhanced version of WS-Discovery is used to offer the pos-
sibility to reach services outside the current sub-network.
For event propagation two different solutions WS-Eventing
and SOAP-over-UDP multicast coexist with different ad-
vantages. Information security is covered at the transport
layer as well as at the message level. First performance tests
showed a timing overhead that results from the use of Web
services. If security is needed due to safety reasons, this adds
of course an additional overhead that cannot be avoided.

5. DISCUSSION
In the medical application domain the proposed DPWS-
based architecture seems to provide a basis for device con-
nectivity. It is designed to achieve full plug-and-play ca-
pabilities with devices from different vendors. It runs on
resource-constrained devices as well as on high-end com-
puter systems. Web services in general are one of the widest



accepted building blocks for a SOA that probably has the
most tool support. The reasons for this are supposably its
platform and programming language independency in com-
bination with the use of well-known Internet technologies
such as HTTP.

Even, if there some reservations concerning the performance
of Web services for medical device connectivity. The per-
formed measurements show that they could be used for com-
munication even if low transmission latency is needed.

For event and real-time data propagation SOAP-over-UDP
multicast should scale better since multicast was designed
for such purposes in contrast to WS-Eventing that tried
to add the required functionality on top of existing Web
services standards. The exemplary measurements for WS-
Eventing support that assumption. The delay depends on
the listener implementation and the scheduling strategy of
the sender. From a devices perspective the listener imple-
mentation can not be influenced. The sender is able to in-
form the listener in sequential order or concurrently. When
transmitting the messages in sequential order the last sub-
scribed listener will be informed with a large delay. In con-
trast to that a programmatically concurrent transmission is
more resource expensive, since multiple threads are required.

Also the UDP multicast has a drawback. It does not sup-
port a reliable transport. It is assumed that all transmitted
data is received by the listener. Thus, the decision between
WS-Eventing and SOAP-over-UDP multicast is not a Web
service specific decision.

Anyhow, the major problem in both cases is: What to do
with failed transmissions? Queue them and try it x minutes
later or just fire and forget an event? All these different
aspects lead to the conclusion that it depends on the specific
event (i.e., alarm or real-time data) which solution might be
more practical.

In case of information security this decision is even more
complex. Van Engelen et al. [21] propose to use HTTPS
whenever it is possible since it performs much better then
message level security. It is only possible to use HTTPS
in conjunction with WS-Eventing, because of the nature of
multicast transmissions that require message level security.

A de-centralized plug-and-play architecture like the pro-
posed one might have the best chances to smoothly migrate
into the existing infrastructure since it does not require com-
plex components – two modern devices are sufficient.
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